DE MONTFORT UNIVERSITY
SCHOOL OF ENGINEERING AND MANUFACTURE

FINAL YEAR PROJECT
REPORT

DIGIT-SERIAL IIR FILTER
IMPLEMENTATION ON FPGA

Author: Kyriakos Deliparaschos Hand in: Dr Amar Aggoun

Acknowledgements

I would like to thank my supervisor and project leader Dr A. Aggoun of Electronics
and Electrical Engineering Department at De Montfort University, Gateway,

Leicester, for supplying me with this project and for his kind help and guidance.

I would also like to acknowledge my appreciation of the efforts of Nick Bessis and

everybody else who did not hesitate to answer my questions and queries.

Finally, the love and encouragement of my parents and my girlfriend is sincerely

appreciated.

Abstract

This project is based on the implementation of a digit-serial IIR filter, on FPGA by

either using VHDL or ECAD programs (Viewlogic).

The application of the digit-serial structures to the design of IIR filters introduces
delay elements in the feed back loop of the IIR filter. This offers the possibility of
pipelining the feed back loop inherent in the IIR filters. The digit serial structure is
based on the feed forward of the carry digit, which allows sub digit pipelining to

increase the throughput rate of the IIR filters.

The implementation of the digital filter was split into its fundamental elements
according to its block diagram. All the elements of the filter were designed, simulated
and tested to prove their functionality. Furthermore a 1% order digit-serial IIR filter

(n=4, M=32) was composed and simulated to prove that is functioning satisfactorily.

Finally the last should be downloaded onto the FPGA and tested. The FPGA chip,
which was available at the time of this project, was located on a general use board
intended for less complex designs. Due to this fact the 1% order digit-serial filter was
not downloaded, but the 16x16 bit digit-serial multiplier with digit-serial adder and

parallel-in to serial-out register was downloaded instead and tested.

Contents

Acknowledgements
Abstract

List of Contents
List of Figures

List of Tables
Introduction

» Brief Introduction to Digital Filters
» Scope of the project
Chapter 1 Previous Work Done

1.1 Introduction
1.2 Scattered Look-Ahead technique

1.3 Signed Digit number representation
Chapter 2 Radix-2" Arithmetic

2.1 Introduction
2.2 TheRadix-2" Approach
2.3 New Radix-2" Vector Inner Product Algorithms

2.4 Radix-2" Arithmetic Cell
Chapter 3 Bit-level Pipelined Digit-Serial IIR Filter

3.1 Introduction

3.2 Design Methodology of Digit-Serial IIR Filter

33 Pipelined Digit-Serial IIR Filter

34 Bit-level Pipelined Digit-Serial Multiplier

3.5 Truncation of the Output

3.6 Systolic Digit-Serial IIR Filter Structure

3.7 Accumulation of the Recursive and the Nonrecursive Computations
3.8 Pipelining of the Digit-Serial IIR Filter

3.9 Pipelining Of the Digit-Serial Adder

3.10 Pipelining of the Digit-Serial IIR Filter

Page

ii

iii

vii

11

11
12
13

14
16

16
17
22
22
24
26
27
29
30
30

3.11
Chapter 4

4.1
42
43
4.4
45
4.6
47
48
49

4.10

Chapter §

5.1
5.2
53
54
Chapter 6

Chapter 7
References
Appendix A
Appendix B
Appendix C

Appendix D

Design of the Bit-level Pipelined Digit-Serial Adder
Implementation of 1* order Digit-Serial IIR Filter

Introduction
Full Adder Design and Simulation
AND gated Full Adder Design
Carry Save Adder Design
4-bit Register Design
Digit-Serial Multiplier Design and Simulation
Carry Ripple Adder Design
16x16 bit Digit-Sertal Multiplier with Digit-Serial Adder Design and Sinmalation
16x16 bit Digit-Serial Multiplier with Digit-Serial Adder Design with
Shift Registers Destgn and Simulation
4.9.1 Parallel-in to Serial-out Shift Register Design
492 Serial-in to Parallel-out Shift Register Design
1¥ order Digit-Serial IIR Filter Design and Simulation
4.10.1 Carry Save Adders Array Design
4.10.2 Bit-level Pipelined Digit-Serial Adder

Design and Simulation
Implementation and Testing of 16x16 bit Digit-Serial

Muttiplier on FPGA

Introduction

An Overview for Xilnx FPGAs

Programming or Configuring the Device

Downloading of 16x16 bit Digjt-Serial Multiplier on FPGA and Testing

Conclusion

Recommendations for Further Work

FPGA Board Schematic
Xilinx Family Architecture Comparison
Photographs of the Project

Gantt Chart

31

34
34
42
43
45
47
52

63

63
65
69
70
72

80
80
81

86

89

90

93

95

97

100

Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:

Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:

Digit-Serial multiplier symbol

Digit-Serial multiplier simulation results

CRA schematic

CRA symbol

16x16 bit Digit-Serial multiplier

Digit-Serial Adder block diagram

16x16 bit Digit-Serial multiplier and Digit-Serial Adder
Simulation result for the 16x16 bit Digit-Serial multiplier
16x16 bit digit-serial multiplier with digit-serial adder symbol
Parallel-in to Serial-out shift register block diagram

Serial-in to Parallel-out shift register block diagram

16x16 bit Digit-Serial multiplier with shift registers
Simulation results for 16x16 bit digit-serial multiplier with shift
registers

Block diagram of a 1% order digit-serial IIR filter (M=4)
Block diagram of CSAs array

Schematic of CSAs array

Symbol for CSAs array

Bit-level pipelined digit-serial adder

Bit-level pipelined digit-serial adder symbol

Simulation results bit-level pipelined digit-serial adder
Schematic of 1% order digit-serial IIR filter

1* order digit-serial IIR filter simulation resuits

16x16 bit digit-serial multiplier with parallel-in/serial out shift register
(FPGA version)

Introduction

» Brief introduction to digital filters

Signals exist in almost every field of science such as acoustics, biomedical
engineering, communications, control systems, radar, physics, seismology and

telemetry.

There are two general types of signals, namely continuous-time signals and discrete-
time signals. A continuous-time signal is one that defined at every instant of time. At
the other hand discrete-time signal is one that that defined at discrete instants of time.
Fig. 1 shows the two types of signals. If the continuous-time signal is denoted by x(),
then the discrete-time sequence is denoted as

x(mTs)=x(t) where, t=nls

x(1) x(nTs)
{WM /(llH[L N
WL time [TTTTTT nTs
Continuous-time signal Discrete-time signal

Figure 1: Types of signals

A discrete-time signal can be represented by the frequency spectrum of the signal.

The frequency spectrum describes the frequency contents of the signal.

The process, by which the frequency spectrum of a signal can be modified, reshaped
or generally manipulated according to the required specifications, is called filtering. In
the filtering process the frequency components of the signal can be attenuated or

amplified or some specific ones of them rejected or isolated.

Filtering could be used in applications to eliminate a signal noise, remove signal
distortion, and separate purposely-mixed signals or resolve signals into their
frequency components. It could also be used in other tasks such as signal
demodulation, convert discrete-time signals to band limit signals, data smoothing,

spectrum analysis and electrocardiogram processing.

Digital filters are possible to be implemented by software or by dedicated hardware.
In both cases, they can be used to filter real-time (frequency of samples must be very
small) or non-real-time signals. Digital filters of the same characteristics can replace

analogue filters used in real-time filtering purposes.

The advantages offered by using digital filters instead of analogue ones is the high
accuracy, small physical size, high reliability, flexibility, and that component
tolerance is non-critical on the system performance. Since a digital filter has been
designed, the filter coefficients can be modified to change the filter characteristics.

This has as an advantage the use of the same filter for different filtering tasks.

Digital filters can be modelled using three basic elements. These are the delay, the

adder and the multiplier. Delay elements are implemented using registers. Adders and

multipliers could be implemented using networks of logic gates such as NAND or

NOR gates. Table 1 shows the basic digital-filter elements.

Element Equation
Xy Y
—» D —» Yo =X,
Delay
x2,
Xl v, y,=x1,+x2,
Adder N2
a
Yn = aX,
xﬂ yﬂ
Multiplier >

Table 1: Basic digital-filter elements

There are two types of digital filters, the nonrecursive filters and the recursive filters.
Nonrecursive filters are also known as finite impulse response filters (FIR) and

recursive filters as infinite impulse response filters (IIR).

Nonrecursive filters are the simplest ones and they are defined by Eq. (1)

M

Yo :Zaixn—i (1)

i=0
Where a; are the coefficients of the filter and determine its characteristics. x,_,
and y are the input and output data streams. A simple block diagram of a

nonrecursive filter is shown in Fig. 2.

Figure 2: Nonrecursive filter block diagram

For a second order (M=2) FIR filter, Eq. (1) becomes
Yo =20X, ¥a;X, +3,X, 5 (2)

The data flow diagram constructed from Eq. (2) is shown in Fig. 3.

xn xn—l xn—2
D D
A g a,
” |
A4 Selbd

Figure 3: Second order (M=2) FIR filter

[IR filters compute their output recursively, which means that they need the
immediate past output for computing the current one. This feature makes IR digital
filters are more difficult to pipeline tan FIR filters. Also TIR filters have the
advantages of high selectivity and requiring less coefficients than the FIR with similar

performance.

The block diagram of a recursive filter is shown in Fig. 4 on the page overleaf.

IR —>

Figure 4: Recursive filter block diagram

Recursive filters are defined by
M M
yn = Z aixn~i + Zbiyn—i (3)
i=0 i=1

Where a; and b, are the coefficients of the filter. x,_, and y, are the input and output

data streams. For a second order (M=2) IIR filter, Eq. (3) becomes

Y,=aX,+ax, +ax, ,+by, ,+by, ., 4)

The data flow diagram of'the filter is shown in Fig. 5 below.

X X, X
n D n-1 D 2
Vrq AR TN
-\ N
bl b2
D b
yn—l ——J yn~2

Figure 5: Second order (M=2) FIR filter

» Scope of the project

The project is based on the implementation of a first order digit-serial IIR filter, on

FPGA by either using VHDL or CAD software packages (Viewlogic).

The feed back loop in IIR filters makes them difficult to be pipelined. The application
of the digit-serial structures to the design of IIR filters introduces delay elements in
the feed back loop of the IIR filter. This offers the possibility of pipelining the feed
back loop inherent in the TIR filters. The digit serial structure is based on the feed
forward of the carry digit, which allows sub digit pipelining to increase the throughput

rate of the IIR filters.

The implementation of the digital filter can be split in several tasks according to its
block diagram. The first task is to implement a new cell architecture for digit-serial
multiplication (digit serial multiplier). After that a digit-serial adder, should be

implemented.

Furthermore the first order digit-serial ITR filter should be composed from the
elements that already have been implemented, simulated and verified with already
known results to make sure that is functioning properly and producing the correct
results. Finally the first order digit-serial IIR filter must be downloaded to the FPGA

chip and tested again to ensure that it works properly.

In look-ahead computation techniques, the algorithm is iterated as many times as
required to create the necessary level of concurrency and the iterated version is
implemented. Specifically, the first-order recursion is iterated to express the state x(»)
as a function of x(n-M) to create M delay operators inside the loop so that the loop can
be pipelined by M stages. This iteration process contributes to a non-recursive O(M)

multiplication complexity.

In an Nth-order recursive system, the state x(n) is expressed as a function of past N
states x(n-1), x(n-2),..., and x(n-N+1). In these higher order systems, look-ahead can

be either clustered or scattered.

In scattered look-ahead approach, x(n) is expressed as a function of past N scattered
sates x(n-M), x(n-2M), ..., and x(n-NM), thus emulating the original Nth-order filter by
an NM-order filter. The scattered look-ahead process leads to an O(NM) complexity

which guarantees stability.

However, the drawback of this technique is the overhead in hardware complexity,

which is proportional to the number of pipelining levels. [12]

1.3 Signed-digit number representation

Signed-Digit Number representations (SDNRs) were originally introduced by
Avizienis [20] to eliminate carry propagation chains in operations such as add,

subtract, multiply and divide.

Signed-digit numbers differ from conventional numbers in that the individual digits
may assume negative as well as positive values and hence there is no need for an
explicit mechanism (such as the 2’s complement system in binary) to handle the

overall sign of a number.

For example in radix-2 SDNR, the digits may assume the values 1,0 or ~1 (denoted by
-1). For higher radices, there is some choice in the digit set, which can be used;
symmetric digit sets for radix-4 can be chosen as either {2...2} or {3...3}. The
smallest set is termed the minimally redundant set and contains at least r+/ values
(where r is the radix). The largest set is termed the maximally redundant set and

contains at most 27-7 values.

Such numbers are termed redundant because there may be several possible
representations for any given algebraic value. For example, the decimal value 3 may

be represented in radix-2 SDNR as 011, 101, or 111 etc.

Redundancy in the number system used allows methods of addition and multiplication
to be devised in which each digit of the result is (typically) a function only of the
digits in two or three adjacent positions of the operands and does not depend on the

other digits in any way.

This feature has a number of important consequences. (1) It allows arithmetic
operations to be carried out completely in parallel with no carry propagation from the
least significant digit (LSD) through to the most significant (MSD). (2) The time

required for an operation such as parallel addition is constant and does not depend on

the word length. (3) The calculation of least significant digits may be avoided in
situations where they are not required since the calculation may be performed with the

most significant digits first.

The drawbacks of this method are the increased size of the computational elements,
because of the use of signed digits rather than conventional binary digits and also the
hardware overhead required for data conversion from signed digit number

representation, to two’s complement representation, and vice versa. 5]

CHAPTER 2 Radix-2" arithmetic

2.1 Introduction

High degree of pipelining applied to digit-serial systems [17] has been proved to
increase the throughput rate and as a result enhance the performance of the systems.
However, since the initial delay is increasing by the number of pipelining levels, the
chances of delivering an accurate and high-speed clock, are decreasing respectively.
Obviously a solution to this problem would be to reduce the number of pipelining

levels [2].

