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Abstract— This paper focuses on the Field Programmable Gate 

Array (FPGA) design and implementation of intelligent control 

system applications on a chip, specifically fuzzy logic and genetic 

algorithm processing units. Initially, an overview of the FPGA 

technology is presented, followed by design methodologies, 

development tools and the use of hardware description 

languages (HDL). Two FPGA design examples with the use of 

Hardware Description Languages (HDLs) of parameterized 

fuzzy logic controller cores are discussed. Thereinafter, a 

System-on-a-Chip (SoC) designed by the authors in previous 

work and realized on FPGA featuring a Digital Fuzzy Logic 

Controller (DFLC) and a soft processor core for the path 

tracking problem of mobile robots is discussed. Finally a Genetic 

Algorithm implementation (previously published by the authors) 

in FPGA chip for the Traveling Salesman Problem (TSP) is also 

discussed. 

I. INTRODUCTION 

The rapid growth of Very Large Scale Integration (VLSI) 
technology and Electronic Design Automation (EDA) 
software tools in recent years has allowed for the development 
of high performance intelligent control systems for industrial 
and robotic applications. Modern EDA tools are used 
nowadays to create, simulate and verify the correct operation 
of a design idea for a complex system without the need of 
committing to hardware.  

Field Programmable Gate Arrays (FPGAs) contain 
programmable logic components called "logic blocks", and a 
hierarchy of reconfigurable interconnects that allow the blocks 
to be "wired together". Using Hardware Description 
Languages (HDLs) such as VHDL and Verilog one can 
configure these logic blocks to perform complex logic 
structures. Many pre-written FPGA generic component cores 
exist that allow implementing processors, multipliers, 
video/audio converters, network protocols, etc. So an FPGA is 
extremely flexible when it comes to designing a complex 
system. FPGA technology is being used in several application 
fields such as telecommunications [1], signal [2] and image 
processing [3], medical equipment [4], automotive 

applications [5], robotics [6], [7], [8], [9], space landing crafts 
[10], just to name a few. 

This paper aims to provide an overview of paradigms of 
the use of FPGAs to hardware realization of intelligent control 
systems that incorporate fuzzy logic theory, and genetic 
algorithms. 

Section 2 attempts a brief introduction to the FPGA 
technology, HDLs and the development flow of a design 
targeting FPGA. 

In Section 3, two examples of the FPGA design, 
implementation and functionality verification of a 
parameterized fuzzy logic processor core followed by a 
modified architecture (featuring a technique named by the 
authors as “Odd-Even” method) that  achieves a significantly 
faster data processing rate are discussed [11], [12]. Next in 
Section 4, a scalable genetic algorithm processor core is 
presented and evaluated using the Traveling Salesman 
Problem (TSP) and several benchmarking functions [13], [14]. 
Finally in Section 5, a mobile robot for a path tracking 
application is controlled by a System on a Chip (SoC) 
combining a fuzzy tracker and a soft processor core [15], [16]. 

II. FPGA ARCHITECTURE AND HDLS 

An FPGA is a semiconductor device that belongs to the 
family of programmable logic devices. The FPGA technology 
discussed in this paper is based on static memory or SRAM 
process technology while other technologies such as Flash 
(Flash-erase EPROM) exist. 

The typical basic architecture consists of an array of 
Configurable Logic Blocks (CLBs) (combinatorial or/and 
sequential) and routing channels. Multiple I/O pads may fit 
into the height of one row or the width of one column in the 
array. Generally, all the routing channels have the same width 
(number of wires). An application circuit must be mapped into 
an FPGA with adequate resources. 



A classic FPGA logic block consists of a 4-input Look-Up 
Table (LUT), a flip-flop, and a 2-to-1 multiplexer (to bypass 
the flip-flop if desired resulting in a registered or unregistered 
output) as shown in Fig. 1 below. The LUT is like a small 
RAM (RAM-based LUTs) and has typically 4 inputs, so can 
implement any logic gate with up to 4-inputs or used as a 
storage element. In recent years, manufacturers have started 
moving to 6-input LUTs in their high performance parts, 
claiming increased performance. 

 

Figure 1.  Configurable Logic Block (CLB). 

Each logic block can be connected to other logic blocks 
through interconnect resources (wires/muxes placed around 
the logic blocks). Each block can do little, but with lots of 
them connected together, complex logic functions can be 
created. The interconnect wires also go to the boundary of the 
device where Input/Output Blocks (IOBs) are implemented 
and connected to the pins of the FPGAs. 

