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Abstract

This project is based on the implementation of a digit-serial Iffi filter, on FPGA by

either using VHDL or ECAD programs (Viewlogic).

The application of the digit-serial structures to the design of IIR filters introduces

delay elements in the feed back loop of the HR filter. This offers the possibility of

pipelining the feed back loop inherent in the HR filters. The digit serial structure is

based on the feed forward of the carry digit, which allows sub digit pipelining to

increase the throughput rate of the HR filters.

The implementation of the digital filter was split into its fundamental elements

according to its block diagram. All the elements of the filter were designed, simulated

and tested to prove their functionality. Furthermore a 1st order digit-serial HR filter

(n=4, M=32) was composed and simulated to prove that is functioning satisfactorily.

Finally the last should be downloaded onto the FPGA and tested. The FPGA chip,

which was available at the time of this project, was located on a general use board

intended for less complex designs. Due to this fact the 1st order digit-serial filter was

not downloaded, but the 16x16 bit digit-serial multiplier with digit-serial adder and

parallel-in to serial-out register was downloaded instead and tested.

I ,I' t' 11
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Introduction

~ Brief introduction to digital filters

Signals exist in almost every field of science such as acoustics, biomedical

engineering, communications, control systems, radar, physics, seismology and

telemetry.

There are two general types of signals, namely continuous-time signals and discrete-

time signals. A continuous-time signal is one that defmed at every instant of time. At

the other hand discrete-time signal is one that that defined at discrete instants of time.

Fig. 1 shows the two types of signals. If the continuous-time signal is denoted by x(t),

then the discrete-time sequence is denoted as

x(nTs)=x(t) where, t=nTs

x(t) x(nTs)

Continuous-time signal

time

Discrete-time signal

nTs

Figure 1: Types of signals

A discrete-time signal can be represented by the frequency spectrum of the signal.

The frequency spectrum. describes the frequency contents ofthe signaL



The process, by which the frequency spectrum of a signal can be modified, reshaped

or generally manipulated according to the required specifications, is called filtering. In

the filtering process the frequency components of the signal can be attenuated or

amplified or some specific ones of them rejected or isolated.

Filtering could be used in applications to eliminate a signal noise, remove signal

distortion, and separate purposely-mixed signals or resolve signals into their

frequency components. It could also be used in other tasks such as signal

demodulation, convert discrete-time signals to band limit signals, data smoothing,

spectrum analysis and electrocardiogram processing.

Digital fllters are possible to be implemented by software or by dedicated hardware.

In both cases, they can be used to filter real-time (frequency of samples must be very

small) or non-real-time signals. Digital filters of the same characteristics can replace

analogue filters used in real-time filtering purposes.

The advantages offered by using digital filters instead of analogue ones is the high

accuracy, small physical size, high reliability, flexibility, and that component

tolerance is non-critical on the system performance. Since a digital filter has been

designed, the filter coefficients can be modified to change the filter characteristics.

This has as an advantage the use ofthe same filter for different filtering tasks.

Digital filters can be modelled using three basic elements. These are the delay, the

adder and the multiplier. Delay elements are implemented using registers. Adders and

--_._---- -----
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multipliers could be implemented using networks of logic gates such as NAND or

NOR gates. Table I shows the basic digital-filter elements.

Element Equation

x" ·1 D I
~" Y" =X"_l

Delay

Xl" ~eb2"
~"

y n =xln+x2"

Adder

~J Yn =axn
xn

,,,
Multiplier

Table 1: Basic digital-filter elements

There are two types of digital filters, the nonrecursive filters and the recursive filters.

Nonrecursive filters are also known as finite impulse response filters (FIR) and

recursive filters as infmite impulse response filters (IIR).

Nonrecursive filters are the simplest ones and they are defined by Eq. (1)

M

Yn = Lajxn- i
i=O

(1)

"Where ai are the coefficients of the filter and determine its characteristics. Xn-i

and y" are the input and output data streams. A simple block diagram of a

nonrecursive filter is shown in Fig. 2.

" '~'-



HR ftlters compute their output recursively, which means that they need the

immediate past output for computing the current one. This feature makes HR digital

filters are more difficult to pipeline tan FIR filters. Also HR filters have the

advantages of high selectivity and requiring less coefficients than the FIR with similar

performance.

(2)

Yn
------i~.X

n I------4~~ a i

Figure 2: Nonrecursive filter block diagram

For a second order (M=2) FIR filter, Eq. (1) becomes

Figure 3: Second order (M=2) FIR filter

The data flow diagram constructed from Eq. (2) is shown in Fig. 3.

I
I
I
I
I
I
(

I
I
(

I
(

I

The block diagram of a recursive filter is shown in Fig. 4 on the page overleaf.
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Where a; and b; are the coefficients of the filter. xn-; and Y1l are the input and output

Figure 4: Recursive filter block diagram

(3)

(4)

M M

Yn =Ia;xn_;+ Lb;Y1l-t
;=0 ;=1

11 ...... y

HR
......

...

I
D

I
I I

Yn4---,--f-+-+---+--+-.-----l--+-+---+-+-i--....I

x

Recursive filters are defined by

data streams. For a second order (M:::::2) IIR filter, Eq. (3) becomes

The data flow diagram ofthe filter is shown in Fig. 5 below.

[

[

[

[

[

[

I
I
I
I
I
I
I
I
I
I
I

Figure 5: Second order (M=2) FIR filter
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The project is based on the implementation of a first order digit-serial HR filter, on

FPGA by either using VHDL or CAD software packages (Viewlogic).

The implementation of the digital filter can be split in several tasks according to its

block diagram. The first task is to implement a new cell architecture for digit-serial

multiplication (digit serial multiplier). After that a digit-serial adder, should be

implemented.

Furthermore the first order digit-serial HR filter should be composed from the

elements that already have been implemented, simulated and verified with already

known results to make sure that is functioning properly and producing the correct

results. Finally the first order digit-serial IIR filter must be downloaded to the FPGA

chip and tested again to ensure that it works properly.

-_._---._------_._-------

> Scope of the project

The feed back loop in IIR :filters makes them difficult to be pipelined. The application

of the digit-serial structures to the design of IIR filters introduces delay elements in

the feed back loop of the IIR filter. This offers the possibility of pipelining the feed

back loop inherent in the IIR filters. The digit serial structure is based on the feed

forward of the carry digit, which allows sub digit pipelining to increase the throughput

rate ofthe IIR filters.
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In look-ahead computation techniques, the algorithm is iterated as many times as

required to create the necessary level of concurrency and the iterated version is

implemented. Specifically, the first-order recursion is iterated to express the state x(n)

as a function ofx(n-M) to create M delay operators inside the loop so that the loop can

be pipelined by M stages. This iteration process contributes to a non-recursive O(M)

mUltiplication complexity.

In an Nth-order recursive system, the state x(n) is expressed as a function of past N

states x(n-1), x(n-2), ... , and x(n-N+1). In these higher order systems, look-ahead can

be either clustered or scattered.

In scattered look-ahead approach, x(n) is expressed as a function of past N scattered

sates x(n-M), x(n-2M), ... , and x(n-NM), thus emulating the original Nth-order filter by

an NM-order filter. The scattered look-ahead process leads to an O(NM) complexity

which guarantees stability.

However, the drawback of this technique is the overhead in hardware complexity,

which is proportional to the number ofpipelining levels. [12]

1.3 Signed-digit number representation

Signed-Digit Number representations (SDNRs) were originally introduced by

Avizienis [20] to eliminate carry propagation chains in operations such as add,

subtract, multiply and divide.

",I'~ H
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Signed-digit numbers differ from conventional numbers in that the individual digits

may assume negative as well as positive values and hence there is no need for an

explicit mechanism (such as the 2's complement system in binary) to handle the

overall sign ofa number.

For example in radix-2 SDNR, the digits may assume the values 1,0 or -1 (denoted by

-1). For higher radices, there is some choice in the digit set, which can be used;

symmetric digit sets for radix-4 can be chosen as either {2 ... 2} or {3 ...3}. The

smallest set is tenned the minimally redundant set and contains at least r+1 values

(where r is the radix). The largest set is termed the maximally redundant set and

contains at most 2r-1 values.

Such numbers are tenned redundant because there may be several possible

representations for any given algebraic value. For example, the decimal value 3 may

be represented in radix-2 SDNR as 011, 101, or 111 etc.

Redundancy in the number system used allows methods ofaddition and multiplication

to be devised in which each digit of the result is (typically) a function only of the

digits in two or three adjacent positions of the operands and does not depend on the

other digits in any way.

This feature has a number of important consequences. (1) It allows arithmetic

operations to be carried out completely in parallel with no carry propagation from the

least significant digit (LSD) through to the most significant (MSD). (2) The time

required for an operation such as parallel addition is constant and does not depend on
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the word length. (3) The calculation of least significant digits may be avoided in

situations where they are not required since the calculation may be perfonned with the

most significant digits first.

The drawbacks of this method are the increased size of the computational elements,

because of the use of signed digits rather than conventional binary digits and also the

hardware overhead required for data conversion from signed digit number

representation, to two's complement representation, and vice versa, [5]

Finnl I.,Ir "nil 'l.i 1{I.'pl I I'a •. HI
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CHAPTER 2 Radix-2Q arithmetic

2.1 Introduction

High degree of pipelining applied to digit-serial systems [17] has been proved to

increase the throughput rate and as a result enhance the performance of the systems.

However, since the initial delay is increasing by the number of pipelining levels, the

chances of delivering an accurate and high-speed clock, are decreasing respectively.

Obviously a solution to this problem would be to reduce the number of pipelining

levels [2].

Recently, a new approach to the design of digit-serial structures has been proposed

based on the radix-2° arithmetic [4,21]. The new radix approach has a number of

advantages which are (1) it has enabled for the first time, the design of functionally

correct digit-serial multipliers without the need of bit-serial or bit-parallel structures

as an initial starting point, (2) it is more general than the bit-level cellular arrays

approach due to the fact that more designs can be derived from the radix approach, (3)

it allows, for the first time the direct application, of all the existing synthesis methods

in designing digit-serial structures, (4) it only specifies the functionality of the basic

cell, and hence any internal architecture, can be used as long as it satisfies the

functionality specification of the cell [2].

The radix- 2° algorithm can be used to find the best trade offbetween cost and time,

I'l'l 11
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for the particular application being considered. Furthermore, the utilisation of a great

number of different architectures becomes available, one for each radix.

2.2 The Radix-2D approach

Radix- 2D arithmetic is based on Radix-2 (binary) arithmetic in general. On radix- 2D

the simplest building block is an AND gated Full Adder. The basic cell radix-

2D arithmetic performs the multiplication of two n-bit digits, ui and vj > then the

products of the multiplication would be added to two other n-bit digits, sin and c in '

The performed computation is described by Eq. 5.

