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Abstract
The use of agrochemicals particularly pesticides, can hamper the effectiveness of natural

enemies, causing disruption in the ecosystem service of biological control. In the current

study, the effects of the insecticides thiacloprid and chlorantraniliprole on the functional

response curves were assessed for two mirid predator nymphs,Macrolophus pygmaeus
Rambur and Nesidiocoris tenuis Reuter. In the absence of insecticides, both predators

exhibited a type II functional response when feeding on eggs of the moth Ephestia kueh-
niella. N. tenuis seems to be a more efficient predator thanM. pygmaeus, as model esti-

mated handling time was significantly lower for the former than for the latter. Residual

exposure ofM. pygmaeus to sublethal concentrations of either insecticide was associated

with a change in the asymptote but not the type of the functional response curve. Thiacloprid

seems to be the least compatible withM. pygmaeus, as it led to both a significant reduction

of the attack rate and an increase in handling time. In contrast, chlorantraniliprole exposure

significantly increased the handling time, but not the attack rate of the predator. Residual

exposure of N. tenuis to sublethal concentrations of either insecticide did not have a signifi-

cant effect on the type nor the parameters of the functional response model. The results

show that pesticide residues that do not have lethal effects on beneficial arthropods can

reduce prey consumption depending on predator species and on likely risks associated

with toxicity.

Introduction
Pesticides are used globally for arthropod pest suppression and play a major role in integrated
pest management (IPM) strategies in many cropping systems. Insect predators are inten-
tionally released or naturally occurring in agricultural fields and offer the important ecosystem
service of biological control [1]. In crop systems where pesticides are applied, their compatibil-
ity with biocontrol agents is a major concern for IPM practitioners as it is essential for the over-
all agro-ecosystem resilience to be maintained.

Pesticides can cause mortality to many biocontrol agents and the assessment of acute toxic-
ity has long been used in the evaluation of pesticide safety to natural enemies [2]. In recent
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years, a lot of attention has been placed on the sublethal effects of pesticides on predators,
including impacts on longevity, fecundity, developmental rate, sex ratio and behavior [3–9].
However, a complete understanding of the impact of many plant protection products on the
ability of predators to supress pest populations is still lacking.

Pest suppression by a predator species depends strongly on two major components of pred-
ator-prey interactions: the predator’s numerical and functional response [10,11]. The func-
tional response is defined as the relationship between the number of prey attacked by a single
predator during a given time interval and prey density. Holling [12] proposed three types of
functional responses: type I, a linear rise to a plateau; type II, a curvilinear rise to a plateau; and
type III, a sigmoid curve rising to a plateau which then levels off under the influence of han-
dling time or satiation [13]. Functional response models are of interest to IPM practitioners
who traditionally have tried to identify predators that impose positively density–dependent
mortality on prey species (type III functional response) because such mortality is thought to
stabilize prey populations [14]. Models of functional response are also employed by ethologists
who wish to estimate parameters that describe predator foraging and explore their dynamics
and provide a conceptual understanding of prey-predator relationships [15,16].

Among the types of functional responses, type ІІ and ІІІ have received the most attention
[14], because most natural enemies show these types. Several factors can influence the func-
tional response of predators, such as the host plant [17–19], intra or interspecific interactions
[20–22], presence of alternative prey [23], predator or prey size [24,25] and pesticide exposure
[26–30]. Yet, the effects of pesticides on the functional response of many important natural
enemies have not been investigated.

The zoophytophagous predatorsMacrolophus pygmaeus Rambur and Nesidiocoris tenuis
Reuter (Hemiptera: Miridae) are native in the Mediterranean region and have been commer-
cially mass produced and successfully released in temperate and Mediterranean crops includ-
ing tomato and other vegetables. Both species are used for the control of pests, such as
whiteflies, thrips, aphids, mites and eggs of Lepidoptera [31–33], including the moth Tuta
absolutaMeyrick (Lepidoptera: Gelechiidae), a pest that invaded Europe in 2006 and continues
to spread in Afro-Eurasia [34,35]. However, the functional response of the predators to eggs of
Lepidoptera, a major pest group, has never been compared. Furthermore, no information exists
on the impact of pesticides on their functional response parameters.

In the present study, we developed functional response curves forM. pygmaeus and N. ten-
uis nymphs feeding on eggs of the moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), a
factitious prey. In addition, we investigated the effects of thiacloprid and chlorantraniliprole,
two insecticides with different mode of action that are commonly used in vegetable crops, on
the functional response parameters of the two predators.