In addition to general-purpose interconnect resources; 
FPGAs have fast dedicated lines in between neighboring logic 
blocks. The most common type of fast dedicated lines are 
carry chains. Carry chains allow creating arithmetic functions 
(like counters and adders) efficiently (low logic usage & high 
operating speed). 

In addition to logic, all new FPGAs have dedicated blocks 
of static RAM distributed among and controlled by the logic 
elements. RAMs may be single port or dual port or even quad 
port. There are two types of internal RAMs in an FPGA 
namely, blockrams and distributed RAMs. The size of the 
RAM needed usually determines which type is used. The big 
RAM blocks, are blockrams which are dedicated areas in the 
FPGA. The small RAM blocks are either in smaller blockrams 
(Altera FPGAs), or in distributed RAM (Xilinx FPGAs). 
Distributed RAM allows using the FPGA logic-cells as tiny 
RAMs which provide a very flexible RAM distribution in an 
FPGA, but isn't efficient in term of area (a logic-cell can 
actually hold very little RAM). Altera prefers building 
different size blockrams around the device (more area 
efficient, but less flexible). Other features that have been 
observed more recently inside the FPGA architecture is the 
introduction of dedicated blocks such as DSP accelerators 
(hardwired multipliers with corresponding accumulators, high-
speed clock management circuitry, and serial transceivers), 
embedded hard processor cores such as PowerPC [17] or 
ARM [18], and soft processor cores such as Nios [17] or 
Microblaze [18], [19]. Worth mentioned for control 
applications is the recent integration of an analog to digital 
converter in the Fusion mixed-signal FPGA from Actel [20]. 
However, this SoC trend does not replace the former generic 
architecture, but it can be seen as a complement to this 
original array. 

FPGA pins are divided into 2 categories, dedicated pins 
and user pins (Input-Output or I/O pins). Dedicated pins are 

hard-coded to a specific function and are subdivided to power 
pins (ground or power), configuration pins (used to download 
to FPGA), and dedicated pins or clock pins. I/O pins can be 
programmed to be inputs, outputs, or bi-directional (tri-state 
buffers). Each I/O pin is connected to an IOB inside the 
FPGA. The IOBs are powered by the VCCO pins (I/O power 
pins). The FPGA VCCO pins (I/O power pins) are usually all 
connected to the same voltage. New FPGA generations feature 
user I/O banks in which I/Os are split into groups, each having 
its own VCCO voltage. This is useful for example if one part 
of the board works with 3.3V logic, and another with 2.5V. 

FPGAs usually require two voltages to operate namely a 
core voltage and an IO voltage. Each voltage is provided 
through separate power pins. The internal core voltage or 
VCCINT, is used to power the logic gates and flip-flops inside 
the FPGA. The voltage can range from 5V for older FPGA 
generations, to 3.3V, 2.5V, 1.8V, 1.5V and even lower for the 
latest devices. The core voltage is fixed and is set by the 
FPGA model used. The I/O voltage or VCCO is used to power 
the IOBs of the FPGA and should match what the other 
devices connected to the FPGA expect. Specifically, FPGA 
devices allow VCCINT and VCCIO to be the same (i.e., the 
VCCINT and VCCIO pins could be connected together). But 
since FPGAs tend to use low-voltage cores and higher voltage 
IOs, the two voltages are usually different. 

The latest FPGAs are produced using a 40-nm copper 
process [17] and their density can reach more than 680K logic 
elements or 13 million equivalent gates per chip with clock 
system frequencies approaching 600 MHz. Nevertheless, it is 
important to note that these specifications are only valid for a 
short while as technology evolves fast. The two major FPGA 
manufacturers are Xilinx [18], and Altera [17], while Lattice 
[21], Actel [20], Quicklogic [22] are smaller players. 

To define the behavior of the FPGA, the user provides a 
Hardware Description Language (HDL) or a schematic design. 
The HDL form might be easier to work with when handling 
large structures because it's possible to just specify them 
numerically rather than having to draw every piece by hand. 
On the other hand, schematic entry can allow for easier 
visualisation of a design. Then, using an Electronic Design 
Automation (EDA) tool, a technology-mapped netlist is 
generated. The netlist can then be fitted to the actual FPGA 
architecture using a process called place-and-route, usually 
performed by the FPGA company's proprietary place-and-
route software. The user will validate the map, place and route 
results via timing analysis, simulation, and other verification 
methodologies. Once the design and validation process is 
complete, the binary file generated (also using the FPGA 
company's proprietary software) is used to (re)configure the 
FPGA. This binary file is then transferred to the FPGA via a 
serial interface (JTAG) or to an external memory device like 
an EEPROM. 