(5)

Equation (y) shows that the result will always be a two-digit number. According to the

algorithm, the number will be split in the most significant digit (MSD) in the carry

digit, cout and the least significant digit (LSD) in the sum digit, SOul'

As a result of the above technique, any bit-level architecture can be used to perform a

radix- 2D algorithm by replacing the bit-level basic block with a radix- 2D basic cell. [2]

'il I' ulr ProjH Rqwrl I' J,' 12



2.3 New Radix-2ft vector inner product algorithms

Let assume that the inner product of vector U = (Uo' UI , ••• , UM-I) and V = (VO '

~"",VM-l) can be obtained by multiplying one pair of numbers (UM, VM) and add

their product to an accumulating result. This can be described at the word level by a

simple recursion of the fonn WM +-WM +UM VM •

Assume that the elements UM and VM are unsigned numbers and can be divided into

K digits of n-bit each. If U im and v;m represent the ith and jth digits of UM and VM

respectively, then UM and VM will be equal to,

K-I

Um = LU;m 2"'
1=0

and
K-l

V. ="v, 2jn
m L..J pn

j=O

(6)

The multiplication Wm =Um Vm can be computed, according to the following

equation,

(7)

The Eq. (7) can be written in a recursive manner using Eq. (5). Because the partial

product urn, vjm is a 2n-bit number, 2n-bit adders are required for the accumulation in

each radix- 2n cell.

As a result, a new set of radix- 2D can be derived ifthese partial products are split into

tre rrost significant digit (MSD), (u im V;m )MiD , amtre least significant digit (LSD), (u imv;m ) LSD •

I'a ,~. J3
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According to that, WM can be rewritten as,

K-l K-l

Wm =L L 2(i+J)" ((uimv jm hlS'D + (uimvjm)LSD)
;=0 j=O

(8)

I
I
I
I
I
I
I
I

The new radix- 2D algorithms are resulting in a more efficient implementation of the

radix-2D cell, by reducing the length of the adders required for the accumulation [2].

2.4 Radix-2D arithmetic cell

This section describes the architecture of the radix- 2D arithmetic (basic) cell used to

compute Eq. 5.

Eq. 5 can be also expressed as

(9)

Multiplying two radix- 2D digits and adding the product to two radix- 2D digits, the

result can be represented by a 2n-bit number and hence a two radix- 2D digits.

The radix- 2D arithmetic cell performs the mUltiplication of two radix- 2D digits and

adds the product to two radix- 2D digits. The output of the cell is two radix- 2n digits

of which the least-significant digit is the carry.

The architecture of the arithmetic cell used can be specified using any design criteria.

One possible architecture is shown in Fig. 6.

",I 'l' I ~
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Figure 6: Architecture ofradix-2D arithmetic cell [4]

The basic cell consists of one n-bit multiplier, one n-bit adder and one 2n-bit adder.

Since that s and c are n-bits, only one n-bit adder is needed to add sand c. A 2n-bit

adder is needed for the second addition since the product uv is 2n-bits.

From the above description it can be easily seen that, when n=1, the resulting

multiplication algorithm is based on binary arithmetic [4].

" I J" I:'
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CHAPTER 3 BIT LEVEL PIPELINED IIR FILTER

3.1 Introduction

A new systolic architecture for high performance IIR digital fihers based on two's

complement number representation is presented for the first time. It is based on digit

serial computations [11-19], in which data words are decomposed into digits of some

number of bits and the computations are carried out one digit at a time. It is shown

that the application of the digit-serial structures to the design of HR digital filters

introduces extra delays in the recursive part of the HR filter, which offers the

possibility ofpipelining ofthe feed back loop. The number of delay elements added in

the recursive part is equal to the number ofdigits used to represent the partial results.

1'1' ' ]0illal

New cell architectures for digit-serial computation that offer a high degree of

pipelining (bit-level pipelining) have been proposed in resent publications [7-19].

These architectures involve a feed forward of the carry digits which was proven

functionally correct using radix- 2n arithmetic. The use of carry feed forward has

solved the major bottleneck of the carry feedback loops inherent in existing digit-

serial designs. Also, the flexibility offered by the radix- 2n approach in choosing the

cell architecture has enabled the design of the basic cells using carry save arithmetic,

which is faster and requires less area. The possibility of bit-level pipelining offers

high-speed realisation of digit-serial systems. It was shown that bit-level pipelined

digit-serial structures are much faster than the fully bit-parallel structures and use

much less hardware [18].
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The bit-level digit-serial HR filter architecture is based on the radix- 2n arithmetic

approach to the realisation of bit-level pipelined digit-serial structures to take full

advantage of the number of delay elements added in the recursive part. In this case,

the number of pipelining levels can be made varied to obtain different trade-offs

between area and speed and is only limited by the number of digits used to represent

partial results. Digit-serial HR filter architectures has several advantages over existing

bit-parallel structures based on two's complement number representation. It can be

pipelined to the sub-digit level to increase the throughput rate. The throughput rate is

much higher than the fully bit parallel case. At the same time, the size of the hardware

required and the number ofI/O pins are reduced greatly. [1]

3.2 Design methodology of digit-serial IIR. fIlter

In this section a systematic design methodology of digit-serial IIR filter is presented

based on the radix- 2n arithmetic and the classical theoretical framework of regular

array architecture synthesis developed by Kung S Y [23]. To show how the digit

serial IlR filter architecture is derived, a first order filter is considered. The direct

form of computation algorithm for a first order HR digital filter at the word level is

defined by

Yk = u k = b1Yk-l (10)

where u k is the nonrecursive computation and is equal to aOx k + a1x k _1 • x k and y k

are the input and output data streams while a o ' a1 and b l are the filter coefficients.

In digit-serial computation the data and coefficient words are subdivided into M

I', '17



digits. It is assumed that the output, Yle' is truncated to M digits before being fed back

into the HR filter.

The computation of the recursive component of the first order IIR filter is given by

V k-1 = blYk-I , where Ykc-I is the truncated output of Yk-I . All the products involved in

the nonrecursive computation can be performed using the same procedure as for the

computation of v k-l . Using the radix- 2n arithmetic, the truncated output Yk-l and the

coefficient bl are represented using M digits and can be written as

M-I
- ,,~ 2ID
Yk-l = LJ Yk-l,i

i~O

and
M-I

bl =L bl,i 2
jo

j~O

(11)

where n is the digit size and Yk-1,i and b l.j represent the ith and jth digits of Yk-I and

bl respectively. Hence, v k-I is given by

M-I M-I

""b ~ 2(i+j)nV k_1 = LJLJ l,jYk-l.i
i=O j=O

(12)

Several radix- 2° multiplication algorithms have been proposed by the authors [11-12]

Which can be used to compute v Ie-]' One of the radix- 20 multiplication algorithms

involves the partitioning of the partial products of the form bl,Sk-I,i into the most

significant digit (bI,jYk-I,;)MSD and the least significant digit (bl,jYk-I,JLSD [18]. Using

these algorithms, Eq. (12) can be rewritten as

M-I M-I

""[Cb - ) 2 (i+j+I)n (b ~ ) 2(i+j)n]
V k-I = L.J LJ 1.jY k-I,i MSD + l.jY k-l,i LSD

j=O j=O

(13)

In the tree dimensional space (k,i,j) shown in Fig. 7, Hj form a family of vertical

planes and represent the significance.

---_._---
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Figure 7: Dependency graph of the first order radix. HR fIlter

From Eq. (13) it can be seen that, the MSDs generated at the plane (i+j) must be

added to any of the LSDs on the next highest significance at the (Hj+ 1) plane. This

implies that either the LSDs are transferred to the next lowest significance or the

MSDs are transferred to the next highest significance.

These transfers can be performed on the same horizontal plane k or from one

horizontal plane to another. In this paper, the former is considered. One way to

Final Ye;H' Project Rt·p( 11
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Eq. (14) is 3(2D :-1) + 3 which is a (n+2)-bit number.

corresponding coefficient word as required.

(15)

I' I ,~ lH

{C.k:ij,Ski) = (aO,jxk)MSD + (aO,j+lxk,JLSD + Sk,i-l,j+l + Ck.,i-l,j

{c kij ,skij} = (a1,jXk-1,.)MSD + (a1,j+l Xk-1.JLSD + Sk,i-l,j+l + CIc,H,j

the MSDs generated in the node (k,i,j). Using this approach, the digits of the recursive

computation, v k-I' can be formed in the following recurrence

by the intersection of the vertical planes, i+j with the horizontal planes, k, and ckjj is

wide by stating the fact that the maximum value of the term on the right hand side of

where Slcij is an n-bit digit and is the sum of the partial product along the lines formed

the partial carry generated at the node (k, i,j). It can be easily shown that c kij is a 2-bit

compute Eq. (13) is to transfer the LSDs generated in the node (k, i,j+1) to be added to

Once the three products involved in Eq. 10 are computed, all their digits with the same

using an equation similar to Eq. (14) to compute each product aOx k and a l Xk_I' vis

The nomecursive computation of the first order llR filter, u k , can be formed by first

significance are accmnulated along the k axis to compute the digits ofthe output y k.

A dependency graph, which represents the above computation, is shown in Fig. 7. It is

words and is such that each digit of one data word interacts with each digit of the

embedded in a three dimensional index space represented by (k,i,j). Each horizontal

plane oftms graph shows the interaction of the digits within each data and coefficient

I
I
I
I
I
I
I
I
I
I
I
I
(

(

I
I
[

[

[



I
I
I
I
I
I
I
I
I
I
I
I
I
I

The horizontal planes in Fig. 7, perform the computation of the three products

aOxk,alxk_1 and bSk-l using radix- 2n arithmetic. The products, a1x k_1 and bSk-1'

are computed on the same horizontal plane, k-l. Their accumulation is performed on

that same plane. The 2M digits of the term (a1xk_1 + bSk-1) are transferred down the

horizontal plane, k, to be added to the 2M digits of the product aOx k with the same

significance to form the digits of the output, Yk' as shown by the vertical plane in Fig.

7. It is worth mentioning that the M digits of the previous truncated output y((-1 ' (i.e.

Yk-I,O' Yk-I,I and Yk-l,2 in Fig. 7) are equal to the M MSDs of Yk-I , (i.e. Yk-I,3' Yk-I,4

and y k-l.5 in Fig. 7).