Recently, a new approach to the design of digit-serial structures has been proposed

based on the radix-2" arithmetic [4,21]. The new radix approach has a number of
advantages which are (1) it has enabled for the first time, the design of functionally
correct digit-serial multipliers without the need of bit-serial or bit-parallel structures
as an initial starting point, (2) it is more general than the bit-level cellular arrays
approach due to the fact that more designs can be derived from the radix approach, (3)
it allows, for the first time the direct application, of all the existing synthesis methods
in designing digit-serial structures, (4) it only specifies the functionality of the basic
cell, and hence any internal architecture, can be used as long as it satisfies the

functionality specification of the cell [2].

The radix- 2" algorithm can be used to find the best trade off between cost and time,

for the particular application being considered. Furthermore, the utilisation of a great

number of different architectures becomes available, one for each radix.

2.2 The Radix-2" approach

Radix-2" arithmetic is based on Radix-2 (binary) arithmetic in general. On radix- 2"

the simplest building block is an AND gated Full Adder. The basic cell radix-

2" arithmetic performs the multiplication of two n-bit digits, , and v, then the

products of the multiplication would be added to two other n-bit digits, s, and ¢,,.
The performed computation is described by Eq. 5.

{CousSona} =+ 55+)
Equation (y) shows that the result will always be a two-digit number. According to the
algorithm, the number will be split in the most significant digit (MSD) in the carry

digit, ¢, and the least significant digit (LSD) in the sum digit, s, .

As a result of the above technique, any bit-level architecture can be used to perform a

radix-2" algorithm by replacing the bit-level basic block with a radix-2" basic cell. [2]

2.3 New Radix-2" vector inner product algorithms

Let assume that the inner product of vector U =(U,, U,,...,U,, ;) and V =(¥,,

Vi,...,V31) can be obtained by multiplying one pair of numbers (U,,, ¥,,) and add
their product to an accumulating result. This can be described at the word level by a

simple recursion of the form W,, « W, +U, V,,.

Assume that the elements U,, and V,, are unsigned numbers and can be divided into

K digits of n-bit each. If u,,and v,, represent the ith and jth digits of U, and V,,

respectively, then U,, and V}, will be equal to,
K-1 7 K-1 ‘
U, =D 2" and V=2 v,2" (6)
i=0 Jj=0

The multiplication W, =U,V, can be computed, according to the following

equation,

K-1 K-]

Wo=> 220" v, (7

=0 j=0
The Eq. (7) can be written in a recursive manner using Eq. (5). Because the partial

product #,, v, is a 2n-bit number, 2n-bit adders are required for the accumulation in

each radix-2" cell.

As aresult, a new set of radix-2" can be derived if these partial products are split into

the most significant digit (MSD), (u,,,V ;,,) ssp » and the least significant digit (LSD), (#,,,V;,.) rsp -

According to that, #,, can be rewritten as,

XK-1 X-1

Wm = Z 2(“‘])" ((uimvjm)MSD + (uimvjm)mb) (8)

i=

>

~.
i
(=1

The new radix-2" algorithms are resulting in a more efficient implementation of the

radix-2" cell, by reducing the length of the adders required for the accumulation [2].

2.4 Radix-2" arithmetic cell

This section describes the architecture of the radix-2" arithmetic (basic) cell used to

compute Eq. 5.

Eq. 5 can be also expressed as
{Cys8y} =uV, +58, ., +¢;
®
Multiplying two radix-2" digits and adding the product to two radix-2" digits, the

result can be represented by a 2n-bit number and hence a two radix- 2" digits.

The radix-2" arithmetic cell performs the multiplication of two radix-2" digits and

adds the product to two radix-2" digits. The output of the cell is two radix-2" digits

of which the least-significant digit is the carry.

The architecture of the arithmetic cell used can be specified using any design criteria.

One possible architecture is shown in Fig. 6.

S i+, -1 V] Ui

i+

Figure 6: Architecture of radix- 2" arithmetic cell [4]

The basic cell consists of one n-bit multiplier, one n-bit adder and one 2n-bit adder.
Since that s and ¢ are n-bits, only one n-bit adder is needed to add s and c. A 2n-bit

adder is needed for the second addition since the product uv is 2n-bits.

From the above description it can be easily seen that, when n=1, the resulting

multiplication algorithm is based on binary arithmetic [4].

CHAPTER3 BIT LEVEL PIPELINED IIR FILTER

3.1 Introduction

A new systolic architecture for high performance IIR digital filters based on two’s
complement number representation is presented for the first time. It is based on digit-
serial computations [11-19], in which data words are decomposed into digits of some
number of bits and the computations are carried out one digit at a time. It is shown
that the application of the digit-serial structures to the design of IIR digital filters
introduces extra delays in the recursive part of the IIR filter, which offers the
possibility of pipelining of the feed back loop. The number of delay elements added in

the recursive part is equal to the number of digits used to represent the partial results.

New cell architectures for digit-serial computation that offer a high degree of
pipelining (bit-level pipelining) have been proposed in resent publications [7-19].
These architectures involve a feed forward of the carry digits which was proven
functionally correct using radix-2" arithmetic. The use of carry feed forward has

solved the major bottleneck of the carry feedback loops inherent in existing digit-

serial designs. Also, the flexibility offered by the radix-2" approach in choosing the
cell architecture has enabled the design of the basic cells using carry save arithmetic,
which is faster and requires less area. The possibility of bit-level pipelining offers
high-speed realisation of digit-serial systems. It was shown that bit-level pipelined
digit-serial structures are much faster than the fully bit-parallel structures and use

much less hardware [18].

The bit-level digit-serial IIR filter architecture is based on the radix-2" arithmetic
approach to the realisation of bit-level pipelined digit-serial structures to take full
advantage of the number of delay elements added in the recursive part. In this case,
the number of pipelining levels can be made varied to obtain different trade-offs
between area and speed and is only limited by the number of digits used to represent
partial results. Digit-serial IIR filter architectures has several advantages over existing
bit-parallel structures based on two’s complement number representation. It can be
pipelined to the sub-digit level to increase the throughput rate. The throughput rate is
much higher than the fully bit parallel case. At the same time, the size of the hardware

required and the number of I/O pins are reduced greatly. [1]

3.2 Design methodology of digit-serial IIR filter

In this section a systematic design methodology of digit-serial IIR filter is presented
based on the radix-2" arithmetic and the classical theoretical framework of regular
array architecture synthesis developed by Kung S Y [23]. To show how the digit-
serial TIR filter architecture is derived, a first order filter is considered. The direct
form of computation algorithm for a first order IIR digital filter at the word level is
defined by
Ve =Y, = by, (10)

where u, is the nonrecursive computation and is equal to a,x, +a,x,,. X, and y,
are the input and output data streams while a,, a, and b, are the filter coefficients.

In digit-serial computation the data and coefficient words are subdivided into M

digits. It is assumed that the output, y, , is truncated to M digits before being fed back

into the IIR filter.

The computation of the recursive component of the first order TIR filter is given by
Ve, =b,¥,,, where ¥, , is the truncated output of y,_, . All the products involved in
the nonrecursive computation can be performed using the same procedure as for the
computation of v,_,. Using the radix-2" arithmetic, the truncated output ¥, , and the

coefficient b, are represented using M digits and can be written as

R M-1 , M-1 _
Yea = zg'k-l,i 2" and b, = Zbl,j 2% (11)

i=0 =0

where n is the digit size and ¥, ,; and b,; represent the ith and jth digits of ¥, , and

b, respectively. Hence, v, _, is given by

M-1M-1

Vi = 0, Dby Py, 2000 (12)

i=0 j=0
Several radix-2" multiplication algorithms have been proposed by the authors [11-12]
Which can be used to compute v,_,. One of the radix-2" multiplication algorithms

involves the partitioning of the partial products of the form b, .y, ;; into the most
significant digit (b,;¥,.,;)mso and the least significant digit (b,;¥, ;) sp [18]. Using

these algorithms, Eq. (12) can be rewritten as

M-1M-1

Vs = 2, X 10T i 2™ # (015F00)pes 2] (13)

i=0 =0
In the tree dimensional space (ki) shown in Fig. 7, i+j form a family of vertical

planes and represent the significance.

Figure 7: Dependency graph of the first order radix IIR filter

From Eq. (13) it can be seen that, the MSDs generated at the plane (i+;) must be
added to any of the LSDs on the next highest significance at the (+j+1) plane. This
implies that either the LSDs are transferred to the next lowest significance or the
MSDs are transferred to the next highest significance.

These transfers can be performed on the same horizontal plane k¥ or from one

horizontal plane to another. In this paper, the former is considered. One way to

compute Eq. (13) is to transfer the LSDs generated in the node (,i,j+1) to be added to
the MSDs generated in the node (%,1,f). Using this approach, the digits of the recursive
computation, v, _,, can be formed in the following recurrence

>S5t = (0¥ Imsp + (01 Yioridisp S +Cimy (14)
where s, is an n-bit digit and is the sum of the partial product along the lines formed
by the intersection of the vertical planes, i+;j with the horizontal planes, &, and ¢ is
the partial carry generated at the node (k,iy). It can be easily shown that ¢ is a 2-bit

wide by stating the fact that the maximum value of the term on the right hand side of

Eq. (14) is 3(2" -1)+3 which is a (n+2)-bit number.

The nonrecursive computation of the first order IIR filter, u, , can be formed by first

using an equation similar to Eq. (14) to compute each product a,x, and a, x,_;, vis

{Cldj>skij} =(2y X)msp + (ao,j+1XkJ)LSD + Sy it i1 T Criaj

(15)
{C45>5553 = (@1 X msp + (@1 juX k1) 1sp FSiimrjn +Cui
Once the three products involved in Eq. 10 are computed, all their digits with the same

significance are accumulated along the % axis to compute the digits of the output y, .

A dependency graph, which represents the above computation, is shown in Fig. 7. It is
embedded in a three dimensional index space represented by (k7). Each horizontal
plane of this graph shows the interaction of the digits within each data and coefficient
words and is such that each digit of one data word interacts with each digit of the

corresponding coefficient word as required.

The horizontal planes in Fig. 7, perform the computation of the three products

2,Xy,a,X,, and b,y, , using radix-2" arithmetic. The products, a,x,_, and b,¥,,,

are computed on the same horizontal plane, &-1. Their accumulation is performed on

that same plane. The 2M digits of the term (a,x,_, +b,¥,_,) are transferred down the
horizontal plane, %, to be added to the 2M digits of the product a,x, with the same
significance to form the digits of the output, y, , as shown by the vertical plane in Fig.

7. It is worth mentioning that the M digits of the previous truncated output y,_,, (i.e.

?k—l,o s yk—l,l and S;k—l,z in Fig. 7) are equal to the M MSDs of y, ,, (ie. Yea3s Yeas

andy, s inFig. 7).

The dependency graph can be projected in several directions to obtain different digit-
serial IIR filters. Considering the projection in direction [100]", the first order digit-

serial IR filter shown in Fig. 8 is obtained, where, each row on each side of the

accumulation path represents a digit-serial multiplier. [1]

et X0 Y0 Yir

Figure 8: First order digit-serial IIR filter obtained by projecting the

dependency graph in Fig. 8 in the direction [0 1 0]

3.3 Pipelined digit-serial IIR filter:

Another major advantage of the radix methodology for the design of digit-serial
structures is that only the functionality of the basic cell is specified and hence any
internal architecture can be used so long as it satisfies the functionality specification

architecture, has enabled the design of the basic cells using carry save arithmetic

which is faster and requires less area and allows bit-level pipelining [1]

3.4 Bit-level pipelined digit-serial multiplier

The digit-serial multiplier used in the digit-serial IIR filter is similar to that proposed
by the authors in [18]. The basic cell of the digit-serial multiplier can be implemented
using a carry-save array multiplier. The basic cell which computes Eq. (14) is shown
in Fig. 9 for n=4 where the upper indices are used to represent the bit significance. It
uses the fact that the full adders at the boundaries of the carry save array multiplier
have free bit positions. The n sum bits produced on the right hand side of the array

multiplier which form the LSD, (b; ¥, ;)15 are transferred to the next cell on the
right and added with the MSD, (b, ;,¥,_;)usp - This addition is performed using the

empty bit positions on the left-hand side of the array multiplier.

In conventional carry save array multipliers, a carry propagate adder is required to add
the carry and sum bits from the lower row of full adders to form the carry digit. To
allow bit-level pipelining, these carry and sum bits from the lower boundary of the

array multiplier are summed with the partial sums from the previous cell using two

carry save adders as shown in Fig. 9. The partial result from previous cell on the left
consists of three digits, S, S2; ,83; . The digit, SI, , is summed to the two digits
from the lower boundary of the array multiplier using the first CSA to produce two 1-

digit outputs. One of the two digits, Sl , obtained from the first CSA is fed to the

next cell on the right. While the second digit is fed down into a second CSA to be

summed with the two digits, S2,, and S3, , coming from the cell on the left. The two

carry bits produced by the two CSAs are summed to form the carry digit, c,;. The
carry digit, ¢, if fed back into the same cell to be added as shown by Eq. (14). This

is performed using the empty least significant bit position available in the second CSA

as shown Fig. 9. As it can be seen Fig 9, the feedback of c; will not effect the

pipelining, since the delay within the loop is one FA delay. It should also be noted that

the dependency graph can be modified to allow c,; to be fed forward to the next cell.