Materials and Methods

2.1 Pesticides
We tested the insecticides thiacloprid (CALYPSO 480 SC1- Bayer CropScience, Leverkusen,
Germany) and chlorantraniliprole (CORAGEN1- DuPont Crop Protection, Wilmington, DE,
USA), two products that are registered for use in tomato crops and other vegetables against
several pests. Chorantraniliprole is used against Lepidoptera, while thiacloprid is used against
Lepidoptera and Hemiptera. Thiacloprid is a neonicotinoid insecticide that acts as an agonist
on the insect nicotinic acetylcholine receptor [36]. Chlorantraniliprole is a newer product, an
anthranilic diamide that activates the ryanodine receptor, releasing stored calcium frommuscle
cells which leads to impaired regulation of muscle contractions [37]. Each pesticide was
sprayed at half of the highest recommended label rate, at 20.00 and 72.00 mg a.i. / lt for
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chlorantraniliprole and thiacloprid, respectively. Testing of concentrations below the recom-
mended field rate simulates exposure of the predators to pesticide residues in the field at several
days / weeks following spray application because of the degradation of the active ingredient
[38,39]. Preliminary experiments established that the rates used in the current study were sub-
lethal, as they did not cause short-term mortality to either predator.

2.2 Insect Rearing
N. tenuis andM. pygmaeus and E. kuehniella eggs used as prey were provided by Koppert,
Netherlands. E. kuehniella eggs are commonly used in biological control research to study pre-
dation capacity and other aspects of predator behavior (e.g. [9]). The predators were cultured
in the laboratory in controlled conditions at 25±1°C, 65% RH and 16:8 L:D photoperiod. E.
kuehniella eggs were kept at 10°C until use in experiments. Each species was kept separately in
a tent-like polyester cage 61 x 61 x 61cm (61 cm- Bugdorm type Bioquip1, Rancho Domin-
guez, CA, USA) with twelve 6–8 week-old potted tomato plants variety Hybrid Brillante F1
(Hazera Genetics Ltd., 79837, Israel) and E. kuehniella egg prey. Fifth instar predator nymphs
(F1) were collected from the cages and they were placed individually in Petri dishes with a
piece of wet cotton wool and allowed to starve for 12 h prior to the experiment. Fifth-instar
nymphs were used for the tests as they are more exposed to pesticide residues than adults that
can fly off sprayed plants.

2.3 Experimental set up
Petri dishes (9 cm in diameter) were used as experimental arenas for the functional response
studies. We opted for the use of Petri dishes rather than living plants as a testing substrate
because both predators are zoophytophagous and differential plant feeding in response to pes-
ticide exposure [9] could affect prey consumption and act as a confounding factor in functional
response modelling. Three openings, 0.5 mm in diameter, were made at the lid covers for venti-
lation. A Potter spray tower (Burkard Manufacturing Co., Rickmansworth, UK) was used for
the spray application on the Petri dish and the lid cover with the air pressure set at 1000 kPa.
The spray volume per application was 1 ml of pesticide solution which resulted in a spray
deposit of 2.55 mg/cm2 similar to what is recommended for bioassays according to the IOBC
Working Group “Pesticides and Beneficial Organisms” [2]. Control Petri dishes were sprayed
with distilled water. Predators and egg prey were not sprayed. After spraying, the Petri dishes
and their lids were allowed to dry out for 24 h in the laboratory at 25±1°C, 65% RH.

E. kuehniella eggs were placed in the Petri dishes 24 h after spraying at the following densi-
ties: 4, 8, 16, 32, 64, 128, with the aid of a wet (size 0) paint brush. A piece of wet cotton wool
was also placed in the Petri dish. An individual fifth instar nymph of either N. tenuis orM. pyg-
maeus was transferred in each Petri dish, and was allowed to forage for 24 h, after which it was
removed and the consumed eggs were counted. Both predators feed by piercing and sucking,
leaving the consumed eggs looking desiccated and shrivelled. Each density was replicated 10
times for each species and for each of the two pesticide treatments and the control. All experi-
ments were carried out at 25±1°C, 65% RH and a 16:8 L:D photoperiod.

2.4 Data analysis
Each nymph represented a single replicate, a common approach in functional response studies
that is employed to avoid underestimation of uncertainty for model parameters (e.g.
[22,27,40,41]). The type of the functional response was determined by fitting a logistic regres-
sion of proportion of prey consumed versus prey offered according to Trexler et al. [40].
Briefly, the type of the curve is determined based on the value of the coefficients of the
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following quadratic polynomial function fitted to the data [41]:

Ne
No

¼ expðPo þ P1N0 þ P2N
2
0 þ P3N0

3Þ
½1þ expðP0 þ P1N0 þ P2N0

2 þ P3N0
3Þ�

Ne is the number of prey consumed, No the initial prey density and P0, P1, P2, and P3 the inter-
cept, linear, quadratic and cubic coefficients, respectively, estimated using the method of maxi-
mum likelihood. If P1>0 and P2<0, the proportion of prey consumed is positively density
dependent, thus describing a type III functional response. If P1<0, the proportion of prey con-
sumed declines monotonically with the initial number of prey offered, thus describing a type II
functional response [25,41].