The dependency graph can be projected in several directions to obtain different digit

serial IIR filters. Considering the projection in direction [IOO]T, the first order digit

serial IIR filter shown in Fig. 8 is obtained, where, each row on each side of the

accumulation path represents a digit-serial multiplier. [1]

Yk,O

Figure 8: First order digit-serial IIR filter obtained by projecting the

dependency graph in Fig. 8 in the direction [0 1 0]

1'1_ ' --



3.3 Pipelined digit-serial IIR iUter:

Another major advantage of the radix methodology for the design of digit-serial

structures is that only the functionality of the basic cell is specified and hence any

internal architecture can be used so long as it satisfies the functionality specification

architecture, has enabled the design of the basic cells using carry save arithmetic

which is faster and requires less area and allows bit-level pipelining [1]

3.4 Bit-level pipelined digit-serial multiplier

The digit-serial multiplier used in the digit-serial IIR filter is similar to that proposed

by the authors in [18]. The basic cell of the digit-serial multiplier can be implemented

using a carry-save array multiplier. The basic cell which computes Eq. (14) is shown

in Fig. 9 for n=4 where the upper indices are used to represent the bit significance. It

uses the fact that the full adders at the boundaries of the carry save array multiplier

have free bit positions. The n sum bits produced on the right hand side of the array

mUltiplier which form the LSD, (br.5\-I,JLSD' are transferred to the next cell on the

right and added with the MSD, (bl,j-IYk-l)MSD' This addition is perfonned using the

empty bit positions on the left-hand side ofthe array multiplier.

In conventional carry save array multipliers, a carry propagate adder is required to add

the carry and sum bits from the lower row of full adders to fonn the carry digit. To

allow bit-level pipelining, these carry and sum bits from the lower boundary of the

array multiplier are summed with the partial sums from the previous cell using two

J I '(.1 ~::
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carry save adders as shown in Fig. 9. The partial result from previous cell on the left

consists of three digits, SI in, S2 in ,S3 in • The digit, Slin' is summed to the two digits

from the lower boundary of the array multiplier using the first CSA to produce two 1

digit outputs. One of the two digits, Slout, obtained from the first CSA is fed to the

next cell on the right. While the second digit is fed down into a second CSA to be

summed with the two digits, S2in and S3 in , coming from the cell on the left. The two

carry bits produced by the two CSAs are summed to form the carry digit, ckij • The

carry digit, ckij ' if fed back into the same cell to be added as shown by Eq. (14). This

is performed using the empty least significant bit position available in the second CSA

as shown Fig. 9. As it can be seen Fig 9, the feedback of cbj will not effect the

pipelining, since the delay within the loop is one FA delay. It should also be noted 1hi:

the dependency graph can be modified to allow c ltij to be fed forward to the next cell.

The addition of the two CSA adders can be compensated by the fact that only n-2

CSAs are required to add the partial products of the multiplication of two n-bit digits.

This is due to the :fuct that the top three n-bit partial products of an n x n

multiplication can be summed using only one n-bit CSA as shown in Fig. 9. The two

least significant bits (LSBs) of the first n-bit partial product, and the LSB of the

second n-bit partial product of an n x n multiplication, are not computed within the

present cell but fed to be summed in the next cell on the right using the two full

adders (FA), occupying the two most significant bit (MSB) positions as shown in Fig.

9. The digits obtained from the last cell on the right of each digit-serial multiplier are

added together using two CSAs to produce two digits. [I]



implies that the M most significant digits (MSDs) of the output have the same

the whole output word is fed back, this will result in a word length growth due to the

I',. ' . :4

SIout

S20ut

S30ut

[R] : n-bit Register

• : I-bit Register

: Input Operands

: Cut set for possible pipelining

multiplier

Figure 9: Cell architecture of the digit-serial multiplier based on an array

(yk_l,i)3 ..

(b1,j+1 Yk-l,i )ho -----... (b )3
Slin -----~b:::::::-d=r:::::::s::::::±::::r::~ct:L,'--- 1.jYk-l.i ISO

°(bl.j+IYk-t,i )LSO----'-

(bt,j+t)O (Yk_t,i)t

& (bt.j+d (Yk-I,;)O (y .)2 ...._
2 k-l.l

(b1.j+1Yk-l.ihsD---......

3.5 Truncation of the output

Assuming that 2M digits are used for the partial results, the application of digit-serial

computation to design llR filter introduces 2M delay cycles in the feed back loop

which can be used for sub-digit pipelining of the proposed architecture. However, if

unity gain, such a wordlenght growth represents a growth in precession, which

recursive nature of the IIR filter. It was reported in [24] that since the filter will have a
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significance as the M digits of the input data, x k' Hence the output, y le' can be

truncated to its m MSDs before it is fed back into the recursive part to prevent any

growth in the wordlenght. Figure 10 shows the timing procedure of an IIR filter,

where x le and y le are the input and output data streams, and Yle is the truncated

output which is fed back to the HR ftlter. It is clear from the above and Fig. 10, that

the truncated output, Yk' has the same significance as the input sample, X k +P which

implies that the M LSD of Yle (which represents the M MSDs of the output, y le)'

must be feedback in a serial fashion at the same time as the digits of the input data

X le+I , as shown in Fig. 10. For the example, the first digit of Yle' which is the (M+1) th

digit of y le' must be fed at the same time as the first digit of x le+1 ' As a result, there

are only M delays between the time in which the M MSDs of y le are computed and

the time they are feedback as the truncated value, Yk' for the computation of the next

output samples. This implies that only M, rather than 2M delay cycles are available in

the feedback loop, which can be used for sub-digit pipelining of the proposed

architecture.

Finally, it should be note that since the computation of each output sample requires M

cycles, the values of the M MSD digits of Yk are set to zeros during the second set of

M cycles in a similar fashion as the input samples x k • This implies that in the second

M cycles of each sample calculation, zeros are fed to both the input and the feedback

path ofthe filter [1].
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Figure 10: Timing procedure ofa digit-serial HR filter

3.6 Systolic digit-serial IIR fIlter structure:

The first order digit-serial HR filter shown in figure 8, can be generalised to any order,

K, by replicating the top two digit-serial multipliers K times. It should be pointed out

that the computation of al Xt.} takes place 2M cycles after the start of the computation

I
I
I
I
l

of ao Xi. This implies that 2M delay elements are required in the recursive and

nonrecursive data paths between the digit-serial multipliers. The accumulation of the

three terms in the fITst order IIR filter can be rearranged so that the ao Xi is first added

to b] ~k-I then added to al Xk-I. In general, the cell of the digit-serial HR filter performs

a, xk.,r+bl+1 ~k.Hl, where 1= O, ...,K-l.

Since the data paths and the partial products path are in opposite directions, M of the

2M delay elements in the data paths can be moved to the partial product path without

Paer ~(,
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affecting the functionality of the filter to obtain a systolic HR filter. A second order

systolic digit-serial IIR filter is shown in figure 11. The IIR filter cells contain two

digit-serial multipliers, one for the recursive and one for the nonrecursive

computations, delay elements and an array of carry save adders (CSAs) for the

accumulation ofthe recursive and nonrecursive components [1].

Yk-I,.i

Figure 11: Block diagram ofa second order digit-serial HR filter

3.7 Accumulation of the recursive and the nonrecursive

computations:

The two digits from the digit-serial multiplier in the nonrecursive part are added to the

two digits from the digit-serial multiplier in the recursive part of the HR filter.

Assuming two digits are propagated from the cell on the right to the cell on the left, a

I



total of six digits are needed to be added using CSAs to produce two output digits.

This is performed using an arrangement of CSAs as shown in figure 12. This

arrangement is chosen to allow bit-level pipelining. The bit-level pipelining can be

achieved by moving two of the M delay elements in the partial result path in between

the two CSAs on the left as shown in figure 12. Since all the inputs to these two CSAs

form the same path as the partial results from cell to ce1~ this rearrangement of the

delay elements should not affect the functionality of the structure. Since the partial

result path contain two digits, a final digit-serial adder is required in the feed back

loop of the HR filter which is shown in cell A in figure 11. To fully exploit the high

degree of pipelining offered by the proposed architecture, a digit-serial bit level

pipelined adder is required. The design of a bit-level pipelined digit-serial adder is

reported in [17-19] and discussed in section 3.11 [1].
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Figure 12: sub--digit pipelining of100 feed back loop ofthe digit-serialllR fiher (n=4, M=32)
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Figure 13: Accumulation ofthe recursive and nonrecursive partial products

3.8 Pipelining of the digit-serial IIR fIlter:

As indicated in section 3.5, applying the digit-serial computation to the design of the

IIR digital filters introduces M delay elements in the feed back loop, which allows M

possible levels of pipelining. The delay elements are used to pipeline the digit-serial

adder as well as the digit-serial multiplier in the recursive computation. To show how

these delay elements are distributed over the digit-serial multiplier and adder, a first

order digit-serial IIR filter is considered. Figure 13 shows details of the recursive

computation part of the first order digit-serial IIR filter for n=4 and M=8. Figure 13

also shows a detailed architecture of the bit-level pipelined digit-serial adder.
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3.9 Pipelining of the digit-serial adder:

The two CRA in the digit-serial pipelined adder as shown in figure 13, require

(n + n) full adder stages, where n is the digit size. However, a close examination of
2

the internal structure of the full adder (FA) and the half adder (HA) shows that the

propagation delay between the carry in and carry out is only that of two NAND gates.

The time delay of the carry ripple digit-serial adder is given by that of the propagation

of the carry bit through the CRA or the propagation through the tree of AND gates.

The propagation delay through the AND gates or that of the carry bit within the CRA

is given by the time delay oftwo EXORs plus that of 2(n+1) NAND gate delays. It is

assumed that the unit time (D) is that of one NAND gate and that one AND gate delay

or one OR gate delay equals two NAND gate delays and that one EXOR gate delay

equals three NAND gates. As a result the total time delay of the carry ripple digit

serial pipelined adder is (3n+5 )D. Now, assuming that the time cycle of a bit-level

pipelined structure is that of an AND gated FA and that a FA has a propagation delay

of six NAND gate delays. Hence, the total number of equivalent AND gated FA

stages within the carry ripple digit-serial pipelined adder is given by n +., [1].
4

3.10 Pipelining of the digit-serial IIR fdter:

In order to achieve bit·level pipelining of the digit serial IIR filter, the number of

delay elements in the feedback loop should be greater or equal to the total number of

the equivalent AND gated FA stages in the digit serial adder plus those in the digit

----------
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serial/parallel multiplier. Bit-level pipelining of the digit-serial multiplier requires n

pipelining levels) where n is the digit size. This implies that to attain bit-level

pipelining of the digit-serial IIR filter) the digit size should satisfy the following

condition,

n S _4(M.:......--_4....:....)

5

where N is the input data word length, N=Mn [1].