The most common HDLs are VHDL and Verilog, 
although in an attempt to reduce the complexity of designing 
in HDLs, there are moves to raise the abstraction level through 
the introduction of alternative languages such as SystemC 
(more of a system description language rather than hardware 
one), HandelC and SystemVerilog. 



To simplify the design of complex systems in FPGAs, 
there exist libraries of predefined complex functions and 
circuits that have been tested and optimized to speed up the 
design process. These predefined circuits are called 
Intellectual Property (IP) cores, and are available from FPGA 
vendors and third-party IP suppliers.  

In a typical design flow depicted in Fig. 2, one starts by 
modeling the behavior of the entire system (Electronic System 
Level – ESL) using a high-level language such as C, C++, or 
MATLAB prior to HDL coding of the RTL description of the 
design. During the ESL stage several test vector files could be 
extracted to be used during the verification stages. 

Throughout a design process the design is simulated at 
multiple stages. Initially the HDL RTL description is 
simulated through a testbench running test vectors in order to 
verify the system’s behavior and observe results. Following, 
the synthesis engine turns the RTL design into a design 
implementation in terms of logic gates (netlist file). At this 
point simulation may be run (post-synthesis simulation) to 
confirm that the synthesized circuit conforms to the initial 
behavior (also verify timing). Finally the design is laid out in 
the FPGA at which point propagation delays can be added and 
the simulation run again with these values back-annotated 
onto the netlist. 

 

Figure 2.  FPGA design flow. 

III. FPGA IMPLEMENTATION OF FUZZY CONTROLLERS 

Fuzzy chips are distinguished into two classes depending 
on the design techniques employed: digital and analog. The 
first fuzzy chip was reported in 1986 at AT&T Bell 
Laboratories [23]. The digital approach originated from Togai 
and Watanabe’s paper [23] and resulted in some interesting 
chips [24], [25]. Other digital architectures were reported in 
[26], [27]. Analog chip approaches begun with Yamakawa in 
[28], [29]. 

This section presents the design of a parameterized digital 
fuzzy logic controller (DFLC). By the term parameterized we 
mean that the DFLC facilitates scaling and can be configured 
for different number of inputs and outputs, number of 
triangular or trapezoidal fuzzy sets per input, number of 
singletons per output, antecedent method, divider type, and 
number of pipeline registers for the various components in the 
model. This parameterization enables the creation of a generic 
Fuzzy Processor (FC) core than can be used to produce fuzzy 
processors of different specifications without the need of 
redesigning the FC core from the beginning. The fuzzy logic 
processor architecture assumes overlap of maximum two 

fuzzy sets between adjacent fuzzy sets and requires 2n clock 
cycles (input data processing rate, n is the number of inputs), 
since it processes one active rule per clock cycle. The 
architecture of the design allows one to achieve a core 
frequency speed of 100 MHz, while the input data can be 

sampled at a clock rate equal to1 2n of the core frequency 

speed (100 MHz), while processing only the active rules. To 
achieve this timing result the latency of the chip architecture 
involves 11 pipeline stages each one requiring 10 ns. The 
discussed DFLC is based on a simple algorithm similar to the 
Takagi-Sugeno (T-S) of zero-order type inference and 
weighted average defuzzification method [30], [31], and based 
on the chosen parameters employs four 12-bit inputs and one 
12-bit output, with up to 7 trapezoidal or triangular shape 
membership functions per input with a degree of truth 
resolution of 8-bit and a rule base of up to 2401 rules. 

It is well known that T-S fuzzy controllers can provide an 
effective representation of complex nonlinear systems in terms 
of fuzzy sets and fuzzy reasoning. The T-S method is 
considered a quite simple method, leads to fast calculations 
and is relatively easy to apply. Moreover a fuzzy controller 
based on the T-S method provides a good trade-off between 
the hardware simplicity and the control efficiency. In the T-S 
inference rule, the conclusion is expressed in the form of 
linear functions. Rules have the following form: 

Rule Ri: IF x1 IS A
1
i AND … AND xk IS A

k
i 

THEN yi = c
0
i + c

1
i x1 + … + c

k
i xk 

where, x1,…xk represent the input variables, A
1
i,…A

k
i 

represent the input membership functions, yi represent the 
output variable, and c

0
i,…c

k
i are all constants. A zero-order 

model arises (simplified T-S functional reasoning), if we only 
use the constant c

0
i at the output, hence yi=c

0
i (singleton 

outputs). In the discussed T-S model, inference with several 
rules proceeds as usual, with a firing strength associated with 
each rule, but each output is linearly dependent on the inputs. 
The output from each rule is a moving singleton, and the 
deffuzified output is the weighted average of the contribution 
of each rule, as shown in the following equation (Eq.1): 
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A block diagram illustrating the T-S mechanism is 
depicted in Fig. 3. 