Type II models found to explain the data best (see Results) were fitted to the data using non-
linear least squares. The type II functional response model is described by the equation:Na =
aNTt / (1 + aNTh), whereNa is the number of prey attacked, a is the rate of successful attacks, N is
the prey density, Tt is the total available time and Th is the handling time. Individual data points
were used in the analyses in order to avoid underestimates of SE of parameter estimates [42]. Sig-
nificant differences between parameters of the functional response models for different treatments
were tested with the superposition of 95% confidence intervals. Mean values of Th were used to
calculate maximum attack rate defined as T/Th [43], which represents the theoretical maximum
number of prey that can be attacked by a predator during the time interval considered. All analy-
ses were carried out using the non-linear least squares (nls) package in R version 2.14.2 [44].

Results
For both predators, and both pesticides and control the linear term P1 was lower than 0
(P<0.001, data not shown), indicating a type II functional response (Fig 1). The model parame-
ters for the type II functional response are shown in Table 1. In control treatments, the attack
rate was similar between the two predators, but model estimated handling time was signifi-
cantly higher forM. pygmaeus than for N. tenuis (Table 1). As a result, the maximum attack
rate was almost three times as high for N. tenuis than forM. pygmaeus (Table 1). The variation
in the number of eggs consumed at each density was higher for N. tenuis than forM. pygmaeus
(Fig 1, S1 Dataset).

Although pesticide exposure did not alter the type of the functional response, it altered the
asymptote of the curve, with a tendency towards lower asymptotes in pesticide treatments
compared to the control (Fig 1). Model estimated handling time forM. pygmaeus was signifi-
cantly higher for thiacloprid than for the control or chlorantraniliprole (Table 1). There were
no significant differences in handling time between chlorantraniliprole and control. The attack
rate forM. pygmaeus was significantly higher for control than for thiacloprid or chlorantranili-
prole, but no statistical difference was detected between the two insecticides. Maximum attack
rate values forM. pygmaeus were similar for control and chlorantraniliprole, and substantially
lower for thiacloprid (Table 1).

Although model estimated handling time for N. tenuis was lower in control than for thiaclo-
prid or chlorantraniliprole, differences were not significant (Table 1). The attack rate was
higher in control than for either pesticide, but not significantly so. Maximum attack rate for N.
tenuis was higher for the control than for thiacloprid or chlorantraniliprole.

No predator mortality in any treatment was observed during the 24 h observation period.

Discussion
Both predators exhibited a type II functional response when feeding on eggs of E. kuehniella.
The type II functional response model employs a decelerating predation curve that reaches a
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plateau as prey density increases, a destabilizing factor in prey-predator dynamics [14]. In pre-
vious research,M. pygmaeus exhibited a type II functional response curve when feeding on
aphids [45] and both predators exhibited a type II response when whitefly instars or T. absoluta
eggs were offered as prey [46,47].

N. tenuis seems to be a more efficient predator of E. kuehniella eggs thanM. pygmaeus (Fig
1, Table 1), as handling time for the former was lower than that for the latter in control treat-
ments. Mollá et al. [48] showed recently thatM. pygmaeus fifth instar nymphs can consume
approximately 10 eggs of E. kuehniella per day, whereas N. tenuis consume close to 15 eggs per
day, figures similar to the ones reported in the current study. Data in Urbaneja et al. [31] also

Fig 1. Type II functional responsemodels forM. pygmaeus andN. tenuis for the two pesticide treatments and the control.

doi:10.1371/journal.pone.0144413.g001
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suggest that N. tenuis is somewhat a more efficient predator thanM. pygmaeus when feeding
on eggs of T. absoluta. Differences in predation rate, however, may be influenced by prey spe-
cies and Lambropoulos et al. [46] found no difference in the consumption rates of the two
predators when whitefly instar nymphs were used as prey.

Per capita predation efficiency was reduced on pesticide treated patches forM. pygmaeus,
but not significantly so for N. tenuis (Fig 1, Table 1). Exposure ofM. pygmaeus to either pesti-
cide was associated with a change in the asymptote but not the shape of the functional response
curve. The lower asymptote of the functional response curve where pesticides are applied is an
indication of decreased predation efficiency, either because the predator attacks less prey or
because of a decreasing searching time. The total time of the functional response has two com-
ponents (searching time Ts + handling time Th) and an increase in the handling time results in
a decrease in the time available for prey searching. Similar changes in the functional response
of predators have been observed in cases of abiotic stressors, such as pesticides [29,30,49–51],
biotic interactions such as intraguild predation [22] and mutual interference [21].