3.11 Design of bit-level pipelined digit-serial adder

The conventional digit-serial adder uses a carry propagate adder (CPA) where the last

carry bit is fed back to the same adder which prevents bit-level pipelining. The first

digit-serial bit-level pipelined adder was proposed in [17]. It uses two carry ripple

adders (CRAs) where the carry bit produced by the fust CRA is propagated forward

and added to the next digit output using the second CRA as shown in figure 13. Note

that the only case where carry bit obtained from the second CRA is equal to one is

when the current output of the first CRA is 2D-1, where n is the digit size, and the

carry from the previous digit is one. In this case the carry to the next significant digit

should be set to one. A simple circuit that will propagate the correct carry to the

second CRA is shown in figure 13. The digit from the fust eRA is fed to an-input

AND gate to check whether it is equal to 2D_l. This is performed by using an array of

2-input AND gates arranged in a tree structure as shown in figure 13. The resulting bit

and the carry bit obtained in the previous cycle are fed to 2-input AND gate to check

whether the current output of the first CRA is 2D-1 and the carry from the previous

1',1\:( • .31
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digit is one simultaneously. The output bit and the carry of the current digit are fed to

2-input OR gate to calculate the correct bit to be fed to the second CRA.

As can be seen from figure 6, there is only one feedback loop within the digit-serial

adder. However, the propagation delay within the feedback loop of the carry bit is

equal to one AND gate plus one OR gate delay, and hence pipelining within the loop

is not necessary. The remaining data paths in the digit-serial adder can all be pipelined

to the bit-level since they are moving in the same direction.

The conventional digit-serial adder uses a carry propagate adder (CPA), where the last

carry bit is fed back to the same adder which prevents bit-level pipelining. The first

digit-serial bit-level pipelined adder was proposed in [17]. It uses two carry ripple

adders (CRAs), where the carry bit produced by the first CRA is propagated forward

and added to the next digit output using the second CRA as shown in figure 6. Note

that the only case where carry bit obtained from the second CRA is equal to one is

when the current output of the fust CRA is 2n-1, where n is the digit size, and the

carry from the previous digit is one. In this case the carry to the next significant digit

should be set to one. A simple circuit that will propagate the correct carry to the

second CRA is shown in figure 6. The digit from the first CRA is fed to an-input

AND gate to check whether it is equal to 2°-1. This is performed by using an array of

2-input AND gates arranged in a tree structure as shown in figure 6. The resulting bit

and the carry bit obtained in the previous cycle are fed to 2-input AND gate to check

whether the current output of the first CRA is 2n_1 and the carry from the previous

digit is one simultaneously. The output bit and the carry of the current digit are fed to

2-input OR gate to calculate the correct bit to be fed to the second CRA.
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As can be seen from figure 6, there is only one feedback loop within the digit-serial

adder. However, the propagation delay within the feedback loop of the carry bit is

equal to one AND gate plus one OR gate delay, and hence pipelining within the loop

is not necessary. The remaining data paths in the digit-serial adder can all be pipelined

to the bit-level since they are moving in the same direction [1].
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Chapter 4
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IMLEMENTATION OF 1st ORDER DIGIT-

SERIAL IIR FILTER

4.1 Introduction

In this section the design work followed for the implementation of the digit-serial HR

filter (described in chapter 3) is presented. The digital design of each element of the

digit-serial filter as well as the simulation and testing were performed using View/ogie

ECAD software. Great attention was paid to the design of the fundamental elements

of the filter in order to achieve the minimum used number of gates possible. It should

also mention that the number of bits processed in one clock cycle in the digit-serial

systems is referred to as the digit-size.

4.2 Full Adder design and simulation

One of the requirements set at the beginning of design of the full adder was to use as

less number of gates as possible. Since the design of the digit-serial filter requires a

big number of full adders, keeping the number of gates of each full adder low will resuh in a

much less hardware complexity, improved speedperfunnance, and reduced power consumption.

The design ofthe full adder can be subdivided in the design of a half adder first, since

the first consists oftwo of them. A half adder is a circuit capable of adding two bits. It

has two inputs and two outputs and its block diagram is shown in (Fig. 14).

'ug . J,~



Figure 14: Half adder block diagram

Where A, B are two one-bit numbers and S, C IS the sum and carry inputs

respectively.

The truth table for a half-adder is shown in table 2.

Input Output
A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 2: Truth table ofa binary half adder

From the truth table the following equations for the sum and carry were derived:

S = AB + AB = A tfJ B

C=AB

From equation 16 and 17, equation 18 and 19 were derived as follows:

S = AB + AB = AB . AB = A(AB) .B(AB)

C=AB=AB

(16)

(17)

(18)

(19)

---_._--------------
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Using equation 18 and 19 the half adder can be implemented using NAND gates

(Fig.I5). The schematic capture program, Viewdraw, integrated in Viewlogic

software, was used for the schematic capture.

.....,

•

T•• a..·tt. • .2f" A.csil!'l"" ... ot1l.••

••• "ftt.·U.2.JI NAND m_t:...

••• ·7/31,137 ••. :1

..... Sitl:iI' " ....

Figure 15: Half adder implementation using NAND gates

The inverter, NAND and NOR gates counts for one gate each, the AND and OR gates

for two gates each, and the XOR and XNOR for three gates. According to the above

Fin,,1 Vl'ilr Prnjt."ct Rq}(111
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the design in Fig.15 only uses a total number of 5 gates (5xNAND=5gates), when

compared to an AND/OR implementation which uses 10 gates

(3xAND+lxOR+2xINV=10 gates).

The symbol created out of the schematic in Fig. 15 is shown below (Fig. 16).

B C

A

H A

s

n 't ••

Figure 16: Half adder symbol

A full adder is a circuit capable of adding three bits. It has three inputs and two

outputs. The block diagram of a full adder is shown in Fig. 17.

~::.

Figure 17: Full adder block diagram

Where C i is the carry-in from the previous addition and Co is the carry-out to the

next addition.

Final Yeat' Project Repon



The truth table ofa full adder circuit is shown in table 3.

Input Output
A B Cj C Co
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 3: Truth table of a binary full adder

A full adder can be formed using two half adders (Fig. 18).

kctrunic rn~i ('(.'do::;

A ----l~

HA
B ----l~

ci --'

HA
1-----------1. S

Figure 18: Block diagram of full adder comprising oftwo half adders

At this stage the full adder could be implemented, but this would result in a total of 12

gates. In order to reduce the total number ofgates required further, the OR gate in Fig.

20 a can be modelled using NAND gates as follows

A

~ ==D- A+B l' <>
B
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A-B =A+B
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Figure 20: Full adder symbol

In order to simulate the full adder circuit, a simulation file (CIvID file) was formed.

This was based according to the full adder truth table (Table 3). The CMD :file was

executed through the Viewsirn program provided by View/ogie software. The CMD

file for the full adder is shown in Table 4.

ECHO FINAL YEAR PROJECT
ECHO Digital Filter Implementation on FPGA
ECHO Full adder simulation file
ECHO 16/11/97
ECHO By K.Deliparaschos
I
RESTART
I
PAT CIN 0 1 0 1 0 1 0 1
PAT BOO 1 1 0 0 1 1
PAT A 0 0 0 0 1 1 1 1
I

WAVE FA NAND.WFM A B CIN S CO
I
CYCLE 20

Table 4: Full adder ClvID file

The simulation results were plotted using Viewtrace program part of View/ogie

software. The simulation results are shown in Fig. 21.
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From the simulation results it is shown that the full adder functions properly. This can

be also verified if the simulation results are compared with the truth table (Table c).

The two glitches (20Opsec) appearing in the sum output are not considered to be

critical.

6

D

9
Q.l,

1.1-----;~--l

.a·
I

co

Time (Se<;onds)

Figure 21: Full adder simulation results

------------
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4.3 AND gated FuU Adder design

The implementation of the radix-2n arithmetic cell (Fig. 6) could be performed by an

AND gated full adder. The AND gated full adder consists of an AND gate cormected

to the most significant input of a full adder. In the present situation, the full adder

designed in section 5.2 could be used.

Figure 22 shows the implementation of the AND gated full adder

. .._-..,----

Figure 22: AND gated Full adder schematic

Where AO and A1 represent Vj and Dj of the radix- 2n arithmetic cell respectively in

Fig. 6. The total number ofgates required is 12.
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The design of Fig. 22 was created as a symbol for later use in the implementation of

the filter. Fig 23 shows the symbol for the AND gated full adder.

A 1

co· 5

Figure 23: And gated full adder symbol

The AND gated full adder was not simulated individually for obvious reasons.

4.4 Carry Save Adder design

To add a sequence ofnumbers, several full adders are connected. This can be

achieved in more than one ways, remembering that a full adder receives three inputs

(3-bit) of equal and produces two outputs.

(a) A sum ofthe same significance as the inputs

(b) A carry ofdouble the significance of the inputs.

The carry save adder (CSA) shown on the next page consists of four

full adders (Fig. 24.)

---------
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Figure 24: CSA schematic

Figure 25 illustrates the symbol created for the carry save adder.

Figure 25: CSA symbol
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4.5 4-bit Register design

The most significant digits of the multiplication coming out from the CSAs in the

digit serial multiplier cell need to be delayed by one cycle. Each digit consists of four

bits, hence a 4-bit register with parallel input and parallel output is required to delay

them by one cycle. As all ofthe four flip-flops need to be operating at the same time,

their clock inputs need to be connected together as well as their clock enable and clear

inputs.

In order to design the 4-bit register a D flip-flop with clock enable and asynchronous

clear (FDCE) was chosen from the XC3000 library in Viewlogic software. Table 5

shows the transition table ofFDCE.

In IlUts Outputs
CLR CE D C Q

1 X X X 0
0 0 X X No Change
0 1 1 t 1
0 1 0 t 0

Table 5: Transition table ofFDCE

When clock enable (CE) is High, and asynchronous clear (CLR) is Low, the data on

the data input (D) of FDCE is transferred to the corresponding data output (Q) during

the Low-to-High clock transition. When CLR is High, it overrides all other inputs and

resets the data output (Q) Low. When CE is Low, clock transitions are ignored. The

schematic of the 4-Bit register is shown on the page overleaf (Fig. 26).
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Figu re 26: 4-Bit Register schematic

Where DO) ... )D3 and 00, ... ,03 are the inputs and outputs of the register respectively.

CE and CLR are the clock enable and clear inputs and C is the clock input of the

register.

The symbol created for the 4-bit register circuit is shown in Fig. 27 on next page.
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Figure 27: 4-Bit Register symbol

4.6 Digit-Serial Multiplier Design and Simulation

The digit-serial multiplier was implemented according to figure 9 in section 3 using

the symbols previously created in this chapter (Fig. 28).