The addition of the two CSA adders can be compensated by the fact that only n-2
CSAs are required to add the partial products of the multiplication of two n-bit digits.
This is due to the fact that the top three n-bit partial products of an n x n
multiplication can be summed using only one n-bit CSA as shown in Fig. 9. The two
least significant bits (LSBs) of the first n-bit partial product, and the LSB of the
second n-bit partial product of an n x n multiplication, are not computed within the
present cell but fed to be summed in the next cell on the right using the two full-
adders (FA), occupying the two most significant bit (MSB) positions as shown in Fig.
9. The digits obtained from the last cell on the right of each digit-serial multiplier are

added together using two CSAs to produce two digits. [1]

(b (b (b (b)°

& & o &

)
i) - ¢—. - é—

C& i\ K ceL(bl. Vie1)°L8D

1 a
(x5 U g Ay I«_J prsy

(bl,j+1Yk-1,i)gSD—\ K\ K\ }
(by)° (¥xp;)' & (by) (eers)®

(byjn) (yk—l,i)l
&(by i) (Vis)®

&)2 (Yk-l,i)2 —
Lit1Yk-1i)L$D :
" { (b1, k17150
s (672" N [N SIS [I [S S
(b ;Y1) Lsp g)3
. —N\ - S e it I e (b_l,_'yk—l,l) LSD
Slin 1T ST T <1
CSA
’ N X N e :E_ Slout
S3in = - ——
CSA
N\ N {RF— S2out
[R}— S3out
------ : Input Operands [R] : n-bit Register
~-— : Cut set for possible pipelining @ : 1-bit Register

Figure 9: Cell architecture of the digit-serial multiplier based on an array

multiplier

3.5 Truncation of the output

Assuming that 2M digits are used for the partial results, the application of digit-serial
computation to design IIR filter introduces 2M delay cycles in the feed back loop
which can be used for sub-digit pipelining of the proposed architecture. However, if
the whole output word is fed back, this will result in a word length growth due to the
recursive nature of the IIR filter. It was reported in [24] that since the filter will have a
unity gain, such a wordlenght growth represents a growth in precession, which

implies that the M most significant digits (MSDs) of the output have the same

significance as the M digits of the input data, x,. Hence the output, y,, can be

truncated to its m MSDs before it is fed back into the recursive part to prevent any

growth in the wordlenght. Figure 10 shows the timing procedure of an IIR filter,
where x, and y, are the input and output data streams, and y, is the truncated
output which is fed back to the IIR filter. It is clear from the above and Fig. 10, that
the truncated output, ¥, , has the same significance as the input sample, x,,,, which
implies that the M LSD of §, (which represents the M MSDs of the output, y,),
must be feedback in a serial fashion at the same time as the digits of the input data
Xy.1»> as shown in Fig. 10. For the example, the first digit of y, , which is the (A+1) th
digit of y, , must be fed at the same time as the first digit of x,,,. As a result, there
are only M delays between the time in which the M MSDs of y, are computed and
the time they are feedback as the truncated value, ¥, , for the computation of the next

output samples. This implies that only M, rather than 2M delay cycles are available in
the feedback loop, which can be used for sub-digit pipelining of the proposed

architecture.

Finally, it should be note that since the computation of each output sample requires M
cycles, the values of the M MSD digits of ¥, are set to zeros during the second set of
M cycles in a similar fashion as the input samples x, . This implies that in the second

M cycles of each sample calculation, zeros are fed to both the input and the feedback

path of the filter [1].

1
[
2M Cycles 2N Cycles

L S e L T =

! 3 X - |

! Xy I : |

| : | .]

{ MLSDe ' M MSDs . MLSDe > B 8D ' Ip den

1) | ! |

1 1 :]

1 Yy \ Vit ; \

b g] =]

\/ M LSDs MMSDs \/ M L$Ds : M LSDy \ Brpserdsty

| ! 1 5 N |

1 it | kel] |

| y. 2 N - |

| MLSDy : M M5 D :) mLsDe . A JaSDx Irmcated oulpat data
.]

Viig, :

| C = —— ;]

i . (\

1 g | |

' : 1

1 ¥o0 |~ = — ~ ¥ I

1 e /1/ “‘{ I

M MSDy 14 MSDe
MLy) MLsDe D Tromcatsd and Daleysd o wtput data
I X l - t

Figure 10: Timing procedure of a digit-serial IIR filter

3.6 Systolic digit-serial IIR filter structure:

The first order digit-serial IIR filter shown in figure 8, can be generalised to any order,
K, by replicating the top two digit-serial multipliers X times. It should be pointed out
that the computation of a; x¢; takes place 2M cycles after the start of the computation
of ap Xz This implies that 2M delay elements are required in the recursive and
nonrecursive data paths between the digit-serial multipliers. The accumulation of the
three terms in the first order IIR filter can be rearranged so that the ay x; is first added
to by 9«1 then added to a; xx1. In general, the cell of the digit-serial TIR filter performs

ay Xk-1+b]+1 9’&-1+1, where /= 0,...,K—1 .

Since the data paths and the partial products path are in opposite directions, M of the

2M delay elements in the data paths can be moved to the partial product path without

affecting the functionality of the filter to obtain a systolic IIR filter. A second order
systolic digit-serial IIR filter is shown in figure 11. The IIR filter cells contain two
digit-serial multipliers, one for the recursive and one for the nonrecursive
computations, delay elements and an array of carry save adders (CSAs) for the

accumulation of the recursive and nonrecursive components [1].

e S Gt S |
Xk 3 I't { |
MD ,' I’ MD : t MD !
I
i rr—
Digit-Serial| || Digit-Serial| | Digit-Serial| |
Multiplier | || Multiplier | | Multiplier |
[! I
yk i o . m— % (r_
Digit-Serial < CSA | - CSA | - CSA

r

E

!

[

|

|

|

|

|

!
1 |
| |
| |

T T I g I
{ Digit-Serial] |
| |
| |
| |
! |
I |

|

|
]
|
|
|
|
|
i
t
|
|
< . |
|
{
i
1
I
[
|
|
]
|
|

| 1
! |
!
Digit-Serial| || Digit-Serial| | Ser
MD ‘—) Multplier | | i ‘—) Multiplier E I—) Multiplier
by
; (o4 ——{ o —{ o} —>
Vs MD I MD — MD '
______________________________ | e e et e e (e

: M delays CSA| :Carry Save Adders

Figure 11: Block diagram of a second order digit-serial IIR filter

3.7 Accumulation of the recursive and the nonrecursive

computations:

The two digits from the digit-serial multiplier in the nonrecursive part are added to the
two digits from the digit-serial multiplier in the recursive part of the IIR filter.

Assuming two digits are propagated from the cell on the right to the cell on the left, a

total of six digits are needed to be added using CSAs to produce two output digits.
This is performed using an arrangement of CSAs as shown in figure 12. This
arrangement is chosen to allow bit-level pipelining. The bit-level pipelining can be
achieved by moving two of the M delay elements in the partial result path in between
the two CSAs on the left as shown in figure 12. Since all the inputs to these two CSAs
form the same path as the partial results from cell to cell, this rearrangement of the
delay elements should not affect the functionality of the structure. Since the partial
result path contain two digits, a final digit-serial adder is required in the feed back
loop of the IIR filter which is shown in cell A in figure 11. To fully exploit the high
degree of pipelining offered by the proposed architecture, a digit-serial bit level
pipelined adder is required. The design of a bit-level pipelined digit-serial adder is

reported in [17-19] and discussed in section 3.11 [1].

No mecwists compuation

Figure 12: sub-digit pipelining of the feed back loop of the digit-serial IR filter (n=4, M=32)

3.8 Pipelining of the digit-serial IIR filter:

As indicated in section 3.5, applying the digit-serial computation to the design of the
IIR digital filters introduces M delay elements in the feed back loop, which allows M
possible levels of pipelining. The delay elements are used to pipeline the digit-serial
adder as well as the digit-serial multiplier in the recursive computation. To show how
these delay elements are distributed over the digit-serial multiplier and adder, a first
order digit-serial [IR filter is considered. Figure 13 shows details of the recursive
computation part of the first order digit-serial IIR filter for n=4 and M=8. Figure 13

also shows a detailed architecture of the bit-level pipelined digit-serial adder.

1

i CSA CSA CSA €
<« <pf—_ _ <ol |

| | |

: D) |

| Dol = CsA '

| 12— 1Dj |

] 'F N

Figure 13: Accumulation of the recursive and nonrecursive partial products

3.9 Pipelining of the digit-serial adder:

The two CRA in the digit-serial pipelined adder as shown in figure 13, require
(n+ %) full adder stages, where n is the digit size. However, a close examination of

the internal structure of the full adder (FA) and the half adder (HA) shows that the
propagation delay between the carry in and carry out is only that of two NAND gates.
The time delay of the carry ripple digit-serial adder is given by that of the propagation
of the carry bit through the CRA or the propagation through the tree of AND gates.
The propagation delay through the AND gates or that of the carry bit within the CRA
is given by the time delay of two EXORSs plus that of 2(n+1) NAND gate delays. It is
assumed that the unit time (D) is that of one NAND gate and that one AND gate delay
or one OR gate delay equals two NAND gate delays and that one EXOR gate delay
equals three NAND gates. As a result the total time delay of the carry ripple digit-
serial pipelined adder is (3nt5)D. Now, assuming that the time cycle of a bit-level
pipelined structure is that of an AND gated FA and that a FA has a propagation delay

of six NAND gate delays. Hence, the total number of equivalent AND gated FA

+
stages within the carry ripple digit-serial pipelined adder is given by nT4 [1].

3.10 Pipelining of the digit-serial IIR filter:

In order to achieve bit-level pipelining of the digit serial IIR filter, the number of
delay elements in the feedback loop should be greater or equal to the total number of

the equivalent AND gated FA stages in the digit serial adder plus those in the digit

serial/parallel multiplier. Bit-level pipelining of the digit-serial multiplier requires n
pipelining levels, where n is the digit size. This implies that to attain bit-level
pipelining of the digit-serial IIR filter, the digit size should satisfy the following

condition,

4M-4)
5

n<

where N is the input data word length, N=Mn [1].

3.11 Design of bit-level pipelined digit-serial adder

The conventional digit-serial adder uses a carry propagate adder (CPA), where the last
carry bit is fed back to the same adder which prevents bit-level pipelining. The first
digit-serial bit-level pipelined adder was proposed in [17]. It uses two carry ripple
adders (CRAs), where the carry bit produced by the first CRA is propagated forward
and added to the next digit output using the second CRA as shown in figure 13. Note
that the only case where carry bit obtained from the second CRA is equal to one is
when the current output of the first CRA is 2°-1, where n is the digit size, and the
carry from the previous digit is one. In this case the carry to the next significant digit
should be set to one. A simple circuit that will propagate the correct carry to the
second CRA is shown in figure 13. The digit from the first CRA is fed to a n-input
AND gate to check whether it is equal to 2"-1. This is performed by using an array of
2-input AND gates arranged in a tree structure as shown in figure 13. The resulting bit
and the carry bit obtained in the previous cycle are fed to 2-input AND gate to check

whether the current output of the first CRA is 2°-1 and the carry from the previous

digit is one simultaneously. The output bit and the carry of the current digit are fed to

2-input OR gate to calculate the correct bit to be fed to the second CRA.

As can be seen from figure 6, there is only one feedback loop within the digit-serial
adder. However, the propagation delay within the feedback loop of the carry bit is
equal to one AND gate plus one OR gate delay, and hence pipelining within the loop
is not necessary. The remaining data paths in the digit-serial adder can all be pipelined

to the bit-level since they are moving in the same direction.

The conventional digit-serial adder uses a carry propagate adder (CPA), where the last
carry bit is fed back to the same adder which prevents bit-level pipelining. The first
digit-serial bit-level pipelined adder was proposed in [17]. It uses two carry ripple
adders (CRAs), where the carry bit produced by the first CRA is propagated forward
and added to the next digit output using the second CRA as shown in figure 6. Note
that the only case where carry bit obtained from the second CRA is equal to one is
when the current output of the first CRA is 2"-1, where n is the digit size, and the
carry from the previous digit is one. In this case the carry to the next significant digit
should be set to one. A simple circuit that will propagate the correct carry to the
second CRA is shown in figure 6. The digit from the first CRA is fed to a n-input
AND gate to check whether it is equal to 2°-1. This is performed by using an array of
2-input AND gates arranged in a tree structure as shown in figure 6. The resulting bit
and the carry bit obtained in the previous cycle are fed to 2-input AND gate to check
whether the current output of the first CRA is 2"-1 and the carry from the previous
digit is one simultaneously. The output bit and the carry of the current digit are fed to

2-input OR gate to calculate the correct bit to be fed to the second CRA.

As can be seen from figure 6, there is only one feedback loop within the digit-serial
adder. However, the propagation delay within the feedback loop of the carry bit is
equal to one AND gate plus one OR gate delay, and hence pipelining within the loop
is not necessary. The remaining data paths in the digit-serial adder can all be pipelined

to the bit-level since they are moving in the same direction [1].

Chapter 4 IMLEMENTATION OF 1* ORDER DIGIT-

SERIAL IIR FILTER

4.1 Introduction

In this section the design work followed for the implementation of the digit-serial IIR
filter (described in chapter 3) is presented. The digital design of each element of the
digit-serial filter as well as the simulation and testing were performed using Viewlogic
ECAD software. Great attention was paid to the design of the fundamental elements
of the filter in order to achieve the minimum used number of gates possible. It should
also mention that the number of bits processed in one clock cycle in the digit-serial

systems is referred to as the digit-size.

4.2 FKull Adder design and simulation

One of the requirements set at the beginning of design of the full adder was to use as
less number of gates as possible. Since the design of the digit-serial filter requires a
big number of full adders, keeping the number of gates of each full adder low will result in a

much Jess hardware complexity, improved speed performance, and reduced power consumption.

The design of the full adder can be subdivided in the design of a half adder first, since
the first consists of two of them. A half adder is a circuit capable of adding two bits. It

has two inputs and two outputs and its block diagram is shown in (Fig. 14).

B —pf —» C

Figure 14: Half adder block diagram

Where A, B are two one-bit numbers and S, C is the sum and carry inputs

respectively.

The truth table for a half-adder is shown in table 2.

Input Output

—_— OO
—_Oo — Oy
S——O|ln
— o ool

Table 2: Truth table of a binary half adder

From the truth table the following equations for the sum and carry were derived:
S=AB+AB=A®B (16)
C=A4B a7

From equation 16 and 17, equation 18 and 19 were derived as follows:

S=AB+AB=AB-AB=A(AB) -B(AB) (18)

C=AB=AB (19)

K. Deliparaschos BEng (Hons) Electronic Enginecring

Using equation 18 and 19 the half adder can be implemented using NAND gates
(Fig.15). The schematic capture program, Viewdraw, integrated in Viewlogic

software, was used for the schematic capture.