 

 

Figure 3.  Takagi-Sugeno (T-S) mechanism. 

The Table 1 below summarizes the characteristics of the 
parameterized DFLC based on the chosen parameters (VHDL 
package file). 

TABLE I.  DFLC SOFT CORE CHARACTERISTICS 

Fuzzy Inference System (FIS) 

type 

Takagi-Sugeno zero-order type 

Inputs 4 

Input resolution 12-bit 

Outputs 1 

Output resolution 12-bit 

Antecedent Membership 
Functions (MF’s) 

7 Triangular or Trapezoidal 
shaped per  fuzzy set 

Antecedent MF degree of truth 

(α value) resolution 

8-bit 

Consequent MF’s 2401 Singleton type 

Consequent MF resolution 8-bit 

Maximum number of fuzzy 

inference rules 2401 (
. .

. .
no of IPs

no of MFs ) 

AND method MIN (Gödel minimum t-norm) 

Implication method PROD (Larsen product t-norm) 

MF overlapping degree 2 

Defuzzification method Weighted average 

 

The DFLC architecture [11] (shown in Fig. 4) is composed 
of a number of blocks coded in a parameterized style to result 
in a fully parametric core. The design architecture is broken in 
three major hierarchical blocks, namely: “Fuzzification”, 
“Inference” and “Defuzzification”. The “CPR” blocks 
represent the number of pipeline stages for each component 
(component pipeline registers), the “PSR” blocks indicate the 
path synchronization registers, while the “U” blocks represent 
the different components of the DFLC. The component named 
after DCM (U0) is the Digital Clock Manager and is one of 

four components available in the specific FPGA library 
chosen (Spartan-3 1500-4FG676) [18]. The latter accepts the 
FPGA board (Memec 3SMB1500) clock (clk) of 75 MHz and 
is configured to generate a divided clock signal (clkdv) of 75 
MHz/12=6.25 MHz and a multiplied clock signal (clkfx) 
which is 6.25·16=100 MHz for the DFLC core operation. It is 
worth mentioning here that the above frequency values can 
vary by adjusting the DCM generic parameters. A control 
logic component (control_logic_p, U2) is implemented on the 
top structural entity (binds FC core, DCM, R1, R2 and control 
logic) of the design that provides two signals named 
“ready_in” and “ready_out”, used to provide input and output 
data-ready signals for handshaking with external devices. 

 

Figure 4.  Parameterized DFLC soft core architecture. 



Processing all rule combinations for each new data input 
set would greatly reduce the overall processing rate, for this 
reason we have chosen to process only the active rules, i.e. 
those rules that give a non null contribution to the final result. 
Given the fact that the overlapping between adjacent fuzzy 
sets is of order 2, the described processing bottleneck is 
overcome by using an active rule selection block (ars_p) to 
calculate the fuzzy set region in which the input data 
corresponds to. As a consequent, for the 4-input DFLC with 7 
membership functions per input, only 16 active rules need to 
be processed instead of all 2401 rule combinations in the rule 
base,. 

The simulation snapshot in Fig. 5 depicts the data flow for 
all the signals specified in Fig. 4. A newly arrived input data 
set is clocked on the rising edge of the clkdv_out clock, with a 
fraction of 1/16 the frequency of the clkfx_out clock, providing 
the necessary time (16 algorithmic clock cycles) for the Address 
Generator (pipeline stage, cpr1) to generate the signals 
corresponding to all active rules (2

nd
-17

th
 clock cycles). Here, we 

remind that by using the ars_p block we effectively identify and 
process 16 active rules per clock cycle instead of 2401. 
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Figure 5.  Pipelined data flow 

The total data processing time starting from the time a new 
data set is clocked at the inputs until it produces valid results 
at the output requires a processing time of 270 ns which is 
analyzed in 16 algorithmic clock cycles (each active rule is 
processed in one clock cycle) and 11 clock cycles due to 
pipelining. This effectively characterizes the input data 
processing rate of the system (a new valid data set is given at 
the output every 16 clocks or 160 ns), while the DFLC core 
operates at an internal clock frequency operation of 100 MHz 
or 10 ns period. Along with the proposed DFLC architecture, a 
modified model with LUT based Membership Function (MF) 
generator blocks, instead of arithmetic based, has been 
implemented which is not analyzed here. The latter DFLC 
model achieves a better timing result with the same levels of 
pipelining, but with significant increase in FPGA area 
utilization compared to the discussed model. It is obvious that 
since the MF’s are ROM based any type and shape could be 
implemented. 