The multiplicand and multiplier inputs were labelled B3, ... ,BO and Y3, ... ,YO

respectively (0 indicates the LSB). Outputs BYOOO, BYOOl, BYOIO, ... BY003

represent the LSDs of the multiplication process to be fed in to BYINOO, BYIN01,

BYJNlO...BYIN03 inputs in the following cell on the right. Outputs BYIOOl and

BYO10 are not computed in the present cell but sent to be computed to the empty bit

position on the following cell on the right (BYINOl, BYINIO inputs). The MSDs of

the multiplication are presented in SI0[3:0], ... S30[2:0] output buses delayed by on

cycle to be fed in the following cell on the right (SIIN[3:0], ... ,S3IN[2:0] input

busses). Output busses S10[3:0], ... ,S30[2:0] need to added together to form the

MSDs of the multiplication. Inputs CE, CLR, eLK represent the clock enable, clear

input, and clock input ofthe registers respectively.
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Figure 28: Digit-Serial multiplier
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A symbol created for the schematic ofthe digit-serial multiplier cell to be used later in

the implementation (Fig. 29).

9 Y DO 0

un~
BYDO!l

911t0
Ug~
S1D ;)
HDO

HU-

Figure 29: Digit-Serial multiplier symbol

In order to simulate the digit-serial multiplier a CMD file was written and executed

(Table 6). Two arbitrary numbers were chosen to be multiplied together in order to

make sure that the digit-serial multiplier produces the correct result. The multiplicand

was set equal t011 10 or 10112 and the multiplier equal to 1310 or 11012, The product

MSD LSD
...--"--.r'""""""'---I

ofthose two numbers is 14310 or 100011112. All the other inputs at the left hand side

of the cell were set to zero since the multiplier was tested on its own without any data

coming through from previous cells. The clear input set to 50ns in order to reset the

registers before the multiplication process begins.
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Below is the CMD file for the digit-serial multiplier

ECHO FINAL YEAR PROJECT
ECHO Digital Filter Implementation on FPGA
ECHO Digit-Serial Multiplier Simulation File
ECHO 12/12/97
ECHO BY K.Deliparaschos
I
RESTART
VECTOR SlIN SlIN[3:0)
VECTOR S2IN S2IN[3:0)
VECTOR S3IN S3IN[2:0)
I
VECTOR SI Sl[3:0)
VECTOR S2 S2[3:0)
VECTOR S3 S3[2:0]
I
VECTOR S10 S10[3:0)
VECTOR S20 S20[3:0]
VECTOR 830 S30[2:0]
I
WFM CE @ONS=1
WFM CLR @ONS=l @50NS=O
I

WFM BYINOO @O=Q
WFM BYINOl @O=O
WFM BYINIO @O=O
WFM BYIN02 @O=O
WFM BYIN03 @O=O
I
IMULTIPLICAND

WFM BO @O=l
WFM B1 @O=O
WFM B2 @O=l
WFM B3 @O=l
I
IMULTIPLIER

WFM YO @O=l
WFM Yl @O=l
WFM Y2 @O=O
WFM Y3 @O=l
I
PATTERN SlIN O\H O\H O\H O\H O\H O\H O\H O\H
PATTERN S2IN O\H O\H O\H O\H O\H O\H O\H O\H
PATTERN S3IN O\H O\H O\H O\H O\H O\H O\H O\H
I
CLOCK CLK 0 1
WAVE MOL REG.WEM ern CI.K BYOOO EYOOl BYOlO BYOO2 BYOO3 SI S2 S3 SlO 520 530
I
CYCLE 8

Table 6: Digit-Serial multiplier CMD file

" '.''''
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The sllnulation results for the digit-serial multiplier are shown underneath (Fig. 30).

The present simulation could also prove the correct functionality of the 4-bit register

designed in section 4.5.

BVOOO

B"rOOI

D -
(. J.

l.Su

i-
1U

-!--'"----7-----. --

,.
o

sOOn·

g. I-----,---;--------.-----.:..-----..--;..--,.---,----.,....---~
BYOO3 i

I

SI

S20

Time .(Seconds)

Figure 30: Digit-Serial multiplier simulation results

By inspecting the simulation results, the LSD of the multiplication result was checked

to be correct (1111J, after adding together BYOOl and BYOlO bits. In order to

check the MSD as wel~ output busses 810, S20, S30 should be added together.

Therefore MSD=S1+S2+83 or MSD=416 +416 +0=816 =1000 2 , which is the correct

result. The same procedure was repeated for different couples of arbitrary chosen

number and in all cases the digit-serial multiplier was found to function properly.
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4.7 Carry Ripple Adder Design

The present carry ripple adder (CRA) consists of four full adders and is shown in Fig

31. The carry-out bit of the first full adder on the right is propagating to the next full

adder, to be added with the other two bits and so on.

••••n'.·

•

I, ••• I.T' r .•• ll ... ,. •• CII ....

--~

Figure 31: eRA schematic
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Below is shown the symbol created for the CRA (Fig. 32)

A3 B

2

CAA

lA

1

C B 0 AO

50
I

Figure 32: CRA symbol

4.8 16x16 bit Digit-Serial Multiplier with Digit-Serial

Adder Design and Simulation

Table 7 on the following page demonstrates the manual multiplication of two 16-bit

numbers producing a 32-bit result.
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biS bi4 bi3 bi2 bii bi0 b9 b8 b7 b6 b5 b4 b3 b2 bi bO
yiS - 114 - y13 y12 -01 y1O--y9 y8 yi' y6 - y5 y4 - Y3 -'Y2 yi yO

!>1fS> -b14a>- bfiif bl:W b1ttf61oo' b9yO- hayO b7yO"b6yObSyO--'b4yO -'biyO b2yO hlyO bOyO
bl5J1 b1otf1 b1~ ~ b11y1 b'K¥I b9y1 bayt b7y1 b6y1 b5y1 My1 b3y1 b2y1 bly1 bOy1

b1!¥! b1<V2 b13,Q b1~ b11Y2 '~ b9y2 b8y2 b7y2b6y2 b5y2 My2 b3y2 b2y2 b1y2 boy2
b15,t3 b1ot,6 b~ b1~ b1~ b1lf3 b9y3 b8y3 b7y3 b6y3 b5y3 b4y3 b3y3 b2y3 bly3 bOy3

b15,4 b1¥ b1~ bj~ b11)4 ti1¥ tl9Y4 bBy4 b7y4 b6y4 b5y4 My4b3y4b2Y4 b1y4 boY4 '-
b1¥ bl+,6 bl¥ b1¥ bl1)6 bl(¥i b9y5 bBy5 b7y5 b6yS b5yS b4y5 b3yS b2yS bly5 bOyS

b1&,6 b1ot,6 b1i,6 ~ bl1}6 b~ b9y6 b8y6 b7y6 b6y6 b5y6 b4y6 b3yB b2y6 b1y6 bOy6-
b15t7 b~7 b1:tj7 b1~7 b11y7 b1(¥7 b9y7 b8y7 b7y7 b6y7 b5y7 b4y7 b3y7 b'l:j7 b1y7 bOy7

b1&,6-b1o\6 b~b12;6-' b11)6 b'1Oi b9y8 b8y8 b7y8 b6Y8 b5yB b4y8 b3ySb2y8 b1y8 bOY8
b1¥! b1ctt9 bt¥l b~ b11)9 b1~ b9y9 bay9 b7y9 b6y9 b5y9 b4y9 b3y9 b2y9 b1y9 bOy9

bfyIl ~ btVO b12ID b11yD bIlj(I li¥10 ItlJ10 I)Jy1O ~ If¥'O ~ ~ lPt10 1*f10 11¥10
b1!,y11 b1¥1 ~1 bf#11 b11y11 ~1 l:9f11 t8f11 li)t11 t8f11 l1¥11 lJ\I11 b¥1 ~t 1*f11 11}f11

'6ly(l ~ ~ bf#12 tiI~ ~ !ilj12 t6jt2 ~ bJj1f l1¥12-- btjf2 b¥2 ~ b1y12 11¥l2
llr¥G ~ bt¥3 bt¥3 b11y13 ~ 19f13 t8f13 ~ t8f13 IfIf13 ~ ~ ~ b1y13 I1}f13

b1';f14b1o\'14~Wt14bttt14~t9f14l8j14bY14l8j14I:f¥14btf14~~b1y1411}f14

bf¥15 b»t5 ~ bf#15 b1ty6 ~ 1ilt15 t8f15 IYy15 11\'15 tf¥15 ~ b¥5 ~ b1y15 l1¥I5

P3i P30 P29 P28 P27 P26 P25 P24 P23 P22 P2i P20 Pi9 PiS Pi7 P16 PiS Pi4 Pi3 Pi2 Pii PiO pg P8 P7 P6 P5 P4 P3 P2 Pi PO

Table 7: Manual multiplication of two 16-bit words
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At this stage four digit-serial multiplier cells (discussed previously in section 4.6, and

shown in Fig. 28) were cascaded together in order to fonn a 16x16 bit digit-serial

multiplier (Fig. 33).

,.----=....-- -

XLNX

Figure 33: 16x16 bit Digit-Serial multiplier

The LSDs and MSDs produced from the two 16-bit multiplied numbers need to be

added (every cycle) to give the product of the multiplicatio~ which is a 32-bit result.

The result of the addition must be 4-bit long at each cycle, for 8 cycles (8x4-bit = 32-

bit). The addition discussed above could be obtained with a digit-serial adder. The last

could be fonned by a network of three CSAs and one CRA appropriately connected.
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The block diagram underneath illustrates the suggested method to form the digit-serial

adder (Fig. 34).

810[3:0] 810[3:0] S10[3:0]

0,0,L2,0 L4,L3,Ll,LO

+-- 3xHA, lxFA
(for L2)

03 02 01 00

Figure 34: Digit-Serial Adder block diagram

The third CSA starting from the top of the diagram, only requires three HAs and one

FA instead of four FAs. The reason that only one FA is required is because only one

spare bit position is needed, for L2 and since the other three bits are always zero (not

need to be added) HAs can be used instead. The carry output of the most significant

FA in the CSA must be delayed by one cycle, before fed to least significant FA in the

CSA underneath and so on. Finally the most significant carry output of the CRA

}- in"1 . 'Hr I'r(lj~'U 'qJ I
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should be delayed by one cycle and fed back to the least significant FA. Since a

number of four registers are required, a 4-bit register could be used.

A 4-bit register was connected at the outputs (SO, ... ,S3) of the digit-serial adder, in

order to allow the multiplier time to finish the computation at each cycle.

Figure 35 on page overleaf shows the 16xl6 bit digit-serial multiplier together with

the digit-serial adder, previously described.
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Figure 35: 16x16 bit Digit-Serial multiplier and Digit-Serial Adder
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The digit-serial multiplier needs 8 cycles in order to compute a 16x16 bit = 32-bit

result. The serial data (16-bit length) are divided to 4 digits of 4-bit each digit. After

the first 4 cycles (l6-bit result out of 32-bit), Os must be fed to the serial input (l6-bit

length) for the next 4 cycles, to allow the multiplier to finish the computation.