Figure 15: Half adder implementation using NAND gates

The inverter, NAND and NOR gates counts for one gate each, the AND and OR gates

for two gates each, and the XOR and XNOR for three gates. According to the above

Final Year Project Report ' Page 36

the design in Fig.15 only uses a total number of S gates (SXNAND=5gates), when
compared to an AND/OR implementation which uses 10 gates

(3xAND+1xOR+2xINV=10 gates).

The symbol created out of the schematic in Fig. 15 is shown below (Fig. 16).

___A S o
H A
/,,_B Cr._,..
[nand gataga)

Figure 16: Half adder symbol

A full adder is a circuit capable of adding three bits. It has three inputs and two

outputs. The block diagram of a full adder is shown in Fig. 17.

A___> S
B__p FA
Cx—> —"Co

Figure 17: Full adder block diagram

Where C, is the carry-in from the previous addition and C, is the carry-out to the

next addition.

The truth table of a full adder circuit 1s shown in table 3.

Input Output

™
P

ol

—— = OO OO
—— OO == OO
—~o—o—o—olf)
O O—O—mOIM
——_,—_o— o O

Table 3: Truth table of a binary full adder

A full adder can be formed using two half adders (Fig. 18).

4 ———p » S
HA HA

. B

&

Figure 18: Block diagram of full adder comprising of two half adders

At this stage the full adder could be implemented, but this would result in a total of 12
gates. In order to reduce the total number of gates required further, the OR gate in Fig.

20 a can be modelled using NAND gates as follows

v«ED—l_
—

b
&
Il
hN
+
&y

A
5) DO—AE
B

1B Fa&
s LS Ky CH—

[nand getaal

Figure 20: Full adder symbol

In order to simulate the full adder circuit, a simulation file (CMD file) was formed.
This was based according to the full adder truth table (Table 3). The CMD file was
executed through the Viewsim program provided by Viewlogic software. The CMD

file for the full adder is shown in Table 4.

ECHO FINAL YEAR PROJECT

ECHO Digital Filter Implementation on FPGA
ECHC Full adder simulation file

ECHO 16/11/97

ECHO By K.Deliparaschos

|

RESTART

[

PAT CINO 1010101
PAT BOO11210011
PATAOOOO1111

I
WAVE FA_NAND.WFM A B CIN S CO

l
CYCLE 20

Table 4: Full adder CMD file

The simulation results were plotted using Viewtrace program part of Viewlogic

software. The simulation results are shown in Fig. 21.

K.Deliparaschos BEng (Honsg) Electronic Enginecring

From the simulation resuits it is shown that the full adder functions properly. This can
be also verified if the simulation results are compared with the truth table (Table c).
The two glitches (200psec) appearing in the sum output are not considered to be

critical.

Figure 21: Full adder simulation results

Final Year Project Report Page 41

4.3 AND gated Full Adder design

The implementation of the radix-2" arithmetic cell (Fig. 6) could be performed by an
AND gated full adder. The AND gated full adder consists of an AND gate connected
to the most significant input of a full adder. In the present situation, the full adder

designed in section 5.2 could be used.

Figure 22 shows the implementation of the AND gated full adder

fa
!
|
: L
|
AR Tm\‘t*"—""" ‘_‘:V :t
o o IRIVIREE I® g (000 oy >
s B oy) e)
7 [= o, [Jo== o s
[L =4
— ’._
B TR
e et T2l et
ra gy ¥ bmisperesenss e s S T TiCTeT) | Zom iy

R T e T) RO S AT T [

Figure 22: AND gated Full adder schematic

Where A0 and Al represent V; and U, of the radix- 2" arithmetic cell respectively in

Fig. 6. The total number of gates required is 12.

The design of Fig. 22 was created as a symbol for later use in the implementation of

the filter. Fig 23 shows the symbol for the AND gated full adder.

l l i
CEN - R

AND gatad FA
— A1

Co

Figure 23: And gated full adder symbol

The AND gated full adder was not simulated individually for obvious reasons.

4.4 Carry Save Adder design

To add a sequence of numbers, several full adders are connected. This can be
achieved m more than one ways, remembering that a full adder receives three inputs
(3-bit) of equal and produces two outputs.

(a) A sum ofthe same significance as the inputs

(b) A carry of double the significance of the inputs.

The carry save adder (CSA) shown on the next page consists of four

full adders (Fig. 24.)

K.Deliparaschos BEng (Hens) Electronic Engincering

Figure 24: CSA schematic

Figure 25 illustrates the symbol created for the carry save adder.

Figure 25: CSA symbol

Final Year Project Report Page 44

4.5 4-bit Register design

The most significant digits of the multiplication coming out from the CSAs in the
digit serial multiplier cell need to be delayed by one cycle. Each digit consists of four
bits, hence a 4-bit register with parallel input and parallel output is required to delay
them by one cycle. As all of the four flip-flops need to be operating at the same time,
their clock inputs need to be connected together as well as their clock enable and clear

inputs.

In order to design the 4-bit register a D flip-flop with clock enable and asynchronous
clear (FDCE) was chosen from the XC3000 library in Viewlogic software. Table 5

shows the transition table of FDCE.

CLR CE D € Q
1 X X X 0
0 0 X X No Change
0 1 1 1 i
0 1 0 A 0

Table 5: Transition table of FDCE

When clock enable (CE) is High, and asynchronous clear (CLR) is Low, the data on
the data input (D) of FDCE is transferred to the corresponding data output (Q) during
the Low-to-High clock transition. When CLR is High, it overrides all other inputs and
resets the data output (Q) Low. When CE is Low, clock transitions are ignored. The

schematic of the 4-Bit register is shown on the page overleaf (Fig. 26).

K.Deliparaschos BEng (Hons) Electronic Enginecring

Figure 26: 4-Bit Register schematic

Where DO,...,D3 and O0,...,03 are the inputs and outputs of the register respectively.

CE and CLR are the clock enable and clear inputs and C is the clock input of the

register.

The symbol created for the 4-bit register circuit is shown in Fig. 27 on next page.

Final Year Project Report Page 46

CE
A0 O
—pa nal-
—n2 oz
D3 a3
4-Brt
nHagiﬁtpr
>
L 44 7 S

Figure 27: 4-Bit Register symbol
4.6 Digit-Serial Multiplier Design and Simulation

The digit-serial multiplier was implemented according to figure 9 in section 3 using

the symbols previously created in this chapter (Fig. 28).

The multiplicand and multiplier inputs were labelled B3,...,BO and Y3,...,Y0
respectively (0 indicates the LSB). Outputs BYO00, BYOO01, BYO10,... BYO03
represent the LSDs of the multiplication process to be fed in to BYIN0O, BYINOI,
BYIN10...BYINO3 inputs in the following cell on the right. Outputs BYIO01 and
BYO10 are not computed in the present cell but sent to be computed to the empty bit
position on the following cell on the right (BYINO1, BYIN10 inputs). The MSDs of
the multiplication are presented in S10[3:0],...S30[2:0] output buses delayed by on
cycle to be fed in the following cell on the right (S1IN[3:0]....,S3IN[2:0] input
busses). Output busses S10{3:0],...,S30[2:0] need to added together to form the
MSDs of the multiplication. Inputs CE, CLR, CLK represent the clock enable, clear

input, and clock input of the registers respectively.

Nulkdplicmnd

n [[] L]
L2] pc IS8 a0
L o »
—
> - > -
= H = =
3 3| z a
- H ~ -
gt IS
- 4 L
e £ £ z 5
mn_l- : z \‘ - H
[RLIT
= L
c — — — 4
- sveuaiferos | |
:: ~ o aE noe ad r;u « ar
LI ol Rt | ot
-
H £ £ £ £ X L
B
I |] I atpaeg
..u.tmﬁ 1 L [
— |1l I
a0 FOY E e
e v a—n Prp—
[n a1 —ur A3
o . s ey -
I I | IS 17T
.mlﬂ]_l | Be0(0]
8114{2-0) paans [pa1nz l lnnu [uun l
TITIAS TE YIVEAT TETAD
[o ' gojuian
CSh 1 pgfrlos
cazvz co2ar saips anuss pe n:ﬂ
l bu [nx (eSS !un #(2-0) © by
-1
Biasaven
S2IK[0] ““‘ #2003} 01
A2IN(2-0] ¢apl2f0)
veensl | Jrarwe azxwe | javies aeaw Jasrxo zeang
L2 3 1404 LL3Y TITAT
TE
Csh I ogezan
Enass coesr coisd by L
i hr pzjizez
| hr aze | Yeo | szra-on s i
17 114 T [
nvasaren
¢
salx-0)
saal, ©F gohaan
£3 1 FITE
yuh, o2z
z 03
—eit
aiaraven
3
£
FDCE
o o
cE L
-
pELE
= cun
mLLA T
Teets - Ddute=-8ordud wolbiplivr
Ceasnuts”
93te-3/1T/97 [vur-t
Drsnn Vy- E.Uslissrswshas Shest Eima- © loav-2
. T ; : § :

Figure 28: Digit-Serial multiplier

A symbol created for the schematic of the digit-serial multiplier cell to be used later in

the implementation (Fig. 29).

CE
B3
—P g Snsirgiiuel
:T'(g Hultgg%iar
e
;%Nﬂﬂ E'fﬂﬂﬂ»
11/ B
IW03 BYDO3—
1IN0 54001
iz RiDE
“B41IK3 5103}
B "
it 18
3INO S53po-
R ES 830
L LK

CLA_
|

Figure 29: Digit-Serial multiplier symbol

In order to simulate the digit-serial multiplier a CMD file was written and executed
(Table 6). Two arbitrary numbers were chosen to be muitiplied together in order to
make sure that the digit-serial multiplier produces the correct result. The multiplicand
was set equal toll,, or 1011, and the multiplier equal to13,, or 1101,. The product

MSD LSD
of those two numbers is 143, or 10001 1112. All the other inputs at the left hand side

of the cell were set to zero since the multiplier was tested on its own without any data
coming through from previous cells. The clear input set to 50ns in order to reset the

registers before the multiplication process begins.

Below is the CMD file for the digit-serial multiplier

ECHC FINAL YEAR PROJECT

ECHO Digital Filter Implementation on FPGA
ECHO Digit-Serial Multiplier Simulation File
ECHO 12/12/97

ECHO BY K.Deliparaschos

|

RESTART

VECTOR S1IN SI1IN([3:0]

VECTOR S2IN S2IN[3:0)

VECTOR S3IN S3IN[2:0)

|

VECTOR S1 S1[3:0]

VECTOR S2 S2{3:0]

VECTOR S3 S§3[2:0]

[

VECTOR 810 S10[3:0])

VECTOR S20 S20[3:0])

VECTOR S30 S30[2:0]

|

WFM CE @QONS=1

WFM CLR @0ONS=1 @50NS=0

!

WFM BYINOO @0=0

WFM BYINO1l @O0=0

WEFM BYIN10 @0=0

WFM BYINO2 @0=0

WEM BYINO3 @0=0

|

IMULTIPLICAND

WEFM BO @0=1

WFM B1 @0=0

WFM B2 @0=1

WFM B3 Q0=1

|

|MULTIPLIER

WEM Y0 @O0=1

WEM Y1 Q0=1

WEM Y2 @0=0

WFM Y3 @0=1

\

PATTERN S1IN O\H C\H O\H O\H O\H O\H O\H O\H
PATTERN S2IN O\H 0\H O\H O\H O\H O\H O\H O\H
PATTERN S3IN O\H O\H O\H O\H O\H O\H O\H 0\H
|

CLOCK CLK 0 1

WAVE NRELBEG.WBM CIR CIK BYCOO BYOO1 BYOL0O BYO02 BYOO03 S1 S2 S3 S10 S20 S30
|

CYCLE 8

Table 6: Digit-Serial multiplier CMD file

The simulation results for the digit-serial multiplier are shown underneath (Fig. 30).
The present simulation could also prove the correct functionality of the 4-bit register

designed in section 4.5.

BYO10

BYO03

— . -l

Tune (Seconds)

Figure 30: Digit-Serial multiplier simulation results

By inspecting the simulation results, the LSD of the multiplication result was checked
to be correct (1111,), after adding together BYO(0! and BYO!10 bits. In order to
check the MSD as well, output busses S10, S20, S30 should be added together.
Therefore MSD=81+82+S3 or MSD=4,, + 4, + 0=8,,=1000,, which is the correct

result. The same procedure was repeated for different couples of arbitrary chosen

number and in all cases the digit-serial multiplier was found to function properly.

K.Deliparaschos BEng (Hons) Electronic Engincering

4.7 Carry Ripple Adder Design

The present carry ripple adder (CRA) consists of four full adders and is shown in Fig
31. The carry-out bit of the first full adder on the right is propagating to the next full

adder, to be added with the other two bits and so on.