To further improve the data processing rate of afore 
mentioned DFLC a method named “Odd-Even” by the authors 
[12] has been used to effectively separate the fuzzy sets to odd 
and even regions. The modified DFLC featuring the discussed 
method features two 8-bit inputs and a 12-bit output, with up 
to 7 trapezoidal or triangular shape membership functions per 
input and a rule base of up to 49 rules (see Fig. 6). 

 

Figure 6.  DFLC architecture with “Odd-Even” method. 



Using the “Odd-Even” method, we manage to process for 
the same model case scenario, two active rules per clock 
cycle, thus increasing significantly the input data processing 

rate of the system to 2 2
n , where n is the number of inputs. 

The architecture of the design achieves a core frequency speed 
of 200 MHz, allowing the input data to be sampled at a clock 
rate equal to half of the core frequency speed (100 MHz). The 
total processing time of the chip architecture involves 13 
pipeline stages each one requiring 5 ns. 

It’s worth mentioning here that all the VHDL codes for the 
DFLC models are fully parameterized allowing us to generate 
and test DFLC models with different specification scenarios. 

IV. FPGA IMPLEMENTATION OF GENETIC ALGORITHMS 

Genetic Algorithms (GAs), initially developed by Holland 
[32], are based on the notion of population individuals 
(genes/chromosomes), to which genetic operations as 
mutation, crossover and elitism are applied. GAs obey 
Darwin’s natural selection law i.e., the survival of the fittest. 
GAs have been successfully applied to several hard 
optimization problems, due to their endogenous flexibility and 
freedom in finding the optimal solution of the problem [33], 
[34]. 

However, the most serious drawbacks of software-
implemented GAs are both the vast time and system resources 
consumption. Keeping that in mind, a multitude of hardware-
implemented GAs have been evolved mainly during the last 
decade, exploiting the rapid evolution in the field of the 
FPGAs technology and achieving impressive time-speedups. 

This section deploys the design and hardware 
implementation of a parameterized GA IP core on an FPGA 
chip [13], [14]. The genetic operators applied to the genes of 
the population are crossover, mutation and elitism, whose 
employed method is parametrically selected. The designed 
selection algorithm is the “Roulette Wheel Selection 
Algorithm”. A software implementation of the designed GA 
using the MATLAB platform has also been developed to 
produce input and output test vectors for the performance 
evaluation of the hardware implemented GA using several 
benchmark functions. Finally, after adapting the proposed 
hardware implemented GA to the Travelling Salesman 
Problem (TSP), a successful solution to it has been found. The 
evaluation of the algorithm was performed using the TSP and 
several benchmark functions. 

A high level view of the architectural structure of the 
presented GA is shown in Fig. 7. The system is composed of 
six basic modules i.e. control module, fitness evaluation 
module, selection module, crossover module, mutation module 
and observer module. The control module implements a 
Mealy state machine, which feeds all other modules with the 
necessary control signals guaranteeing their synchronized 
execution. The selection module implements the Roulette 
Wheel Selection Algorithm [33], [34] picking the genes of the 
current population (parents), which will be genetically 
processed in order to create the individuals of the new 
population (offsprings/children). 

Following, the crossover and mutation modules perform 
the corresponding genetic operations on the selected parents of 
the current generation. Thereafter, the fitness evaluation 
module not only computes the fitness of each offspring 
produced by the previous mentioned modules but also applies 
elitism to them, creating the elite genes for the next 
generation. The task of the observer module is to determine if 
the stopping criteria of the GA i.e., maximum number of 
generations, fitness limit, have been met so as to decide the 
continuation or not of the algorithm. 

Four random number generators (RNG) are also used to 
produce both the initial random generation and the necessary 
random numbers. Additionally, one RAM is needed for the 
storage of the current gene population (RAM 1) and another 
one for the storage of the selected parents (RAM 2) of each 
generation.  
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Figure 7.  Architectural structure of the GA (high level view). 