The following diagram illustrates the structure of parallel data (multiplicand) and

serial data (multiplier) fed in to the digit-serial multiplier (Table 8).

Parallel Data
(Multiplicand)

(MSD) B3

IB31mlBllBOI
MSB

B2

I B3 ! B2 I Bl I BO I
BI

I B3 I B2 I BI I BO I
BO (LSD)

IIDlmlBlIBOI
LSB

... ~
4-bit

Serial Data
(Multiplier)

To Digit-Serial multiplier

2nd Cycle 3rd Cycle

YI Y2

1Y31Y2IYlIYOI 1Y31Y2!Yl!YOI

1st Cycle

(LSD) YO

IY3 IY2 IYl I yo I
LSB

8th Cycle

Y3

! 0 I 0 ! 0 ! 0

7th Cycle

Y2

o ! 0 IQ! 0

16-bit

6th Cycle

YI

I 0 ! 0 I 0 I 0

4th Cycle

Y3 (MSD)

IY3 I Y2 I YI I YO I
MSB

5th Cycle

YO

I 0 I 0 I 0 0 I
... •4-bit

~

Table 8: Structure diagram ofParallel and Serial data
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In order to be able to simulate the digit-serial multiplier (Fig. 35) a CNID file was

written (Table 9). Again two arbitrary 16-bit numbers were chosen for the

multiplicand and the multiplier. The multiplicand (B) was set to 4512310 or

10110000010000112 and the (Y) multiplier was set to 5700010 or

1101111 01 0101000 . The product of the current multiplication is 257201100010 or'---.--'............--.............--. ............--.
D E A 8 2

10011001010011011100010111111000
'---.--'~'-v--'~""""""--'''''''''''''--''---.--'''''''''''''--'

9 9 4 DC 5 F 82

ECHO FINAL YEAR PROJECT
ECHO Digital Filter Implementation on FPGA
ECHO 16x16 bit digit-serial multiplier+adder Simulation File
ECHO 26/2/97
ECHO BY K.Deliparaschos
I
RESTART
VECTOR SlIN SlIN[3:0J
VECTOR S2IN S2IN[3:0]
VECTOR S3IN S3IN[2:0]
I

VECTOR S10 310[3:0]
VECTOR S20 520[3:0]
VECTOR 830 530[2:0]
I
VECTOR Y Y[3:0]
I

CLOCK CLK 0 1
!

WFM CE @ONS=l
WFM CLR @ONS=l @50N8=0
I

WFM BYINOO @O=O
WFM BYIN01 @O=O
WFM BYINI0 @O=O
WFM BYIN02 @O=O
WFM BYIN03 @O=O
I
IMULTIPLICAND

WFM BO @0=1
WFM B1 @0=1
WFM B2 @O=O
WFM B3 @O=O
WFM B4 @O=O
WFM B5 @O=O
WFM B6 @0=1
WFM B7 @O=O
WFM B8 @O=O
WFM B9 @O=O
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WFM B10 @O=O
WFM B11 @O=O
WFM B12 @O=l
WFM 813 @0=1
WFM B14 @O=O
WFM B15 @O=l
I
IMULTIPLIER
PATTERN Y 8\H A\H E\H D\H O\H O\H O\H O\H
I
PATTERN SlIN O\H O\H O\H O\H O\H O\H O\H O\H
PATTERN 82IN O\H O\H O\H O\H O\H O\H O\H O\H
PATTERN 83IN O\H O\H O\H O\H O\H O\H O\H O\H
I

WAVE 16bitaa.wfm CLR CLK YO Y1 Y2 Y3 810 320 830 00 01 02 03
I
CYCLE 8

Table 9: ClvID file for 16x16 bit Digit-Serial multiplier

Below are the resuhs occmed from the sirnuJationofthe 16x16 bit digit-serial multiplier (Fig. 36).

Vl

o
i

sw y
t
a
I

00

Q1

02

o

. 1" Cycle
Time (Senonds)

2nd Cycle 3rd Cycle 41h Cycle 5th Cycle gthCycle

Figure 36: Simulation result for the 16x16 bit Digit-Serial multiplier
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The 100 ns of delay at the outputs, 00, ... ,04 of the digit-serial multiplier are caused

due to the existence of the 4-bit register at the output. From the simulation results in

Fig. 36, is shown that the correct result of the multiplication were obtained after 8

cycles. The same method of simulation was carried out a number of times using

different pairs ofnumbers each time.

Finally the schematic offigure 35 was created as a symbol for later use (Fig. 37)

:16X:l6 b2't

O:i.a::i-t-S .. r::iZlJ.
Mu.1-t:ip.1::i .. ,.

00 
01
02
In --

c

Figure 37: 16x16 bit digit-serial multiplier with digit-serial adder symbol

Where BO, ... ,BI5 are the parallel data inputs (multiplicand), YO, ... ,Y3 are the serial

data inputs (multiplier) and 00, ... ,03 are the outputs (in serial form).
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4.9 16x16 bit Digit-Serial Multiplier and Digit-Serial Adder with

Shift Registers Design and Simulation

If the 16x16 bit digit-serial multiplier is to be downloaded on an FPGA and tested in

real time, some sort ofhardware is needed at the input to feed the serial data in, and at

the output to store the result of the multiplication after this is available (8 cycles of

computation time). Obviously this was not required till now, since a ClvID file was

used and the simulation was performed through Viewlogic software.

The serial data input can be created by using a 16-bit parallel-in to 4-bit serial-out

shift register. The recommended method has the advantage of allowing to change the

multiplier number (l6-bit therefore 16 pins required) by just altering pins. At the

output of the digit-serial multiplier a 4-bit serial-in to 16-bit parallel-out shift register

could be used, to store the results of computation each cycle for 8 cycles. After the

results have been stored, can be checked by simply observing the outputs of the

register (using an oscilloscope).

4.9.1 Parallel-in to Serial-out Shift Register Design

The parallel-in to serial-out shift register is using four 8:1 multiplexers (ULM) having

the four MSB front inputs connected to ground (part number M8_1E available from

Xilinx XC3000 library). This arrangement enables Os to be fed in to the serial input of

the digit-serial multiplier after the first 4 cycles have finished. The control lines of the

ULMs are connected to a 4-bit binary counter, which is utilised as a 3-bit counter
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(part number CB4CE available fromXilinx XC3000 library). The counter is clocked at

each cycle to produce the serial data. The block diagram ofthe parallel-in to serial-out

shift register described above is shown in figure 38 below.

YYO Isb YY1
YV4 YV6 ---J
YY8 MUX YVlO --J MUXYO Y2YY12

8:1
YVI4

8:1

ms

- -- -

YYI YY3

YVS YY7

YY9 MUX . YYIl---l MUXYI YVl5 Y3
YV13 8:1 8:1

" 3-bitBus

4-bit
Counter

eLK

Figure 38: Parallel-in to Serial-out shift register block diagram

During the first cycle the inputs YYO, ... ,YY3 are selected to fonn the LSD which

appears at the outputs YO, ... ,Y3 of the ULMs. The same procedure is repeated for all

8 cycles.
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4.9.2 Serial-in to Parallel-out Shift Register Design

The serial-in to parallel-out shift register must be able to store one digit (4-bit) every

cycle for a total of 8 cycles (Fig. 39). This could be simply achieved by using a

network of eight 4-bit registers (section 4.5) to store the data after each cycle. The

LSD of the multiplication is first stored in the most significant 4-bit register. When

the next digit arrives replaces the previous one, which is shifted from left to right to

the next 4-bit register and so on.

07[3:0]

(MSD)

From 16x16 bit
Digit-Serial multiplier

I 06[3:0] 00[3:0]

(LSD)

L.- ----' _ _ .._._._ .

())

01
02
03

CLK

4-bit
Register

CLK

4-bit
Register

::::::::::::::::::::::::::::::::::::::::::::-, 4-bit
Register

Figure 39: Serial-in to Parallel-out shift register block diagram

Finally the 16x16 bit digit-serial multiplier together with the shift registers (described

in sections 4.8.1 and 4.8.2) was captured using Viewdrawand is shown on next page

(Fig. 40).
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A CMD fIle (Table 10) was written to define the numbers under multiplication. The

multiplicand (B) was set to 4512310 or 10110000010000112 and the (Y) multiplier

was set to 5700010 or 1101111010101000 . The product of the current multiplication
-------~~~

D E A 8 2

is 257201100010 or 10011001010011011100010111111000
~'---v--'~'---v--'~~'---v--'~

994 Des F 82

ECHO FINAL YEAR PROJECT
ECHO Digital Filter Implementation on FPGA
ECHO 16X16 bit digit-serial multiplier
ECHO FPGA version with shift registers
ECHO 13/3/98
ECHO by K.DELIPARASCHOS
I
RESTART
VECTOR 00 00[3:0]
VECTOR 01 01[3:0]
VECTOR 02 02(3:0)
VECTOR 03 03[3:0]
VECTOR 04 04[3:0]
VECTOR 05 05[3:0]
VECTOR 06 06[3:0]
VECTOR 07 07(3:0]
I
WFM CE @ONS=l
WFM CLR @ONS=l lONS=O
I
!MULTIPLIER
WFM YYO @O=O
WPM YYl @O=O
WFM YY2 @O=O
WFM YY3 @0-1
I
WPM YY4 @O=O
WFM YY5 @0=1
WFM YY6 @O=O
WFM YY7 @O=l
I

WFM YY8 @O=O
WFM YY9 @0=1
WFM YYlO @O=1
WPM YYll @0=1
I

WPM YYl2 @O=l
WFM YY13 @O=O
WFM YYl4 @0=1
WPM YY1S @O=l
I
IMULTIPLICAND
WFM BO @O=l
WPM Bl @O=l
WFM B2 @O=O

I'll 'l' «("



WFM B3 @O=O
WFM B4 @O=O
WFM B5 @O=O
WFM B6 @O=l
WFM B7 @O=O
WFM B8 @O=O
WFM B9 @O=O
WFM BI0 @O=O
WFM B11 @O=O
WFM 812 @O=l
WFM B13 @O=l
WFM 814 @O=O
WFM B15 @O=l
I
CLOCK CLK 0 1
WAVE FPGAIMP2.WFM CLR CLK 07 06 05 04 03 02 01 00
CYCLE 8

Table 10: CMD file for 16x16 bit Digit-Serial multiplier with shift registers

The results of the simulation (plotted in Viewtrace) appear underneath in Fig. 41.

cI 0 '

I'

I
!

,.,.......-----!'-----'.....---'---1---'-----I'----'----+-~--.,-~-.xr--~----,b
!
I

01

01

03

00

o tu 1~__._

Time (Seconds)

200 Cycle 3n1 Cycle 4th Cycle 5'b Cycle "f' Cycle

Figure 41: Simulation results for 16x16 bit digit-serial multiplier with shift registers
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The simulation in Fig. 41 produced the correct resuhs. The same procedure was

carried out again with different pair of numbers, and produced satisfied results in all

cases.