Thiacloprid seems to be the least compatible withM. pygmaeus as it led to both a significant
reduction of attack rate and an increase in handling time (Table 1 and Fig 1). In contrast, chlor-
antraniliprole exposure affected the handling time but not the attack rate of the predator. In a
previous study,M. pygmaeus exposed to the maximum field rate of thiacloprid residually and
orally exhibited an increase in resting time and preening behavior and were not able to con-
sume prey eggs [9]. Chlorantraniliprole exposure in the same study decreased the time spent
feeding from the plant, but not predation efficiency. Thiacloprid, a neonicotinoid insecticide
that acts on the acetylcholine receptors of the nervous system of Hemipterans and other pests
[36], seems to be a more potent disruptor of behavioral responses ofM. pygmaeus than chlor-
antraniliprole, an insecticide acting on the ryanodine receptors of muscle cells in insects [37].
The testing of insecticide concentrations that were below the field recommended rate suggests
that the ability ofM. pygmaeus to control pests may be affected even if it is released several
days after spray application, when pesticide residues have started to dissipate [52]. However,
dissipation rates of pesticides depend on a variety of factors, including plant species and envi-
ronmental conditions [53], and therefore further experiments are needed to estimate the dissi-
pation rates for the two pesticides for tomato plants.

N. tenuis could be more resilient to pesticide exposure thanM. pygmaeus, as neither thiaclo-
prid nor chlorantraniliprole had a significant effect on its functional response parameters
(Table 1). While more studies are needed to investigate the toxicity and behavioral effects of
pesticides to N. tenuis, higher resilience to commonly used products thanM. pygmaeusmay
explain its prevalence in tomato fields in Cyprus [54].

Table 1. Parameters for type II functional responsemodels (mean, 95% CI)* forM. pygmaeus andN. tenuis. RSS is the residual sum of squares of
the model.

Predator Treatment Attack rate (a) Max. attack rate (T/Th) Hand. time (Th) RSS

M. pygmaeus Control 0.63 (0.56–0.70) Aa 7.3 0.14 (0.10–0.17) Ab 697.4

Thiacloprid 0.39 (0.34–0.43) b 3.5 0.30 (0.19–0.45) a 437.5

Chlorantraniliprole 0.15 (0.06–0.37) b 7.8 0.13 (0.04–0.21) b 422.9

N. tenuis Control 0.56 (0.25–1.44) Aa 20.0 0.05 (0.03–0.09) Ba 3528.0

Thiacloprid 0.12 (0.04–0.53) a 7.0 0.14 (0.00–0.33) a 795.6

Chlorantraniliprole 0.21 (0.06–1.79) a 10.0 0.10 (0.00–0.24) a 2420.0

*Different capital letters denote significant differences in model parameters between species in control and low case letters denote significant differences

among model parameters for the different treatments within species.

doi:10.1371/journal.pone.0144413.t001
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Our results showed that pesticide residues that do not have lethal effects on beneficial
arthropods can reduce a predator’s consumption of prey depending on predator species and
on likely risks associated with toxicity. Although the reduction in predation in pesticide treated
patches could be due to the sublethal effects of pesticides, the reduction in prey consumption
in an environment that yields low return may obviously be an advantage for the predator, as it
minimizes exposure to the pesticide. The preference of predators between pesticide treated and
non-treated prey patches could be further tested in choice experiments. Future studies could
also assess the impact of pesticides on functional response of the two predators on treated
plants, however, interpretation of the results may be confounded as both species can feed on
plant sap. While the current laboratory study offers important insights on sublethal effects of
pesticides on biological control, additional field-based studies are needed to fully understand
pesticide impacts on predation capacity of natural enemies.

Through modeling of the functional response of predators in the current study, we show
that N. tenuis seems to be a more effective predator of lepidopterous eggs thanM. pygmaeus. In
addition, we found that two commonly applied pesticides for the control of insect pests can
interfere withM. pygmaeus foraging over a wide range of prey availability at relatively low pes-
ticide application rates. Functional response models can be used as a tool to assess the effects of
chemicals on foraging efficiency of beneficial species in order to recommend or not the use of a
certain product in IPM programs.

Supporting Information
S1 Dataset. Raw data forMacrolophus pygmaeus and Nesidiocoris tenuis functional
response study.
(XLSX)
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