The parameters of the GA are summarized in Table 2. 

TABLE II.  CHARACTERISTICS OF THE GA IMPLEMENTATION 

Parameter name Description Possible 

Value 

genom_lngt Chromosome length in bits 16 

score_sz Fitness value bit resolution 16 

pop_sz Population size 32 

scaling_factor_res Bit resolution of the random 
number used in RWS algorithm 

4 

elite Number of elite children 2 

mr Mutation rate 80 

 

The GA architecture (Fig. 8) is broken into separate blocks 
each one of which performs a particular task, coordinated by 
the control block. Moreover, the blocks communicate with the 
control module notifying their state i.e., ready out signals. 
Signal and data buses are noted on the block diagram with 
tenuous and bold lines respectively. 

A performance evaluation of the GA using the TSP has 
been performed by comparing the time needed to find the 
optimal solution using the software version vs. the hardware 
implementation of. Table 3 summarizes the results for eight 
cities, 60 generations and 32 individuals where an impressive 
speedup ratio of 11,035 can be observed. Moreover, the 



algorithm was tested using the benchmark burma14 derived 
from the TSPLIB [35] (analytical results presented in [13]). 

 

Figure 8.  GA architecture 

TABLE III.  SOFTWARE VS. HARDWARE IMPLEMENTED GA 

GA version Time (ms) 

Hardware (clk =10.8 ns) 1.702 

Software (Pentium 4 3.2Ghz 1Gb RAM) 18,783 

 

The performance of a GA can be evaluated by several 
benchmark functions found in literature [36], [37], i.e. its 
ability to reach the optimum of an objective function. The GA 
core discussed here has been tested using the before 
mentioned functions. The results are analyzed in [13]. 

The GA IP core is fully parameterized in terms of the 
number of population individuals (pop_sz) and their resolution 
in bits (genom_lngt), resolution in bits of the fitness 
(score_sz), number of elite genes in each generation (elite), 
method used for crossover (cross_method) and mutation 
(mut_method), number of maximum generations (max_gen), 
mutation probability (mr) and its resolution in bits (mut_res), 
as well as the resolution in bits of the scaling factor r used by 
the RWS algorithm. The core parameterization allows the 
adaptation of the GA to any problem specifications without 
any further change to the developed VHDL code. The 
hardware implemented GA operates at a clock rate of 92 MHz 
(10.8 ns) and achieves a remarkable speedup when compared 
to its software version implemented in MATLAB. 
Furthermore, the FPGA resources regarding area and RAM 
requirements are kept small according to the place and route 
report [13], [14]. 

The presented IP core design when compared to other GAs 
hardware implementations [38], [39], [40], [41], operates at a 
clock frequency up to five times faster and implements more 
than one crossover and mutation methods, which can be 
changed during its execution. In addition, the core utilizes 
more parameters and is evaluated not only by using 
benchmarking functions but also by solving the NP–complete 
TSP.  

V. SOC FOR ROBOT PATH TRACKING 

A SoC implementation for robot path tracking [15], [16] 
on a differential-drive Pioneer 3-DX8 mobile robot is 
presented in this section. The SoC mainly consists of a DFLC 
core implementing the fuzzy tracking algorithm and a Xilinx 
Microblaze soft processor core acting as the top level flow 
controller. 

The FPGA board hosting the SoC was attached to an 
actual differential-drive Pioneer 3-DX8 robot that has been 
used in running experiments of the tracking scheme. The 
developed SoC attains a core frequency speed of 71 MHz. The 
input data to the DFLC IP can be sampled at a clock rate equal to 

1 2n of the core frequency speed, and processing is performed 

accounting for only the active rules. To achieve this timing result 
the latency of the chip architecture involves 9 pipeline stages 
each one requiring 14.085 ns.  

The fuzzy tracking algorithm used, is based on a previous 
fuzzy path tracker developed by the authors [42]. The fuzzy 
logic (FL) tracker has undergone some alterations due to the 
hardware restrictions posed by the DFLC soft IP core. While the 
original fuzzy logic controller (FLC) was Mamdani-based 



[43]with Gaussian membership functions, the one deployed here 
is a Takagi-Sugeno zero-order type FLC with triangular 
membership functions and an overlap of two between adjacent 
membership functions. The parameterized DFLC IP core 
discussed in Section III is utilized here and according to the 
specifications of the fuzzy tracker model, its parameters were 
appropriately set to form the following characteristics: two 12-bit 
inputs, one 12-bit output, and 9 triangular shape membership 
functions per input with a degree of truth resolution of 8 bits and 
a rule base of up to 81 rules [15], [16]. Further, the “spatial 
window” technique that was also introduced in [42] has been 
incorporated in the tracking scheme. 