4.10 1~order Digit-8erialllRFilter])eggnand Simulation

The block diagram of figure 11 was reduced down from a 2nd order to a 1st order digit-

serial HR filter. The new block diagram of the 1st order digit-serial HR filter is

illustrated below (Fig. 42).

Digit-Serial 1
Multiplier a

MD .....-,.j

MD 1----.......

r----------------'r--------------,
I I, ,

MD JI,

"I,aq I
I'
I'
1 'I J

I,
I,
r II,

b~ I

1 'I I
,I
1I

Yk-l,i I , I I
~ J~ ~

Cell A CellB

I M D I :M delays I CSA I :Carry Save Adders

Figure 42: Block diagram ofa 1st order digit-serial IIR filter (M=4)

Before the 1st order filter can be implemented and tested, the CSAs array and bit-level

pipelined digit-serial adder should be implemented.

}i~1l1l1 \ ~'.~' 'roi'l ({fillll t
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Carry Save Adders Array Design

The carry save adders (CSAs) array shown in the block diagram of Fig. 43 was

implemented according to Fig.II, previously discussed in chapter 3.

1 !CSA CSA

Nonrecursive
computation Recursive

computation

CSA

Outputs to be fed in to hit
~ level pipelined digit-serial

adder

Figure 43: Block diagram ofCSAs array

The schematic of the CSAs array was captured using Viewdraw (Fig.42).

Where,

NS[3:0], NC[3:0]: Nomecursive sum and carry 4-bit input bus

RS[3:0], RC[3:0]: Recursive sum and carry 4-bit input bus

FS[3:0], FC[3:0]: Sum and Carry 4-bit input bus from following cells

BS[3:0], BC[3:]: Sum and Carry 4-bit bus

CO, ... ,C3 and SO, ... ,S3: Carry and sum output

A 4-bit register was used to delay the most significant carry bit, before fed to the next CSA

Fin ,I ('.If". ut .'qltlrl 1'.1" . ':'0
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Figure 44: Schematic ofCSAs array

The CSAs array was created as a symbol for later use (Fig. 45).

C-Brr)'
5.va
Addlrr

soco
H
H
&3
ell

Figure 45: Symbol for CSAs array
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Bit-levelPipelined Digit-8erialAdderDesign and Simulation

The schematic of the bit-level pipelined digit serial adder was implemented according to

Fig. 12 in chapter 3 and is shown underneath (Fig. 46).

o ill.,-
£XlJNX

....... , ' 1.'11 .. 1,. •• '1,.

Where,

.".'IU.fI/ •

..~ u •• · •

Figure 46: Bit-level pipelined digit-serial adder

CO, ,C3 and SO, ... ,S3: Carry and sum inputs (from CSAs array).

00, ,03: Outputs (addition result)

TO, ,T3: Truncated 00, ... ,03 outputs

Cl: Carry input

CNT: Control input for truncation of the output word

Final "'\ i.';Ir Prnject Ht·OOl·'



The schematic of the bit-level pipelined digit-serial adder was created as symbol to be used

later in the implementation (Fig. 47).

50
CO
S 1
C1
52
C2
53
C3

Cl

eNT

Bit-level
?ipelill.d .

Oisit-Ser1s1
AddlH'

00
01
02
03-

TOO
TD1-
T02
T03

eLK
L

Figure 47: Bit-level pipelined digit-serial adder symbol

The bit-level pipelined digit-serial adder was simulated and tested according to the

following way. It was connected to CSAs array part ofthe 16x16 bit digit-serial multiplier

(Fig. 35) after the CRA had been removed. The multiplicand (B) was set to 4512310 or

10110000010000112 and the (Y) multiplier was set to 5700010 or

1101111010101000 . The product of the current multiplication is 257201100010 or
'--v-'~'---''-v-'

D E A 8 2

100II 00 10 100110 11 10001011 11 11000 and the truncated output is 257196032010 or
'-v-''--v-''-v---''-v-''-v-''-v-''-v-''-v-'

9 9 4 Des F 82

10011001010011010000000000000000 . The CMD file written for the simulation is
'--v-''-v-''-v---''-v-'~'-v---''--v----''-v---'

9 9 4 D 00002

presented in Table 11. The CNT input was set to 0 for the fIrst 4 cycles in order to

truncate the LSDs and to 1 for the rest. The cr was set to O.

Final '"car Projcct R~ IHlIi
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S30 00 01 02 03 TOO TOl

on FPGA
digit-serial adder Simulation File

@O=O
@O=O
@O=O
@O=O
@O=O

FINAL YEAR PROJECT
Digital Filter Implementation
16x16 bit Bit-level pipelined
26/2/97
BY K.Deliparaschos

BYINOO
BYIN01
BYINIO
BYIN02
BYIN03

ECHO
ECHO
ECHO
ECHO
ECHO
I
RESTART
VECTOR SlIN SlIN[3:0J
VECTOR S2IN S2IN[3:0J
VECTOR S3IN S3IN[2:0]
VECTOR S10 S10[3:0J
VECTOR S20 320[3:0J
VECTOR S30 330[2:0J
VECTOR Y Y[3:0]
I
CLOCK CLK 0 1
I
WFM CE @ONS=l
WFM CLR @ONS=l @5NS=O
I

WFM
WFM
WFM
WFM
WFM
I
IMULTIPLICAND

WFM BO @0=1
WFM Bl @0=1
WFM B2 @O=O
WFM B3 @O=O
WFM B4 @O=O
WFM B5 @O=O
WFM B6 @O=1
WFM B7 @O=O
WFM B8 @O=O
WFM B9 @O=O
WFM B10 @O=O
WFM Bll @O=O
WFM B12 @O=l
WFM B13 @O=l
WFM B14 @O=O
WFM B15 @O=l
I
WFM Cl @O=O
I
IMULTIPLIER
I
PATTERN CNT 0 0 0 0 1 1 1 1
PATTERN Y 8\H A\H E\H D\H O\H O\H O\H O\H
PATTERN SlIN O\H O\H O\H O\H O\H O\H O\H O\H
PATTERN S2IN O\H O\H O\H O\H O\H O\H O\H O\H
PATTERN S3IN O\H O\H O\H O\H O\H O\H O\H O\H
WAVE DSATEST.wfm CLR CLK YO Yl Y2 Y3 S10 S20
T02 T03
CYCLE 9

Table 11: Bit-level pipelined digit-serial adder CMD file

I' '" 4
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The results obtained from the simulation are presented below (Fig. 48).

1.5u1uSOOno

,---+--+--7--.-",-----,
I----t--~.----~------!--'----........,J

Cl!(

VO

.1

Y2

S10 0

0
i

s:J)9
I

00 t
a

01 I

Time (Seconds)

Figure 48: Simulation results of the bit-level pipelined digit-serial adder

The correct results were obtained and hence the functionality of the bit~leve1 digit

serial adder was proven to be correct.

Finally the 1st order digit-serial filter was implemented according to the block diagram

in Fig. 42. In order to reduce the hardware complexity and since only the functionality

of the filter needs to be proved, the a1 coefficients were set to 0 so that the 16x16 bit

digit-serial multiplier could be omitted. The schematic of the filter is illustrated on

next page (Fig. 49).
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For the recursive computation (8-16 cycles):

For the recursive computation (16-24 cycles):

For the nonrecursive computation (0-8 cycles):

J ho HI ng } 0 )" I t 0 le gm I mg

1011 000001000011

1001 1001 0100 1101

0110 1001 1000 1101 0000 1111 00100111

0110 1001 1000 1101 0000 0000 0000 0000

1011 0000 0100 0011

Coefficients ao, b1 :

Input (truncated olp

carried forward):

Output Yk:

Truncated olp ofyk:

Coefficients ao, b1 : 1011 0000 0100 0011

Inputxk : 1101 1110 1010 1000

Output Yk: 1001 1001 0100 1101 11000101 1111 1000

Truncated olp OfYk: 1001 1001 0100 1101 0000000000000000

Coefficients ao, b1 :

assigned with the same number, 4512310 or 10110000010000112 , The input, x k was

The filter was simulated for 24 cycles. Both ao and b1 coefficients of the filter were

to O. The results for the 24 cycles were calculated before the simulation in order to be

set to 5700010 or 1101111010101000 for the fITst 8 cycles and for the remaining cycles
-........,.....~ '---.,.---J '---.,.---J

D E A 8 2

compared with the simulation results afterwards.

!
[

[

[

[

I
I
I
I
I
I
I
I
I
[

I
Input (truncated olp

carried forward):

Output Yk:

Truncated olp ofYk :

0110 1001 1000 1101

0100 1000 1010 1100 1000 1111 11100111

0100 1000 1010 11000000000000000000

1'1' , "7
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The CMD file listing is shown below (Table 12).

ECHO FINAL YEAR PROJECT
ECHO Digital Filter Implementation on FPGA
ECHO 1st order digit-serial IIR (al coefficient set to 0)
ECHO 26/3/98
ECHO BY K.Deliparaschos
I
RESTART
STEPSIZE lOONS
I
VECTOR X X[3:0]
VECTOR Y Y[3:0]
I

WFM CE @ONS=l
WFM CLR @ONS=1 @20NS=O
IDIGIT SERIAL ADDER CARRY INPUT

WFM cr @O=O
ITRANCATION CONTROL
PATTERN CNT 0 0 0 0 1 1 1 1 0 0 0 D 1 1 1 1 0 ODD 1 1 1 1
I
laD coefficient

WPM AOO @0=1
WFM AOl @O=l
WFM A02 @O=O
WFM A03 @O=O
WFM A04 @O=O
WFM AOS @O=O
WFM A06 @O=l
WFM A07 @O=O
WFM A08 @O=O
WFM A09 @O=O
wFM A010 @O=O
WFM A011 @O=O
WFM A012 @O=1
WFM AD13 @O=l
WFM A014 @O=D
WFM A01S @0=1
I
Ib1 coefficient

WFM B10 @O=l
WFM B11 @0=1
WFM B12 @O=O
WFM 813 @O=O
WFM 814 @O=O
WFM B15 @O=O
WFM 816 @O=l
WFM B17 @O=O
WFM B18 @O=O
WFM B19 @O=O
WFM 8110 @O=O
WFM BIll @O=O
WFM B112 @O=l
WFM B113 @O=l
WFM B114 @O=O
WFM B115 @0=1

Fin." \ l', r 'rllj~' 'I I ~'I' Irt "a" ~8



.-----------------

I INPUT DATA
PATTERN X 8\H A\H E\H D\H O\H O\H O\H O\H O\H O\H O\H O\H O\H O\H O\H
O\H O\H O\H O\H O\H O\H O\H O\H O\H
I

WAVE lSTIIRS.wfm CLR CLK XO Xl X2 X3 yyO yyl yy2 yy3 YO YI Y2 Y3
I

CLOCK CLK 0 1
CYCLE 24

Table 12: 1st order digit serial HR filter C.MD file

The simulation results obtained are presented in the plot underneath (Fig. 50).

o
yyo i
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i
I
a

YV'21

VO

Y1

V3

4u

Timl,l (Seconds)

Figure 50: 1st order digit-serial HR filter simulation results

The figure above shows that the results of the simulation agree with the calculated

results presented before the simulation.

final "{'ar Prnj{'ct R{'pOti



Chapter 5 IMPIEMENfAUONAND1ESI1NGOF16X16BIT

DIGIT-8ERIALMULTIPLIERONFPGA

5.1 Introduction

Even though that the original title of the project was 'implementation of digit-serial

IIR filter on FPGA', due to limitations on the hardware available at the present time,

the current implementation on FPGA was reduced to that of the l6x16 bit digit-serial

multiplier. The major reason for this alteration was, that the available Xilinx FPGA

chip (XC3042PC84) at the time was contained on a general use experimental board

with many of the user defined I/O pins already engaged (Appendix A). Also the size

of the present FPGA chip (2,000 to 3,000 gates) did not allow the size required

(>7,000 gates) by the 1st order digit-serial IIR filter [33].