Figure 31: CRA schematic

Final Year Project Report Page 52

Below is shown the symbol created for the CRA (Fig. 32)

£l & |]| (s v | st 2%
B3A3 B242 H141 COHBODAO

e gyl 180

Figure 32: CRA symbol

4.8 16x16 bit Digit-Serial Multiplier with Digit-Serial

Adder Design and Simulation

Table 7 on the following page demonstrates the manual multiplication of two 16-bit

numbers producing a 32-bit result.

b5 b14 b3 b2 b1 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 bo
yis yi4 yi3 y12 yi1 yi0 @ y8 w7 y6 y5 w4 y3 y2 yl 0

© bisD bUD bIED biZD bl biD b9yO b8y b7y0 bbyd b5yD bdyd b3yd b2y0 biy0 bOyd

bisyt bWyl byl by bifyl byl boyl b8yl b7yl bby! b5yl bdyl b3yt b2yl biyl b0yl
b52 bi42 bI3Z biA2 b2 b2 b%y2 bBy2 b7y2 bby2 bSy2 bdy2 b3y2 b2y2 bly2 bly2
bi58 b4 b33 b13B biHG bOB b9y3 bBy3 b7y3 bBy3 bSy3 bdy3 b3y3 b2y3 bly3 bly3
bisd b4l b3d bidd bitd bio# bOy4 bSy4 b7y4 bbyd bSy4 bdys blyd b2y4 biyd blyd
b5 bW bI3E bIAE bins bIOS bOy5 b8yS b7y5 bby5 bSy5 bdy5 b3y5 b2y5 bly5 bOyS
bi56 b6 bI36 b1a6 bIYS b6 bOy6 b8y6 b7y6 bby6 bSy6 bdy6 b3y6 b2y6 bly6 blyb
b57 b7 b1d7 bEA7 b7 b7 b9y7 bBy7 b7y7 b6yl bSy7 bdy? b3y7 b2y7 bly7 bOy7
b8 b4 bi36 biA8 bife b bOy8 b8y b7yB b6y8 b5y8 bdyB b3y8 b2y8 biy8 b0y8
bi59 b49 BB b bitG BIOY bAYO by b7yd byd b5yQ bdyd b3y9 b2yd blyd bOyd
b0 bWO b0 b0 by b0 B0 B0 EAD B0 B0 bHI0 B0 K0 b YD
by bt bl B M bt BT BN DM B BT byl EO

B B5 byl W5

P31 P30 P20 P28 P27 P26 P25 P24 P23 P21 P20 P19 P18 P17 P16 P15 P14 P13 P12 P11 PIO P9 P8 P7T P6 P5 P4 P3 P2 P1 PO

Table 7: Manual multiplication of two 16-bit words

At this stage four digit-serial multiplier cells (discussed previously in section 4.6, and
shown in Fig. 28) were cascaded together in order to form a 16x16 bit digit-serial

multiplier (Fig. 33).

N

e PR T O

>

CRLE Fert

e —v— frmx Sve: 8 oo
a

l 1 ‘ L4 i

Figure 33: 16x16 bit Digit-Serial multiplier

The LSDs and MSDs produced from the two 16-bit multiplied numbers need to be
added (every cycle) to give the product of the multiplication, which is a 32-bit result.
The result of the addition must be 4-bit long at each cycle, for 8 cycles (8x4-bit = 32-
bit). The addition discussed above could be obtained with a digit-serial adder. The last

could be formed by a network of three CSAs and one CRA appropriately connected.

The block diagram underneath illustrates the suggested method to form the digit-serial

adder (Fig. 34).

S10[3:0] S10[3:0]§ S10[3:0}
0,020 L4,L3,L1,L0 * *
CSA

CSA <«4— 3xHA, 1xFA
(for L2)

CSA

Figure 34: Digit-Serial Adder block diagram

The third CSA starting from the top of the diagram, only requires three HAs and one
FA instead of four FAs. The reason that only one FA is required is because only one
spare bit position is needed, for L2 and since the other three bits are always zero (not
need to be added) HAs can be used instead. The carry output of the most significant
FA in the CSA must be delayed by one cycle, before fed to least significant FA in the

CSA underneath and so on. Finally the most significant carry output of the CRA

should be delayed by one cycle and fed back to the least significant FA. Since a

number of four registers are required, a 4-bit register could be used.

A 4-bit register was connected at the outputs (S0,...,S3) of the digit-serial adder, in

order to allow the multiplier time to finish the computation at each cycle.

Figure 35 on page overleaf shows the 16x16 bit digit-serial multiplier together with

the digit-serial adder, previously described.

fta-0)

210(3-3)

ax3(39:0]

330l r-a)

Ipiina

1oit
o benist
Calr

3
i
T
i
$]
i
3
i
tLK

Gamn Guaen TAVIr dridn Ui e

|
ey

2 XILNX

Tisls-0apeb=Vantul NoIbdpdiar wed Ldvar

Bmenrraxs:
mce-zaszsny
Bneae Baxy

(3 eem—}

it-Serial Adder

igi

e

3
.

D000 virie WANN ROV _a1e

——m—n arn

i 111

!
i
T
:
i
I
:
i
13
f

TOTTAT

TOFUAT
cna
L
aj
TOITA

i
i
i
i
(%3

1101

.nx_ﬁ-num

L
Burem Bren Rrie mrm e ey se8y] n
4

3304 T [=}
I h

TIFLAT
ca

CIVORT
co,
L3

CEA
l'-ﬁ
cIA

sS4

2107

cha

By Serra BN G irar
OOGAD i WANN ANA 230%

.-_T 2
T

c ulz
2

|
{
E
i

[
a

| 4
o
H
i
il
i
i
;
i
El
;
i
:
:
i
.

:

Do iray

20
LE1)

b
i
1
i
{

TITIAT

[Y¥TF]

]
H :
if
I
H
i
=)
{

|
]

)

:

i

1

;

{4
i
|

[cc
lﬁkh

16x16 bit Digit-Serial multiplier and D

-
.

1
{
1)
i
a
1)
!
o
i
N

BEL

TIIR[5.0
saxu[s:g)
s3TA(2101
ALK
DI

Figure 35

The digit-serial multiplier needs 8 cycles in order to compute a 16x16 bit = 32-bit

result. The serial data (16-bit length) are divided to 4 digits of 4-bit each digit. After

the first 4 cycles (16-bit result out of 32-bit), Os must be fed to the serial input (16-bit

length) for the next 4 cycles, to allow the multiplier to finish the computation.

The following diagram illustrates the structure of parallel data (multiplicand) and

serial data (multiplier) fed in to the digit-serial multiplier (Table 8).

Parallel Data
(Multiplicand)

(MSD) B3 B2 B1 BO (LSD)
B3 [B2[BI[BO] B3 [B2[B1[BO] B3[B2[Bi[BO] B3[B2[BI[B0
MSB LSB

4-bit
< »
16-bit
To Digit-Serial multiplier
Serial Data
(Multiplier)
1% Cyele 2™ Cycle 34 Cycle 4% Cycle
(LSD) YO Y1 Y2 Y3 (MSD)
Y32 [yi[vo]l Y32l vi[Y0 Y321 Y11Y0] Y321 Y11Y0
LSB MSB
8% Cycle 7% Cycle 6™ Cycle 5% Cycle
Y3 Y2 Y1 Y0
[o0foflofo] [oloflolo]l [ololoflo] [o0foOo[o[o]
4-bit
< P

16-bit

Table 8: Structure diagram of Parallel and Serial data

In order to be able to simulate the digit-serial multiplier (Fig. 35) a CMD file was

written (Table 9). Again two arbitrary 16-bit numbers were chosen for the

multiplicand and the multiplier. The multiplicand (B) was set to 45123, or
1011000001000011, and the (Y) multiplier was set to 57000, or

1101111010101000 . The product of the current multiplication is 2572011000, or
[e [O e

D E A 8 2

10011001010011011100010111111000 .
(St Wity | W] St — e e
9 9 4 C S F 8

|
s
D 2

ECHO FINAL YEAR PROJECT
ECHO Digital Filter Implementation on FPGA
ECHO 16x16 bit digit-serial multiplier+adder Simulation File
ECHO 26/2/97

ECHO BY K.Deliparaschos
I

RESTART

VECTOR S1IN S1IN{3:0}
VECTOR S2IN S2IN[3:0]
VECTOR S3IN S3IN[2:0]

I

VECTOR S10 S10(3:0]
VECTOR S20 S20([3:0]
VECTOR S30 530[2:0]

|

VECTOR Y Y[3:0]

I

CLOCK CLK 0 1

|

WFM CE @ONS=1

WFM CLR @ONS=1 @50NS=0
l

WFM BYINOO @C=0

WFM BYINO1l @0=0

WFM BYIN1O @0=0

WFM BYINO2 @0=0

WFM BYINO3 @0=0

|

|[MULTIPLICAND

WFM BO @0=1

WFM Bl @0=1

WEM B2 @0=0

WEM B3 @0=0

WFM B4 @0=0

WEM B5 Q0=0

WFM B6 @0=1

WFM B7 @0=0

WFM B8 @0=0

WEM B9 @0=0

WEM B10 @0=0

WFM Bll @0=0

WEM B12 @0=1

WEM B13 @0=1

WFM Bl4 Q@0=0

WFM B15 @0=1

|

|MULTIPLIER

PATTERN Y 8\H A\H E\H D\H O\H O\H O\H O\H

|

PATTERN S1IN O\H O\H O\H O\H O\H O\H O\H O\H
PATTERN S2IN O\H O\H O\H O\E O\H O0\H O\H O\H
PATTERN S3IN O\H O\H O\H O\H 0\d O\H O\H O\H
|

WAVE lébitaa.wfm CLR CLK Y0 Y1 Y2 Y3 S10 S20 S30 00 01 02 03

I
CYCLE 8

Table 9: CMD file for 16x16 bit Digit-Serial multiplier

Below are the results occurred from the simulation of the 16x16 bit digit-serial multiplier (Fig. 36).

e e e U e LS e Ul e e UL e 0
- e e
i S e
B P e e e e e e |

i | -] v G i Wt 2 =l 15
s10 ? (o X 1 X B K : X c X 1 X A X 4 Xie

t 3 !

a

| ! } i
ssof ¥ o X 2 X i L
| | i (s B e e
o2 ! ‘ l ! l ! [

0 ' won p TR 15u

; Time {Secondsy
1" Cycle 2 Cycle 3" Cycle 4" Cycle 5" Cycle 6" Cycle 7™ Cycle 8" Cycle

Figure 36: Simulation result for the 16x16 bit Digit-Serial multiplier

The 100 ns of delay at the outputs, O0,...,04 of the digit-serial multiplier are caused
due to the existence of the 4-bit register at the output. From the simulation results in
Fig. 36, is shown that the correct result of the multiplication were obtained after 8
cycles. The same method of simulation was carried out a number of times using

different pairs of numbers each time.

Finally the schematic of figure 35 was created as a symbol for later use (Fig. 37)

CE

16X16 wat

Digat-Serimi
ultaplaer

Do
LI P O

Figure 37: 16x16 bit digit-serial multiplier with digit-serial adder symbol

Where BO,...,B15 are the parallel data inputs (multiplicand), YO0,...,Y3 are the serial

data inputs (multiplier) and O0,...,03 are the outputs (in serial form).

4.9 16x16 bit Digit-Serial Multiplier and Digit-Serial Adder with

Shift Registers Design and Simulation

If the 16x16 bit digit-serial multiplier is to be downloaded on an FPGA and tested in
real time, some sort of hardware is needed at the input to feed the serial data in, and at
the output to store the result of the multiplication after this is available (8 cycles of
computation time). Obviously this was not required till now, since a CMD file was

used and the simulation was performed through Viewlogic software.

The serial data input can be created by using a 16-bit parallel-in to 4-bit serial-out
shift register. The recommended method has the advantage of allowing to change the
multiplier number (16-bit therefore 16 pins required) by just altering pins. At the
output of the digit-serial multiplier a 4-bit serial-in to 16-bit parallel-out shift register
could be used, to store the results of computation each cycle for 8 cycles. After the
results have been stored, can be checked by simply observing the outputs of the

register (using an oscilloscope).

4.9.1 Parallel-in to Serial-out Shift Register Design

The parallel-in to serial-out shift register is using four 8:1 multiplexers (ULM) having
the four MSB front inputs connected to ground (part number M8 IE available from
Xilinx XC3000 library). This arrangement enables Os to be fed in to the serial input of
the digit-serial multiplier after the first 4 cycles have finished. The control lines of the

ULMs are connected to a 4-bit binary counter, which is utilised as a 3-bit counter

(part number CB4CE available from Xilinx XC3000 library). The counter is clocked at
each cycle to produce the serial data. The block diagram of the parallel-in to serial-out

shift register described above is shown in figure 38 below.

4-bit
Counter

Figure 38: Parallel-in to Serial-out shift register block diagram

During the first cycle the inputs YYO0,...,YY3 are selected to form the LSD which
appears at the outputs Y0,...,Y3 of the ULMs. The same procedure is repeated for all

8 cycles.

4.9.2 Serial-in to Parallel-out Shift Register Design

The serial-in to paralicl-out shifi register must be able to store one digit (4-bit) every

cycle for a total of 8 cycles (Fig. 39). This could be simply achieved by using a

network of eight 4-bit registers (section 4.5) to store the data after each cycle. The

LSD of the multiplication is first stored in the most significant 4-bit register. When

the next digit arrives replaces the previous one, which is shifted from lefi to right to

the next 4-bit register and so on.

From 16x16 bit
Digit-Serial multiplier

/ 07[3:0] 06[3:0]
(MSD)

o I

o | |

@2 —1 4bit 4-bit
o Register Register
CLK CLK

rb

CLK

4-hit
Register

,-D

Figure 39: Serial-in to Parallel-out shift register block diagram

00[3:0]
(LSD)

Finally the 16x16 bit digit-serial multiplier together with the shift registers (described

in sections 4.8.1 and 4.8.2) was captured using Viewdraw and is shown on next page

(Fig. 40).

EFTELST T

dvazay
-33039

4Ix8T

cerviranep a=vemyensBzg w34 BeACAAEL
XNITIXZ3 _ : . . . = _ .
OF _ T ‘ OEn _ 5 — LAE] — T = 3]
Al 3 2 3 2 3
_— sl Sosdinel i iiswie SH sz
A4 bl g vp-r A=y ©wa-r ara-r srE-r s1a-r on-r
0] 34 T by \Zil b BRI 131 0 =T d 151} o BILE o x
o aq a2 20 2d ke 2q e 2¢ he 2¢ T in 2
- i e 1g e sd ha 18 e 16 ho 1 e 3 sn
77 o b2 edg] od he a¢ ne ng Ru n¢ THRT an
32 12 1 12 13 12
[TRERLT ta-giTo _. Corcamn toren h Torelra b To-risa ._. to-rlsa .— to-e1a
* * & - -
1 usasyBeu anoc.trerr2s=d U _[CEIDA
. i i
[LE] -
—Jas T
—o1a 33 T
_ €]] —cn
— 2
21 ch
T ap
w 953 Jve
= - Iﬁ
Loom] i e ™
ST
¥a F ¥ ¥
- o
iL—s8
v
T
¢
i M
z
F
3
Q M
31
-—._

=

13

in3jajBed 3IAD.TAFJeB UT-BL[d ud

wEvamsusdygEg 3 sAe inw

16x16 bit Digit-Serial multiplier with shift registers

Figure 40

A CMD file (Table 10) was written to define the numbers under multiplication. The

multiplicand (B) was set to 45123,, or 1011000001000011, and the (Y) multiplier

was set to 57000,, or 1101111010101000 . The product of the current multiplication
D E A 8 2

is 2572011000,, or 10011001010011011100010111111000 .
s 3 8

0
[Shpta)
4 D C 5 F 2

ECHO FINAL YEAR PROJECT
ECHO Digital Filter Implementation on FPGA
ECHO 16X16 bit digit-serial multiplier
ECHO FPGA version with shift registers
ECHO 13/3/98

ECHO by K.DELIPARASCHOS
|

RESTART

VECTOR 00 00[3:0]
VECTOR O1 01(3:0]
VECTOR 02 02([3:0]
VECTOR 03 03[3:0]
VECTOR 04 04(3:0]
VECTOR 05 05[3:0]
VECTOR 06 06[3:0]
VECTOR 07 07(3:0]

!