The system consists of four modules tied together. An 
overview can be seen in Fig. 9 (a), and an actual depiction in 
Fig. 9 (b). 

 

Figure 9.  Overview of the system (b) Actual depiction of the system during 

an experiment. The FPGA, laptop and GPS antenna are clearly visible while 
the GPS receiver is under the laptop 

The SoC implements the autonomous control logic of the 
P3 robot. It receives odometry information from the robot and 
issues steering commands outputted by the FL tracker. Several 
other tasks realized by the SoC besides the steering control 
include: (i) decoding the information packets sent by the robot 
which include the pose estimation done by the robot, (ii) the 
status of the motors, and (iii) encoding the steering commands 
in a data frame that is accepted by the robot. So, in other 
words, the SoC implements a codec for the I/O 
communication with the P3 robot. Additionally, it also relays 
some critical information to a MATLAB monitoring program 
that has been developed. The top-level program that attends to 
all these tasks and also handles synchronization and timing 
requirements is written in C and executed by the Microblaze 
soft processor core.  

The ActivMedia P3-DX8 robot [15], [16] is the platform 
where the SoC was tested on. The robot employs a 1 mm 
resolution for the position estimation and 1° angle resolution 
for the heading. The kinematics of the robot are emulated to a 
bounded curvature steering vehicle and not that of a 
differential drive one i.e., there is an imposed constraint on the 
maximum curvature it can turn with. This constraint is a result 
of the fuzzy tracking algorithm being intended for the Dubin’s 
Car model [44] where there is a minimum turning radius 
constraint on the robot and only forward motion.  

The robot connects to the FPGA board through a serial 
cable to send and receive framed data. ActivMedia uses its 
own data framing protocol handled by the robot’s 
microcontroller. The data sent from the robot are named Server 

Information Packets (SIP packets) while the received data are 
named Command Packets. More information on the data 
framing protocol can be found in the robot’s manual [45]. 
Experiments clearly showed that even though the FL tracker 
performs well, its actual performance is severely degraded by 
the odometry’s accumulation of errors over time. Several 
calibration tests were carried out in order improve odometry 
localization but as it was expected, position estimation through 
odometry proved ineffective. 

A high level view of the proposed SoC architecture is 
illustrated in Fig. 10. 

 

Figure 10.  SoC high-level hardware system view. 

The architecture of the SoC consists mainly of the DFLC 
that communicates with the Microblaze processor through the 
Fast Simplex Bus (FSL), the utilized block RAMs (BRAM) 
through the LMB bus, and other peripherals such as the 
general purpose input/output ports (GPIO), and UART 
modules via the OPB bus. The DFLC incorporates the fuzzy 
tracking algorithm, whereas the Microblaze processor mainly 
executes the C code for the flow control. 

The U_fpga_fc component is embedded in the flc_ip top 
structural entity wrapper which is compliant with the FSL 
standard and provides all the necessary peripheral logic to the 
DFLC soft core IP in order to send/receive data to/from the FSL 
bus. The flc_ip wrapper architecture is shown in Fig. 11. 

A MATLAB application was developed for monitoring and 
initialization purposes. The MATLAB application displays 
useful information about the robot’s pose and speed, as 
estimated by the robot’s odometry, as well as some other data 
used for the path tracking control. Furthermore it calculates 
the robot’s position relative to the world and the local 
coordinate systems.  

The application communicates with the FPGA board through 
a bridged USB connection. It receives and analyzes data relayed 
by the SoC, mainly the SIP packets that the robot sends. The 
program decodes the SIP packets and extracts odometry 
information. It also incorporates the same routine used in the 
SoC for catching and fixing encoder overflows. 

Moreover, the MATLAB application incorporates the 
main world frame and carries out transformations from local 



to global coordinates. The GUI depicts the world map in 
global coordinates, as illustrated in Fig. 12. 

 

Figure 11.  Top wrapper. 

 

Figure 12.  Snapshot of the GUI after an experiment. The solid line represents 

the desired path while the dashed line the actual path. The map illustrates 

part of the 2nd floor of the Electrical & Computer Engineering faculty of 

NTUA. All units are in millimetres. 