5.2 Overview for Xilnx FPGAs

Every Xilinx FPGA performs the function of a custom LSI circuit, like a gate array,

but the Xilinx device is user programmable and even reprogrammable in the system.

Xilinx sells standard off-the-shelf devices in three families, and many different sizes,

speeds, operating temperature ranges, and packages (Appendix B). The user selects

the appropriate Xilinx device, and then converts the design idea or schematic into a

configuration data file, using the Xilinx development software (XACT) running on a

PC or workstation, and loads this file into the Xilinx FPGA.

In i I ',I r 'fojl·\.! ' iI Ifl "<\.,' (I
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The XACT development system generates the configuration program bitstream used to

configure the LCA device [33].

5.3 Programming or Configuring the Device

A design usually starts as block diagram or schematic, drawn with one of the popular

CAB tools, e.g. Viewdraw (part of View/ogie software). Many of these tools have an

interface to XACT, the Xilinx development system.

After schematic- or equation-based entry, the design is automatically converted to a

Xilinx Netlist Format (XNF). The XACT software first partitions the design into logic

blocks, then finds a near-optimal placement for each block, and finally selects the

interconnect routing. This process of Partitioning, Placement, and routing (PPR) runs

automatically, but the user may also affect the outcome by imposing specific

constraints, or selectively editing critical portions of the design, using the graphic

Design Editor (XDE).

Once the design is complete, it is documented in an LeA file, from which a serial

bitstream file can be generated. The user then exercises one of several options to load

this file into the Xilinx FPGA device, where it is stored in latches, arranged to

reassemble one long shift register. The data content of these latches customises the

FPGA to perform the intended digital function [33].

1'.\ ,~' I
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5.4 Downloading of 16x16 bit Digit-Serial Multiplier on

FPGA and Testing

The 16x16 bit digit-serial multiplier with shift registers described in section 4.9 of

chapter 4, was prepared to be downloaded into the FPGA chip. In order to reduce the

hardware size and need for VO pins further, for the reason described in section 5.1, the

following changes were made.

The serial-in to parallel-out register was omitted from the design and only one 4 bit

register was left at the output to allow time for the computation to finish. Furthermore,

the parallel input data (multiplicand) of the multiplier was predefined to a randomly

selected number (4512310 or 10110000010000112 ), living only the serial input data

(multiplier) user defined. These changes resulted to a significant reduction of the I/O

pins to 22.

The debounced switch S12 on the FPGA board was used to clock the multiplier at

each cycle. Since the output of the switch was inverted (see Appendix A) an extra

inverter was used at the clock input of the multiplier to cancel the inversion. Switch

S15 on the FPGA board was used to reset the circuit. After a close exanllnation at the

FPGA board schematic (Appendix A), the following pins shown on next page were

assigned to the inputs/outputs of the multiplier.

in 11 ur I' .. ju I Hqw' I I'" . , 1
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YYO to pin 75

YYl to pin 76

VY2 to pin 77

YY3 to pin 78

00 to pin 37

CLK to pin 73

CLR to pin 6

YY4 to pin 82

YY5 to pin 84

YV6 to pin 3

YY7 to pin 5

01 to pin 38

YY8 to pin 9

YY9 to pin 11

YI0 to pin 10

YYll to pin 8

02 to pin 39

Y12 to pin 4

YY13 to pin 2

YY14 to pin 83

YY15 to pin 81

03 to pin 40

Input and output buffers (IBUF, OBUF) followed by input and output pads (IPAD,

OPAD) were used before the design could be downloaded on the FPGA.

The new schematic of the 16x16 bit digit-serial multiplier with parallel-in to serial-out

shift register is shown in Fig. 51 on the page overleaf.
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With the use of XACT software and by carefully following the instructions descnbed in

section 6.3, the schematic of Fig. 53 was successfully downloaded on the FPGA board.

The parallel input YYO,... ,YYI5 was set to 5700010 or 1101111010101000 . A power
~~"---,,-J "---,,-J

D E A 8 2

supply was connected to the board to provide the 5v required and a 4 channel digital

oscilloscope was used in order to observe the outputs 00, ... ,03.

Finally the 16x16 bit digit serial multiplier was tested and produced the correct

product of the multiplication, after 8 cycles ( 2572011 00010 or

10011001010011011100010111111000 ).
~'-v--J'---v-''-v--'~'-v--J~''---,,-J

9 9 4 DC 5 F 82

Appendix C demonstrates two photographs taken in the lab, showing the actual FPGA

board (bottom left corner), set up with the computer (middle), oscilloscope (right) and

power supply (top left corner). At the time the photograph was taken the circuit

described before in this chapter was already downloaded onto the FPGA board and

was functioning correctly.
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CONCLUSION

The application of the digit-serial structures to the design of HR :filters introduces

delay elements in the feed back loop of the IIR filter. This enables the pipelining of

the feed back inherent in the HR filters. The digit~serial structure is based on the feed

forward ofthe carry digit, which allows sub digit pipelining to increase the throughput

rate of the IIR filters.

Chapter 3 presented a systematic methodology to derive a wide range of digit-serial

HR filter architectures, which can be pipelined to the sub digit level. This will give the

designers greater flexibility in finding the best trade-off between hardware cost and

throughput rate.

Chapter 4 presents in detail the implementation of a 1st order digit-serial filter, which

was previously described in depth in chapter 3. This can be achieved by designing,

simulating and testing each element of the digit-serial filter. ECAD Viewlogic

software was used for the design, simulation and testing of the digital elements of the

fIlter. Great attention was paid to the design of the fundamental elements ofthe filter,

in order to achieve the minimum number of gates used as possible, since this would

reduce in a high order the hardware size and complexity. The aim of chapter 4 was to

prove the functionality of the digit~serial IIR filter and all its sub-elements. Also to

create a library of fundamental building blocks, to ease the design of future digit-

serial HR filter. Both ofthe aims were completed successfully.
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Chapter 5 illustrated the methods carried out in order to download the design of a

16x16 bit digit-serial multiplier on FPGA board. Also the functionality of 16x16 bit

digit-serial multiplier was proven and tested in practice. Due to t limitations on the

variety of FPGA chips available at the present time and after a common agreement

with the supervisor Dr A. Aggoun, it was decided to reduce the implementation on

FPGA of the 1st order digit-serial filter to that of 16x16 bit multiplier. The aims set for

chapter 5 were successfully completed, since the 16x16 bit digit-serial multiplier was

proven to function satisfactorily in a real time situation. Also by achieving that a good

step forward set in proving the functionality of digit-serial filter on FPGA, in future

work. A few problems were encountered when the download of the 16xl6 digit-serial

multiplier on FPGA took place. These were due to loose connections between the

FPGA chip and the I/O connectors of the board where the chip located. Fortunately

the problem was overcome and the rest of the process was continued normally.

Obviously, in order to understand the concepts of digit-serial HR structures took a

great deal of time. Without any prior knowledge in this field, background reading was

also essentiaL The correct results were not gained immediately and in many cases

several attempts at understanding concepts required as necessary to achieve that.

Regular meetings with the project supervisor were proven to be invaluable.

Knowledge of the subject area was gained mostly by past papers, books and Internet

recourses. Throughout the period of this project many software packages such as,

View/ogie, XACT, Office 97, Paint Shop Pro, and Microsoft Photo Editor, weye.. I.Jse,d •
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As time is important in industry and deadlines need to be met, following the Gantt

Chart (Appendix D) helped in achieving the completion of the required task within the

available time.

Having the opportunity to undertake a project of this nature has proven to be an

invaluable source of knowledge. It has allowed discovering previously unfamiliar

areas of expertise, which will be beneficial when considering future career

opportunities. Also by allowing the student to use appropriate tools such as,

Viewlogic, XAeT from previous areas of study enabled him to plan and undertake

investigations both theoretical and practical.
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RECOMMENDATIONSFORFUlUHERWORK

In future work the 1st order digit-serial HR filter could be implemented on a bigger

size FPGA chip. Since the 1st order filter requires more than 7,000 gates the XC3195

or XC3195AXilinx FPGA chip could be used to downIoad the design. For a 2nd order

digit-serial fllter (more than 13,000 gates) the XC4000/A/HXilinx family, which has a

capacity greater than 25,000 gates could be used.

Moreover future work could involve the design of an individual interface board to

support the chip. This would make available the en6re user programmable I/O pins of

the chip, so that using all of VO pins of the current design required would not be a

problem.

Furthermore an investigation based on the propagation delays, after the circuit has be

downloaded on the FPGA would be essential. The propagation delays can not be

measured until a complete design is ready to be downloaded onto the chip. This is due

the fact that the length ofwires between the interconnections effects the delays.
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Appendix B Xilinx Family Architecture Comparison



Below is shown theXilinx Family Architecture Comparison [33].
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Appendix C Photographs of the Project



Below are photographs ofthe project under operation taken from the lab.
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AppendixD Gantt Chart

I ,I J ' l)1)



',.JJl'Ii"ara~dllls U"J1~ (lIull!') EkdlNlic r",gim.'cl'in;.:

No Activity Duration (weeks) 0 2 4 6 8 10 12 14 16 18 20 22 24

1 Project Allocation

2 Understand Concept

3 Implementation

4 Simulation

5 Verification & Testing·

6 Possible Corrections

7 Download on FPGA & Test

8 Write Final Report

Predicted Time: __ Actual Time:
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