WFM CE QONS=1

WFM CLR QONS=1 10NS=0

|

|MULTIPLIER

WEFM YYO @0=0

WFM YY1 @0=0

WEM YY2 @0=0

WEM YY3 @0=1

|

WFM YY4 @0=0

WEM YY5 @Q0=1

WFM YY6 @0=0

WEM YY7 @0=1

|

WFM YY8 @0=0

WEM YY9 @0=1

WEM YY10 @0=1

WFM YY1l @0=1

|

WFM YY12 @0=1

WFM YY13 @0=0

WFM YY14 @0=1

WEM YY1S @0=1

l

|[MULTIPLICAND

WFM BO @0=1

WEM Bl @0=1

WFM B2 @0=0

WEM
WEM
WEM
WEM
WEM
WEM
WFM
WEM
WFM
WEM
WEM
WEM
WEM
I

B3
B4
B5
B6
B7
B8
B9
B10
BI1l
Bl2
B13
B14
B1S5

@c=0
@0=0
@0=0
@0=1
@0=0
@0=0
@0=0
@0=0
@0=0
@0=1
@0=1
@0=0
@o=1

CLOCK CLK 0 1
WAVE FPGAIMP2.WEM CLR CLK O7 06 05 04 03 02 01 00
CYCLE B

Table 10: CMD file for 16x16 bit Digit-Serial multiplier with shift registers

The results of the simulation (plotted in Viewtrace) appear underneath in Fig. 41.

a7

e I = |

S R Rl BSOS RO D T el T e e -
Y o jx 3 ¥ j 5 k e X I X s X bnig

L B I I S s T TENE, SRS D GE g 68

I g

r 3 S T RALIAD, T YA (. o g
- : R) i

1 5 s A X 7 T

& | Sk,

\ L] ‘\/ &

. LSD.

] 500n u 15

Time {Seconds)
1" Cycle 2 Cycle 3™Cycle 4" Cycle 5" Cycle 6" Cycle 7" Cycle 8% Cycle

Figure 41: Simulation results for 16x16 bit digit-serial multiplier with shift registers

The stmulation in Fig. 41 produced the correct results. The same procedure was
carried out again with different pair of numbers, and produced satisfied results in all

cases.

4.10 1% order Digit-Serial IIR Filter Design and Simulation

The block diagram of figure 11 was reduced down from a 2™ order to a 1% order digit-
serial IR filter. The new block diagram of the 1% order digit-serial IR filter is

illustrated below (Fig. 42).

Ji

"W s A ’.
. |
[i

[|

I | Digit-Seril d‘ Digit-Serial| |

Multiplier | Multiplier |2 !

| |

vy '

Vi igit-Serial [€— €1 MD — i
< Digit-Serial csA | ;
{

|

|

I

|

|

|

|

|

I

[

| [
| |
| |
| |
| |
| |
1 |
I |
| I
[
| i
Cool | 1| Adder |e— '
| |
| |
| |
[|
| |
i |
) [
t J
{
| |
{]

{

]

!

Digit-Serial | |

Multiplier |°!
|

_ |
Yx-1i {

_________________ TN S R S PR e |
Cell A Cell B

: M delays CSA | : Carmry Save Adders

Figure 42: Block diagram of a 1% order digit-serial IIR filter (M=4)

Before the 1% order filter can be implemented and tested, the CSAs array and bit-level

pipelined digit-serial adder should be implemented.

4.10.1 Carry Save Adders Array Design

The carry save adders (CSAs) array shown in the block diagram of Fig. 43 was

implemented according to Fig.11, previously discussed in chapter 3.

S
K v 4 L 4 v

CSA CSA
Nonrecursive 5
computation * Recurswe.

computation
CSA
Pl &
CSA Outputs to be fed in to bit-
’ ‘ ‘ r I | l l / level pipelined digit-serial
adder

Figure 43: Block diagram of CSAs array

The schematic of the CSAs array was captured using Viewdraw (Fig.42).

Where,

NS[3:0], NC[3:0]: Nonrecursive sum and carry 4-bit input bus
RS[3:0], RC[3:0]: Recursive sum and carry 4-bit input bus

FS[3:0], FC[3:0]: Sum and Carry 4-bit input bus from following cells
BS[3:0], BC[3:]: Sum and Carry 4-bit bus

C0,...,C3 and S0,...,S3: Carry and sum output

A 4-bit register was used to delay the most significant carry bit, before fed to the next CSA.

K.Deliparaschos BEng (Hons) Electronic Engineerine

013903 F812:01
RCLS b
RSL3410)
RCL310 7 g AGER: &
el u,u - e mimin £ ok alee
o] w w ez @ o =
= = = = = whe - = |25, o
TINARL 1
CE o (31
S (< 1 3
J - tal ~ ~ - - o -
wl lm v |m vl |w wl jm
: B5r3.01 @ == ol o @ =
RS S
£ E |
.rt:x ot f];l;l 2 Iﬁl ARy
'(ll I:.‘:J.‘l- (=7}
L. LT3 B4 £
T I TR
=i - 361302
cu 1 {1
CEA
1 £
fanles a 3
abusstaiEant of SLJIYsLen T1N Fis2en
C J'ii 144 .iZ (11 . 5t (0. 50 ey B o =
Aparsssbay haat Rixes 8 Pave

Figure 44: Schematic of CSAs array

The CSAs array was created as a symbol for later use (Fig. 45).

tE

%B"-'Vr-y

Adde r

OTOWAEOW OUAIOWON CUONOmOT
WURNRSBOO WWRATHSROS WS SOS
OWOmERnCw
WA OO
RERNREE!

Figure 45: Symbol for CSAs array

Finat Year Project Report Page 71

4.10.2 Bitlevel Pipelined Digit-Serial Adder Design and Simulation

The schematic of the bit-level pipelined digit serial adder was implemented according to

Fig. 12 in chapter 3 and is shown underneath (Fig. 46).

M
< b
(= el
s :f.—;.‘) tD—‘} ﬁi 03
.Ea i - SRR - . i
IR G o __]_)—‘lg-l
X1 B LT3
== e
s ——f] __J =
B Bl
AR ni
e < LD
. [!“ TR % [n v Am
) AR : SR L1
ﬁo (73 ; 3 F [s ‘_ p— Qm.
5 |
EXLNK
BREH PR e
Oruea a7’ £ dslinnranents I::::;:::" P:::I

Figure 46: Bit-level pipelined digit-serial adder

Where,

Co0,...,C3 and S0,...,S3: Carry and sum inputs (from CSAs array).
00,...,03: Outputs (addition result)

TO,...,T3: Truncated O0,...,03 outputs

CI: Carry input

CNT: Control input for truncation of the output word

The schematic of the bit-level pipelined digit-serial adder was created as symbol to be used

later in the implementation (Fig. 47).

CE
—50
_j:gg Bit-1lewvel
R Pipelined
__Ea Digit-Seriml
L8 Adder
=153 Dar—
i | gi~
Al
—iC I B 31—
1o
—ICNT 104}
TD2-
TD3—
oz
~v/>CLK
CLR

Figure 47: Bit-level pipelined digit-serial adder symbol

The bit-level pipelined digit-serial adder was simulated and tested according to the
following way. It was connected to CSAs array part of the 16x16 bit digit-serial multiplier

(Fig. 35) after the CRA had been removed. The multiplicand (B) was set to 45123, or
1011000001000011, and the (Y) multiplier was set to 57000, or

1101111010101000 . The product of the current multiplication is 2572011000,, or
D I D T

A 8 2

10011001010011011100010111111000 and the truncated output is 2571960320, or
33 % b € 5 F %

0100
9 F 8 2

10011001010011010000000000000000 . The CMD file written for the simulation is
EEEEREE IR

0 0 2
presented in Table 11. The CNT input was set to 0 for the first 4 cycles in order to

truncate the LSDs and to 1 for the rest. The CI was set to 0.

ECHO FINAL YEAR PROJECT
ECHO Digital Filter Implementation on FPGA
ECHO 16x16 bit Bit-level pipelined digit-serial adder Simulation File
ECHO 26/2/97

ECHO BY K.Deliparaschos

[

RESTART

VECTOR S1IN S1IN[3:0]

VECTOR S2IN S2IN[3:0]

VECTOR S3IN S3IN([2:0]

VECTOR S10 S10[3:0]

VECTOR S20 520[3:0]

VECTOR S30 S$30[2:0]

VECTOR Y Y[3:0]

[

CLOCK CLK 0 1

I

WFM CE QONS=1

WFM CLR @RONS=1 @5NS8=0

[

WFM BYINOC @0=0

WFM BYINO1 @0=0

WFM BYIN10 @0=0

WFM BYINO2 @0=0

WEM BYINO3 @0=0

I

| MULTIPLICAND

WEM BO @0=1

WFM Bl @0=1

WFM B2 @0=0

WFM B3 @0=0

WEM B4 @Q0=0

WEM B5 @O0=0

WFM B6 QO0=1

WEM B7 @0=0

WFM B8 @0=0

WEM B9 @0=0

WFM B10 @0=0

WFM B1l1 @0=0

WFM B12 @0=1

WFM B13 @0=1

WEM Bl4 @0=0

WFM B15 @0=1

|

WEM CI @0=0

|

|[MULTIPLIER

|

PATTERN CNT 0O O 0 0 1 1 1 1

PATTERN Y 8\H A\H E\H D\H O\H 0\d O\H O\E
PATTERN S1IN O\H O\H O\H 0\H O\H O\H O\H O\H
PATTERN S2IN O\H O\H O\H O\H O\H O\H O\H O\H
PATTERN S3IN O\H O\H O\H O\H O\H O\H O\H O\H
WAVE DSATEST.wfm CLR CLK YO0 Y1 Y2 Y3 S10 S20 530 00 01 02 03 TOO TOl
TO2 TO3

CYCLE 9

Table 11: Bit-level pipelined digit-serial adder CMD file

The results obtained from the simulation are presented below (Fig. 48).

5 9 i e 2 o e s SO e W s) B e G i e N e
Yo i —__l i - ! i |
R (57 vl o s e et 016 e) i v YRl YT 0 0 A (260 S
e ety i B B Sl Bl

e e e e e e

D

]
s0ld) X 2 ;(; ' [

i fr i ;

Rt SR TR s etk Bl
ot P e i el (58 R : : | !
o1 1__:___‘___JF 1‘_________‘__; S sk ! =% r
02 j |: i |

Time {Seconds}

Figure 48: Simulation results of the bit-level pipelined digit-serial adder

The correct results were obtained and hence the functionality of the bit-level digit

serial adder was proven to be correct.

Finally the 1% order digit-serial filter was implemented according to the block diagram
in Fig. 42. In order to reduce the hardware complexity and since only the functionality
of the filter needs to be proved, the al coefficients were set to 0 so that the 16x16 bit
digit-serial multiplier could be omitted. The schematic of the filter is illustrated on

next page (Fig. 49).

cz

S0X16 dLE

pe 3anTeyiimay

L R sata e a A

0

HEH]
Lnput dmis &
B T ;

|y > 113

.,.’

3
i
4
€
(14
t
H
© £ H
Dursut maca H
b} 0 oLl cry !
Y(x-01 k: o 3L TE Adder
az DE_ZI.L_
154
> ol Pii-ravar & 8
St BRI I
xaisrter B3 h2
P re i i3
02 ks
tLK b¥ cg—Rm ®
100 1 u--l
I sNT——BTy T
[& :
_| G cLe—Ekm surl—ikg

3ndane pEawauma]
T _:'. .‘H_

E
E
b
]] 13
H | 3 E
| 3 suxae wee
M {4 BLpgssErgin
L T n H : i wolzorlse
| IF;F ¥
T T T R 4
| sscra L £
TC 113 TE M 3s5; 1
o a o v w i e | HEES
L] a1 oy 1 ay ‘
z [] ® z ez i3
3 [a3, 3 3 93— ‘i
L bt piman R
LA ° De —Dr r | e
%] o 781 OB L8
1)
A
Tiklu-4uk arwar Dhgiv-Garsw1 IIA Filter
Conaantacni ssavtiaranc sax ca @
Dara-25/03/98 far-z
Drawn ny: K.ODadiparaschoa [enoes BLaw- T e
1 | > | 2 | i

Figure 49: Schematic of 1¥ order digit-serial IIR filter

The filter was simulated for 24 cycles. Both a, and b, coefficients of the filter were
assigned with the same number, 45123,; or 1011000001000011, . The input, x, was

set to 57000,, or 1101111010101000 for the first 8 cycles and for the remaining cycles
D E A 8 2

to 0. The results for the 24 cycles were calculated before the simulation in order to be

compared with the simulation results afterwards.