An additional important function of the MATLAB 
application is to provide a path for the robot to track. Since the 
current application deals only with the path tracking task and 
not path planning routine, the path is drawn in the 
application’s GUI by hand as a sequence of points encoded 
properly and downloaded to the SoC. At that point in time, the 
SoC begins the tracking control. The program uses a linear 
interpolation scheme to produce all the data samples of the 
path under a fixed sampling spacing, i.e., the distance between 
two sample points on the path is constant. The application 
allows choosing the number of interpolation points. The 
aforementioned interpolation routine was chosen after field 
observations on different interpolation schemes such as 
polynomial, cubic and linear and produced the best results. 

The MATLAB GUI depicts the pose of the robot in real 
time along with other information sent by the SoC. In 
particular, when the spatial window is of order one, i.e., when 
only the closest point is considered, the SoC sends the two 
calculated controller inputs. 

Next, the results of two experiments of the system are 
discussed. The experiments took place inside the NTUA 
campus. The goal was to assess the overall efficiency of the 
system and particularly of the fuzzy tracker. The experiments 
include tracking two prescribed paths. The first one is a 
straight line path while the second one is an S-shaped path. In 
order to log the actual position of the robot during the runs, a 
DGPS antenna and receiver was mounted onto it. The DGPS 
system used is the Trimble 4700 GPS receiver. The GPS was 
set to Kinematic Survey mode where the path is solved in 
post-processing, not real time. In this mode the horizontal 
precision is ±1cm+1ppm for a baseline under 10Km. The 
occupation is 1 second i.e., a positional sample is calculated 
each second. The results of the two experiments for the 
straight and the S-shape runs are shown in Fig. 13 (a) and (b) 
respectively. 
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Figure 13.  (a) The straight run experiment with the reference path (solid), the 

odometry position estimation (dashed) and the DGPS estimation (dotted). (b) 
The S-shaped path experiment with the reference path (solid), the odometry 

position estimation (dashed) and the DGPS estimation (dotted). 

In the straight run experiment the robot was set to follow a 
25m straight path while its initial position was not on the path. 
The depiction in Fig. 13 (a) does not present the entire run, but 
rather the segment where the GPS solution is of the highest 
quality (quality factor Q=1) since in order to assess the path 
tracker’s performance we need a high precision position 
estimation. This must not be confused with the position 
estimation module that the tracker uses, which in this case is 
derived from odometry data. The GPS is used in order to see 
the actual position of the robot, thus a degraded GPS solution 
is useless and positional data of a Q factor greater than 1 (with 
1 being the best and 6 the worst) have been discarded.  

The second run in Fig. 13(b) presents the tracking of an 
S-shaped path. The same conditions regarding the GPS data 
also apply to this run. The S-shaped path has a length of 



approximately 25m. All GPS data with Q>1 have been 
discarded. It is evident from both experiments that the path 
tracker performs well. It should also be noted that the S-
shaped path is not actually a feasible reference path since the 
curvature derivative is discontinuous at the polygons vertices. 
However if the discontinuity is small, the robot is expected to 
provide an accurate tracking. Furthermore the odometry 
position estimation is very close to the path. This means that if 
higher precision position estimation is used with the path 
tracker, such as a Real-Time Kinematic DGPS data feed that 
provides positional data to the path tracker in real-time, the 
tracker will perform even better. This is part of the future 
work of the authors. Moreover, the FPGA can easily 
incorporate data from other sensors and provide additional 
output. 

VI. CONCLUSION 

FPGA technology, HDLs and EDA tools in recent years 
has allowed for the development of high performance 
intelligent control systems for industrial and robotic 
applications. Modern EDA software tools are used nowadays 
by the designers to create, simulate and verify the correct 
operation of a model of a complex system without the need of 
committing to hardware.  

In this work several intelligent control system applications 
implemented on FPGA chips were presented. Three 
parameterized reusable FPGA cores, among them two fuzzy 
logic processors [11], [12] and a genetic algorithm processor 
unit [13], [14], previously developed by the authors, were 
discussed. Furthermore, a SoC for a path tracking task 
application on a differential-drive Pioneer 3-DX8 mobile 
robot [15], [16] was presented, that successfully utilizes the 
previously developed parametric DFLC core. The DFLC 
interfaces with a soft processor core and other secondary 
cores. The scalability of the fuzzy logic processor core [11] 
easily allowed adapting it to the fuzzy tracker model [42] 
without the need of recoding the core.  
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