For the nonrecursive computation (0-8 cycles):

Coefficients a,, b,: 1011 0000 0100 0011
Inputx, : 1101 1110 1010 1000
Output y, : 1001 1001 0100 1101 11000101 1111 1000
Truncated o/p ofy, : 1001 1001 0100 1101 0000 0000 0000 0000

For the recursive computation (8-16 cycles):

Coefficients a,, b,: 1011 0000 0100 0011

Input (truncated o/p
carried forward): 1001 1001 0100 1101
Output y, : 0110 1001 1000 1101 0000 1111 00100111

Truncated o/p ofy,: 0110 1001 1000 1101 0000 0000 00600 0000

For the recursive computation (16-24 cycles):

Coefficients ay, b,: 1011 0000 0100 0011

Input (truncated o/p
carried forward): 0110 1001 1000 1101
Output y, : 0100 1000 1010 1100 1000 1111 11100111

Truncated o/p ofy,: 0100 1000 1010 1100 0000 0000 0000 0000

The CMD file listing is shown below (Table 12).

ECHC FINAL YEAR PROJECT

ECHO Digital Filter Implementation on FPGA
ECHO 1lst order digit-serial IIR (al coefficient set to 0)
ECHO 26/3/98

ECHO BY K.Deliparaschos

I

RESTART

STEPSIZE 100NS

|

VECTOR X X[3:0]

VECTOR Y Y[3:0]

|

WEFM CE @ONS=1

WEM CLR @QONS=1 @20NS=0

| DIGIT SERIAL ADDER CARRY INPUT
WFM CI Q0=0

| TRANCATION CONTROL

PATTERNCNT 0 00 011110000111100001111
|

|a0 coefficient

WFM A0O @0=1

WEM AOl @0=1

WEM A02 @0=0

WEM AO03 @0=0

WFM A04 @0=0

WFM A0S @0=0

WFM A06 Q0=1

WFM A07 @0=0

WFM A08 @0=0

WEM AO09 @0=0

WFM A010 @0=0

WFM A011 @0=0

WEFM AQ12 @0=1

WEM A013 @0=1

WFM AQ01l4 @0=0

WFM A015 @O0=1

bl coefficient
WFM B10 @0=1
WFM B1l1l @0=1
WEFM Bl2 RO0=0
WEM B13 @0=0
WFM B1l4 @0=0
WFM B15 @0=0
WFM Bl6 @0=1
WEM B17 Q0=0
WFM B18 @0=0
WEM B19 @0=0
WFM B110 @0=0
WEM R111 @0=0
WFM B1l12 @0=1
WFM B113 @0=1
WFM B114 @0=0
WEFM B115 @0=1

v Deliparaschos BEnge (Hons) Elcetronic Encineering

| INPUT DATA

PATTERN X 8\H A\H E\H D\H O\H O\H O\H O\H O\H O\H O\H O\H O\H 0\H O\H
O\H O\H O\H O\H O\H O\H O\H O\H O\H

[

WAVE 1STIIRS.wfm CLR CLK X0 X1 X2 X3 yy0 yyl yy2 yy3 Y0 Y1 Y2 Y3

|

CLOCK CLK 0 1

CYCLE 24

Table 12: 1% order digit serial IIR filter CMD file

The simulation results obtained are presented in the plot underneath (Fig. 50).

Cycle: 1% 223 4252 g5 P gt 240
ax LA LU g
s e e s e a0

| e
vl O s B B o T S L € SR s
ol | Shaligim el e
LT

G 0 g 0o M e R R

i AR 5 e A A e S e E” 4

! } : ‘ Time {Sacends}

:LSD; MSD:;

Figure 50: 1% order digit-serial IR filter simulation results

The figure above shows that the results of the simulation agree with the calculated

results presented before the simulation.

Chapter S IMPLEMENTATION AND TESTING OF 16X16 BIT

DIGIT-SERIALMULTIPLIER ON FPGA

5.1 Introduction

Even though that the original title of the project was ‘implementation of digit-serial
IR filter on FPGA’, due to limitations on the hardware available at the present time,
the current implementation on FPGA was reduced to that of the 16x16 bit digit-serial
multiplier. The major reason for this alteration was, that the available Xilinx FPGA
chip (XC3042PC84) at the time was contained on a general use experimental board
with many of the user defined I/O pins already engaged (Appendix A). Also the size
of the present FPGA chip (2,000 to 3,000 gates) did not allow the size required

(>7,000 gates) by the 1* order digit-serial IIR filter [33].

5.2 Overview for Xilnx FPGAs

Every Xilinx FPGA performs the function of a custom LSI circuit, like a gate array,
but the Xilinx device is user programmable and even reprogrammable in the system.
Xilinx sells standard off-the-shelf devices in three families, and many different sizes,
speeds, operating temperature ranges, and packages (Appendix B). The user selects
the appropriate Xilinx device, and then converts the design idea or schematic into a
configuration data file, using the Xilinx development software (X4CT) running on a

PC or workstation, and loads this file into the Xilinx FPGA.

The XACT development system generates the configuration program bitstream used to

configure the LCA device [33].

3.3 Programming or Configuring the Device

A design usually starts as block diagram or schematic, drawn with one of the popular
CAE tools, e.g. Viewdraw (part of Viewlogic software). Many of these tools have an

interface to XACT, the Xilinx development system.

After schematic- or equation-based entry, the design is automatically converted to a
Xilinx Netlist Format (XNF). The XACT software first partitions the design into logic
blocks, then finds a near-optimal placement for each block, and finally selects the
interconnect routing. This process of Partitioning, Placement, and routing (PPR) runs
automatically, but the user may also affect the outcome by imposing specific
constraints, or selectively editing critical portions of the design, using the graphic

Design Editor (XDE).

Once the design is complete, it is documented in an LCA file, from which a serial
bitstream file can be generated. The user then exercises one of several options to load
this file into the Xilint FPGA device, where it is stored in latches, arranged to
reassemble one long shift register. The data content of these latches customises the

FPGA to perform the intended digital function [33].

5.4 Downloading of 16x16 bit Digit-Serial Multiplier on

FPGA and Testing

The 16x16 bit digit-serial multiplier with shift registers described in section 4.9 of
chapter 4, was prepared to be downloaded into the FPGA chip. In order to reduce the
hardware size and need for I/O pins further, for the reason described in section 5.1, the

following changes were made.

The serial-in to parallel-out register was omitted from the design and only one 4 bit
register was left at the output to allow time for the computation to finish. Furthermore,
the parallel input data (multiplicand) of the multiplier was predefined to a randomly

selected number (45123, or 1011000001000011,), living only the serial input data

(multiplier) user defined. These changes resulted to a significant reduction of the I/O

pins to 22.

The debounced switch S12 on the FPGA board was used to clock the multiplier at
each cycle. Since the output of the switch was inverted (see Appendix A) an extra
inverter was used at the clock input of the multiplier to cancel the inversion. Switch
S15 on the FPGA board was used to reset the circuit. After a close examination at the
FPGA board schematic (Appendix A), the following pins shown on next page were

assigned to the inputs/outputs of the multiplier.

YYO0 to pin 75
YY1 to pin 76
YY2 to pin 77
YY3 to pin 78

00 to pin 37

CLK to pin 73

CLR to pin 6

YY4 to pin 82
YY5 to pin 84
YY6 to pin 3
YY7 topin$

01 to pin 38

YY8 topin 9

YY9 topin 11
Y10 to pin 10
YY11 to pin 8

02 to pin 39

Y12 to pin 4
YY13 to pin 2
YY14 to pin 83
YY1S to pin 81

03 to pin 40

Input and output buffers (IBUF, OBUF) followed by input and output pads (IPAD,

OPAD) were used before the design could be downloaded on the FPGA.

The new schematic of the 16x16 bit digit-serial multiplier with parallel-in to serial-out

shift register is shown in Fig. 51 on the page overleaf.

3 T 3 [3 T
VT
parwlile-tnlusrial~9out regintur e o
]
N
I
Laxan wax
[XT)
LXE-rzp SUF yye I EH St
AVF yvg
197 yyaz : I
v | £
1)
3
e -
o
fr—r———pLE =
[
2
-1E
LUC-P7
Lac-re4 A
LOE-F1y
LOC~FE |
e
T
L
LOC-F73
s
-
% 1o
po T T3 L0G-P37
W er LoC-F3¢
Ly kesur LoC-F3e
TT12 Lic-ps0
A
Greun Wyr E_oviipmsasanay Prass sizar € |3
4 [] I 2 I 1

Figure 51: 16x16 bit digit-serial multiplier with parallel-in/serial out shift register (FPGA version)

With the use of XACT software and by carefully following the instructions described in

section 6.3, the schematic of Fig. 53 was successfully downloaded on the FPGA board.

The parallel input YY0,...,YY15 was set to 57000,, or 1101111010101000 . A power
D E

A 8 2
supply was connected to the board to provide the 5v required and a 4 channel digital

oscilloscope was used in order to observe the outputs O0,...,03.

Finally the 16x16 bit digit serial multiplier was tested and produced the correct

product of the multiplication, after 8 cycles (2572011000, or

10011001010011011100010111111000).
[s st | it i g gt et

9 & 4 D (& 5 F 8 2
Appendix C demonstrates two photographs taken in the lab, showing the actual FPGA
board (bottom left corner), set up with the computer (middle), oscilloscope (right) and
power supply (top left corner). At the time the photograph was taken the circuit

described before in this chapter was already downloaded onto the FPGA board and

was functioning correctly.

Chapter 6 CONCLUSION

The application of the digit-serial structures to the design of IIR filters introduces
delay elements in the feed back loop of the IIR filter. This enables the pipelining of
the feed back inherent in the IIR filters. The digit-serial structure is based on the feed
forward of the carry digit, which allows sub digit pipelining to increase the throughput

rate of the IIR filters.

Chapter 3 presented a systematic methodology to derive a wide range of digit-serial
IIR filter architectures, which can be pipelined to the sub digtt level. This will give the
designers greater flexibility in finding the best trade—off between hardware cost and

throughput rate.

Chapter 4 presents in detail the implementation of a 1% order digit-serial filter, which
was previously described in depth in chapter 3. This can be achieved by designing,
simulating and testing each element of the digit-serial filter. ECAD Viewlogic
software was used for the design, simulation and testing of the digital elements of the
filter. Great attention was paid to the design of the fundamental elements of the filter,
in order to achieve the minimum number of gates used as possible, since this would
reduce in a high order the hardware size and complexity. The aim of chapter 4 was to
prove the functionality of the digit-serial IIR filter and all its sub-elements. Also to
create a library of fundamental building blocks, to ease the design of future digit-

serial IIR filter. Both of the aims were completed successfully.

Chapter 5 illustrated the methods carried out in order to download the design of a
16x16 bit digit-serial multiplier on FPGA board. Also the functionality of 16x16 bit
digit-serial multiplier was proven and tested in practice. Due to t limitations on the
variety of FPGA chips available at the present time and after a common agreement
with the supervisor Dr A. Aggoun, it was decided to reduce the implementation on
FPGA of the 1* order digit-serial filter to that of 16x16 bit multiplier. The aims set for
chapter 5 were successfully completed, since the 16x16 bit digit-serial multiplier was
proven to function satisfactorily in a real time situation. Also by achieving that a good
step forward set in proving the functionality of digit-serial filter on FPGA, in future
work. A few problems were encountered when the download of the 16x16 digit-serial
multiplier on FPGA took place. These were due to loose connections between the
FPGA chip and the I/O connectors of the board where the chip located. Fortunately

the problem was overcome and the rest of the process was continued normally.

Obviously, in order to understand the concepts of digit-serial ITR structures took a
great deal of time. Without any prior knowledge in this field, background reading was
also essential. The correct results were not gained immediately and in many cases
several attempts at understanding concepts required as necessary to achieve that.
Regular meetings with the project supervisor were proven to be invaluable.
Knowledge of the subject area was gained mostly by past papers, books and Internet
recourses. Throughout the period of this project many software packages such as,

Viewlogic, XACT, Office 97, Paint Shop Pro, and Microsoft Photo Editor, were vsed .

As time is important in industry and deadlines need to be met, following the Gantt
Chart (Appendix D) helped in achieving the completion of the required task within the

available time.

Having the opportunity to undertake a project of this nature has proven to be an
invaluable source of knowledge. It has allowed discovering previously unfamiliar
areas of expertise, which will be beneficial when considering future career
opportunities. Also by allowing the student to use appropriate tools such as,
Viewlogic, XACT from previous areas of study enabled him to plan and undertake

investigations both theoretical and practical.

Chapter 7 RECOMMENDATIONS FOR FURTHER WORK

In future work the 1% order digit-serial IIR filter could be implemented on a bigger
size FPGA chip. Since the 1% order filter requires more than 7,000 gates the XC3195
or XC3195A Xilinx FPGA chip could be used to download the design. For a 2™ order
digit-serial filter (more than 13,000 gates) the XC4000/A/H Xilinx family, which has a

capacity greater than 25,000 gates could be used.

Moreover future work could involve the design of an individual interface board to
support the chip. This would make available the entire user programmable I/O pins of
the chip, so that using all of I/O pins of the current design required would not be a

problem.

Furthermore an investigation based on the propagation delays, after the circuit has be
downloaded on the FPGA would be essential. The propagation delays can not be
measured until a complete design is ready to be downloaded onto the chip. This is due

the fact that the length of wires between the interconnections effects the delays.

References

[1]

[2]

[3]

[4]

[5]

[6]

(7]

8]

[9]

(10]

[11]

[12]

A. Aggoun, M K. Ibrahim and A. Ashur, “Radix IIR filter structures: A
framework for design trade-off analysis”, Accepted for publication in IEEE
Transactions on Circuits and Systems.

A. Aggoun, MK. Ibrahim and A. Ashur, “Bit Level Pipelined Digit-Serial
Array Processors”, Accepted for publication in IEEE Transactions on Circuits
and Systems.

A. Aggoun, A. Ashur and M.K. Ibrahim, “Bit Level Pipelined Digit-Serial
Multiplier” Int. J. Electronics, 1993, Vol. 75, No. 6, pp. 1209-1219.

M. K. Tbrahim, “Radix-2" Multiplier Structures: A Structured Design
Methodology”, IEE Proceedings-E, Vol. 140, No. 4, July 1993, pp. 185-190.

S. C. Knowles, R. F. Wodds, J. G. McWhirter and J. V. McCanny, ‘“Bit-level
Systolic Arrays for TIR Filtering”, Proceedings IEEE International Conference
on Systolic Arrays, San Diego, May 1998, pp. 653-663.

S. C. McQuillan, J. V. McCanny, “A Systematic Methodology for the Design of
High Performance recursive Digital Filters”, [EEE Transactions on Computers.,
Vol. 44, No. 8, August 1995, pp. 971-982.

K. K. Parhi, “A Systematic Approach for Design of Digit-Serial Signal
Processing Architectures”, IEEE Transactions on Circuits and Systems, Vol. 38,
No. 4, April 1991, pp. 358-375.

M. A. Sid-Ahmed, “A Systolic realization for 2-D Digital Filters”, IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 4, April
1989, pp. 560-565.

M. Hatamian, “Parallel Bit-level Pipelined VLSI Designs for High-Speed Signal
processing”, Proceedings of the IEEE, Vol. 75, No. 9, September 1987, pp.
1192-1202.

M. Hatamian, “An 85-MHz Fourth-Order Programmable IIR Digital Filter
Chip”, IEEE Journal of Solid-State Circuits, Vol. 27, No. 2, February 1992, pp.
175-183.

R. Hartley, P. Corbett, “Digit-Serial Processing Techniques”, I[FEE
Transactions on Circuits and Systems, Vol. 37, No.6, June 1990, pp. 707-718.

K. K. Parhi, “Pipeline Interleaving and Parallelism in Recursive Digital Filters-
Part I. Pipelining Using Scattered Look-Ahead and Decomposition”, /EEE
Transactions on Acoustics, Speech, and Signal Processing, Vol.37, No. 7, July
1989, pp. 1099-1117.

f13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Z. Jiang, A. N. Willson, “Design and Implementation of Efficient Pipelined IIR
Digital Filters”, IEEE Transactions on Signal Processing, Vol. 43, No. 3, March
1995, pp. 579-590.

W. Luk, G. Jones, “Systolic Recursive Fiiters”, IEEE Transaction on Circuit and
Systems (CAS), Vol. 35, No. 8, August 1998.

P. E. Danielsson, “Serial/Paraliel Convolers”, IEEE Transaction on Computers,
Vol. 33, No. 7, July 1984, pp. 652-667.

R. F Woods, J. V. McCanny, ‘“Design of a High-Performance IIR Digital Filter
Chip”, IEE Proceedings-E, Vol. 139, No. 3, May 1992.

A. Aggoun, A. Ashur and M.K. Ibrahim, “Novel Cell Architecture for High
Performance Digit-serial Computation”, Electronic Letters, 27™ May 1993, Vol.
29, pp. 938-940.

A. Aggoun, A. Ashur and M.K. Tbrahim, “Bit-level Pipelined Digit-serial Array
processors”, Accepted for publication in JEEE Trans. on Circuits and Systems.

MK. Ibrahim, A. Aggoun, A. Ashur, “Radix Muitiplication Algorithms”, Int. J.
Electronics, 1995, Vol. 79, No. 3, pp. 329-345.

A. Avizienis, “Signed-Digit Number Representations for fast Parallel
Arithmetic”, IRE Trans. Computers, Vol. EC-10, pp. 389-400, Sept 1961.

A. E. Bashagha, M. K. Ibrahim, “Radix Digit-serial Pipelined Divider/square-
Root Architecture”, JEE Proc.-Comput. Digit. Tech, Vol. 141, No6, November.
1994, pp. 375-380.

P. B. Denyer, D. Renshaw, “VLSI Signal Processor - a Bit-Serial Approach”,
(Addison-Wesley, 1985).

K. Hwang, “Computer Arithmetic Principle, Architecture and Design”, (John
Wiley & Sons, New York, 1979).

R. B. Urquhart, D. Wood, “Systolic Matrix and Vector Multiplication Methods
for Signal Processing”, IEE Proceedings, Vol. 131, Pt. F, No.6, October 1984,
pp. 623-631.

A. Antoniou, “Digital Filters Analysis and design”, 6™ Edition, (McGraw-Hill,
Inc., New York, 1979).

R. W. Hamming, (Digital Filters), 2™ Edition, (Prentice-Hall, Tnc., Englewood
Cliffs, New Jersey, 1983).

[27] M. Davio, J.-P. Deschamps, A. Thayse, ‘Digital Systems with Algorithm
Implementation”, (M. Davio, J.-P. Deschamps, A. Thayse, 1983).

[28] A. E. A. Almaini, “Electronic Logic Systems”, 3™ Edition, (Prentice Hall Int.
(UK) Ltd., 1994).

[29] V. Cappellini, A.G. Constantinides, P. Emiliani, “Digital Filters and their
Applications”, (Academic Press Inc. (London) Ltd, 1978).

[30] E. L. Johnson, M. A. Karim, “Digital Filters a Pragmatic Approach”, (PWS
publishers, U.S.A, 1987).

[31] J. McCanny, J. McWhirter, E. Swartzlander Jr, “Systolic Array Processors”,
(Prentice Hall Int. (UK) Ltd, 1989).

[32] J. D. Broesch, “Practical Programmable Circuits a Guide to PLDs, State
Machines and Microcontrollers”, (Academic Press, Inc., (London), 1991).

[33] D. Dawson, “An Introduction to Xilinx FPGAs”, (Reproduced with the kind
permission of Xilnx Inc., Feb. 1995).

(34] “Xilinx Selection Guide and Specific Data Sheets From the XACT Libraries”,
(Reproduced with the kind permission of Xilnx Inc.).

Appendix A FPGA Board Schematic

V"I

= ~
: g g 113 PR OB el .00 u
T a0 Ieous reSL ' sousAoN " Toadal 2= Y X
T Pl lijor i oz v Mun 201 =0t SRR RS —
PRTnLTY JuRanD0Q BNﬂMI v) — q H — . but
. - Ty wmerdEgl vmm«.nmnmmm FECTREES ﬁmmmvumnmm. 24r W/»» » i #ﬁ ﬁ . ey — 5
R {3333:3331 e TTIIIET T oo aediebedeiig Ml
- pub ua) L o 29 ST R R 10ds ME 3

G pud P L wl.m 585 mmmmmmmw mo_,._ winfm Mmr _Mu i Vo _O_L R n_,. L = o B ol : _

By wxxn4|..mﬁ —lm s e m» m« a4 m\.x.wu . Im‘l.\‘;\(/\//.w(/\u, = $0u,r|0/0!l;.:.nu. r__lqllolc I

| f ”I.UH — - \— BA oY = »!.w . R AR oS _! s i) m “
7\(/\(.d,nllnm|l — Imualuo.ﬂ A=l m« b e | w .“QI))\(1048 M§ B ot i
MR T T S TRy TR LA ek BV 1m.!i o -+ 'wwﬁ,}\((.. o O | i |

(((lol..l.uuH — 17 A BY b —- el N AN SuosT O 334 Odr

; A =0 Im‘-r —4I_1N1» - s — e TYYM 8% Lopeay TTR Amm—t
Al i I 4 4 T anp LT os :
r)\/\f.m.l‘lw.t.“.ﬂwﬁ. _- w DA g
T SN, A N og w

_u tay tag 1 , i 'inv] vOZ 093ue m

™A HT_ 1NdNI H3IMOd ~c~ m

\ b X A TN,.:L T2 |

i i _) SRSV [/ |O\/\9| — _ ucu oZin :

S RO | (O PN QU (J— Vover t‘:c o s .

\rlL % AL

20
l_ a.t o

eng €88JARY

0aHwL £t : i _ s10 [nl._l.
; .m_m.m.un.v. .,oo 3 s
O _mm . , Wé
AL 0 i
TR _ _ F 5
| 77 7 e : i
g5z ©/1 , : ;
9525 ; : .
&5 o/1 BFENS i
/.f-qﬂmmwmm. o 1 Zerasce 8 ! e = e u”wn
NEs &5 o7 et LLLL M,wmx | ,
-5 9/1 ShrLEs 155 i vy . !
o o/ Ak | L 888 . 3
IR %123 mvw Hmw“mmﬁ i oy a2u ,] puB 23A
| —ap——zz NI0~00 i ol H gt -
LB 7l ' ! i puo
o~ 75 29 o7k i s, 5 : P u
Z=% Viwwy, o o ST X
\lvu P~ 4 CroEa% 0/1 ~Bg 5 . T gezaod
’ .\.!n.v |W.wl 20 0/1 Jﬁ1ﬂd~.\ S " g /_ ‘_ “ ﬁu/:
i Jlkndl 2a n o wax ity oy . C b e AJ
e segE {Lu7/ 7 JT.L e ST = -t
—tap 1o S BE SNoG - : r R T
vaouh_nu r..-il.hl T 21 Nounas | Tumn _ J /n/ J B Cyod xxnf.'k :
=t ity i S Sl =
" Tasn 1% Iﬁ r un.n.n_na_m_m_ Jm_wnn_\.uo . u ! 1 ‘u__ __, LI &
e BT T ar—r— e e [g
_ vVY <<<<_ vEYRE6S wm vy P e g0,
un ada .m_ bl VoRIHYL _ VPRIHEL vELD SR VA
gsizgl n.,m_ % g49cves LE5T5949 pub : ez
wlmﬁhn-v!r ELT @88, : Fb;lj. AKAXL).‘“,A»xlnl_ .H« rI_ ; _ﬂIMaNl.I‘u
] =) | S o . S
2 - vl .

ND lulTﬂlL “\._0
_

& Sgare e . - W
‘e 4]
wie cgmngte iamﬁ. w

! i

! _IY_LLLL_I_II. LM i |
”;;“.”.amgq_ ” foleN w
Ak &P , _I_ - ..ﬂ_.||._ o w
mmm.an_mnmovmmr | | | | | e va i

u.r> 5 . m, Toax RO ﬂl, Ll - |_ u_n;

edr " 9387 D3A

Appendix B Xilinx Family Architecture Comparison

Below is shown the Xilinx Family Architecture Comparison [33].

v 3, !
:'\r .J‘ rr

Family Architecture Comparison

D FPGAR -
. XCREODA. XCSG0S/AL : ;
XC7204 Family XLTI00 Famity XC3100 Famiiy | XOR0SAM Femity
mchbicure ! PALBke AND-CRplane | AcvanceaiD-high | Gabeanay —Ite Gale sTay—Ins
Macmoals and 113 d_ high cemily Macry smak Blocks Many stnall blocks
©) terms i Mun) i e
In the same
Lagic awB-72 & ~ 143 macoesks O - T20N gake | 00 — 25,000
| Capachy e R | e IR TAL | ietmorais T MR, LT ioangeete 1L, MST FLE.
q 2Vids RAM
Deelgn Ficed. PR il Mwed. PAL-ike Gale 219y B degmrks ot Bale = nz sn
Tinvieg 00 MH: = prediciable 00 Mz~ precictailn | appioation ' lbmm e
S | Lo e
e300
Mumbavoi V0= | 38-72 F|-166 ldany — like gabe amay SE - 178 | Meny— KB pate amey 64 - 192
Nurukqn of FF 72—144 BH-2A My ~ ke pae army 122 —1.320 pumher-25—1
Mmm RAM - uafhh 7
Prwer : 04 —2.0%W stalic Verylow, nW siaic Vary fom, mW st
Cddscmplion 05-1.25W sialic 35-223Wugkal | Dynamic — sepengg onappheaicn | Dviainie — depends en
0.75-15W oy Programmable powsr 312 -1.0Whplal fﬂ’dm
managenert 025 —20W lypcal
Sysierm 1 00% incercoanect 100% fverccrsest T'no glol losk bafters puoDbE cock drfars
Fealives . Olaratiid Progras sabie nlmtslun] wr-mu okritest § e ke
Aritamelic cary logic hrihmetic cany bpic Ininrrai 3-sta% Interrm! 3-utae busses
ALU per eracwocs!l ALLI por ma=nes Possr-soun m RAM for FLFOR and recisters
EBVEVW 33 annatﬂhy AmA oot dcdve lus XC3100 . | JTAG ™or enam mest
b (-] for F33T Gy logic Tor erthmetic
3 z1mlnl :h:‘h - \‘lgm dacade Sk
it CtpUL drivs, P
[ot “‘ﬂ IETA S 0 e
; HigN IR T _
Process GMOS EPROM SMOR FPRIAM CAAS sdc RAM CII0S catc RAM
-] PADM prograremiet Pf'-m-llm*wn rammed iy ciecal
Nead | | OTPoriversbio | OFPor UV ensank o sl
Configuraiion on chip wration om Ship Ganmmsum RSy Cotligueation stored extemaity
Re- Yes —aflzr WV ermswe Yes~alsr Y emmam | Yes—io Yoz -- moiligeconds
Pojrarmmable FRaj ODRmMade in cimuid Reprogrammabie i crzed
Faglary Tested res Yes Yoo Yes
- Coimpliex state machines | Hiph spaed 4 aphics Sample state rechines Simply etate
Agpralione Comgilex asunis uumport gmoey Henpral legic 1 Complax lops replsermant
Bus & periphecgl 'h Op o E . 1
eitace !lw 4 shmsuﬂh!
Memory contrct u‘:"s +V pamgion p“ icalians
PAL-grunther Very fast comniers RAM appilzatioe: FFOx, hrflare
Accumulaine Mmﬂuﬂﬂs Fastconmpact
nEmonlons Wide decoders JTA8 bars
Mapnstudafirsdow Highspead stata rm Bis irteriacing
L s Complex zamvsoliers

Appendix C Photographs of the Project

Below are photographs of the project under operation taken from the lab.

o m—

Appendix D Gantt Chart

No Activity Duration (weeks) 0

1 Project Allocation]

2 Understand Concept

3 Implementation

4 Simulation

5 Verification & Testing

6 Possible Corrections

7 Download on FPGA & Test

8 Write Final Report

Predicted Time: HENEEE Actual Time: IS

	S45C-516011221360
	S45C-516011221380
	S45C-516011221390
	S45C-516011221410
	S45C-516011221411

