
Design Paradigms of

Intelligent Control Systems on a Chip

K. M. Deliparaschos and S. G. Tzafestas

Intelligent Automation Systems Research Group,

School of Electrical and Computer Engineering, NTUA,

Athens, Greece

kdelip@mail.ntua.gr, stzafesta@softlab.ntua.gr

Abstract— This paper focuses on the Field Programmable Gate

Array (FPGA) design and implementation of intelligent control

system applications on a chip, specifically fuzzy logic and genetic

algorithm processing units. Initially, an overview of the FPGA

technology is presented, followed by design methodologies,

development tools and the use of hardware description

languages (HDL). Two FPGA design examples with the use of

Hardware Description Languages (HDLs) of parameterized

fuzzy logic controller cores are discussed. Thereinafter, a

System-on-a-Chip (SoC) designed by the authors in previous

work and realized on FPGA featuring a Digital Fuzzy Logic

Controller (DFLC) and a soft processor core for the path

tracking problem of mobile robots is discussed. Finally a Genetic

Algorithm implementation (previously published by the authors)

in FPGA chip for the Traveling Salesman Problem (TSP) is also

discussed.

I. INTRODUCTION

The rapid growth of Very Large Scale Integration (VLSI)
technology and Electronic Design Automation (EDA)
software tools in recent years has allowed for the development
of high performance intelligent control systems for industrial
and robotic applications. Modern EDA tools are used
nowadays to create, simulate and verify the correct operation
of a design idea for a complex system without the need of
committing to hardware.

Field Programmable Gate Arrays (FPGAs) contain
programmable logic components called "logic blocks", and a
hierarchy of reconfigurable interconnects that allow the blocks
to be "wired together". Using Hardware Description
Languages (HDLs) such as VHDL and Verilog one can
configure these logic blocks to perform complex logic
structures. Many pre-written FPGA generic component cores
exist that allow implementing processors, multipliers,
video/audio converters, network protocols, etc. So an FPGA is
extremely flexible when it comes to designing a complex
system. FPGA technology is being used in several application
fields such as telecommunications [1], signal [2] and image
processing [3], medical equipment [4], automotive

applications [5], robotics [6], [7], [8], [9], space landing crafts
[10], just to name a few.

This paper aims to provide an overview of paradigms of
the use of FPGAs to hardware realization of intelligent control
systems that incorporate fuzzy logic theory, and genetic
algorithms.

Section 2 attempts a brief introduction to the FPGA
technology, HDLs and the development flow of a design
targeting FPGA.

In Section 3, two examples of the FPGA design,
implementation and functionality verification of a
parameterized fuzzy logic processor core followed by a
modified architecture (featuring a technique named by the
authors as “Odd-Even” method) that achieves a significantly
faster data processing rate are discussed [11], [12]. Next in
Section 4, a scalable genetic algorithm processor core is
presented and evaluated using the Traveling Salesman
Problem (TSP) and several benchmarking functions [13], [14].
Finally in Section 5, a mobile robot for a path tracking
application is controlled by a System on a Chip (SoC)
combining a fuzzy tracker and a soft processor core [15], [16].

II. FPGA ARCHITECTURE AND HDLS

An FPGA is a semiconductor device that belongs to the
family of programmable logic devices. The FPGA technology
discussed in this paper is based on static memory or SRAM
process technology while other technologies such as Flash
(Flash-erase EPROM) exist.

The typical basic architecture consists of an array of
Configurable Logic Blocks (CLBs) (combinatorial or/and
sequential) and routing channels. Multiple I/O pads may fit
into the height of one row or the width of one column in the
array. Generally, all the routing channels have the same width
(number of wires). An application circuit must be mapped into
an FPGA with adequate resources.

A classic FPGA logic block consists of a 4-input Look-Up
Table (LUT), a flip-flop, and a 2-to-1 multiplexer (to bypass
the flip-flop if desired resulting in a registered or unregistered
output) as shown in Fig. 1 below. The LUT is like a small
RAM (RAM-based LUTs) and has typically 4 inputs, so can
implement any logic gate with up to 4-inputs or used as a
storage element. In recent years, manufacturers have started
moving to 6-input LUTs in their high performance parts,
claiming increased performance.

Figure 1. Configurable Logic Block (CLB).

Each logic block can be connected to other logic blocks
through interconnect resources (wires/muxes placed around
the logic blocks). Each block can do little, but with lots of
them connected together, complex logic functions can be
created. The interconnect wires also go to the boundary of the
device where Input/Output Blocks (IOBs) are implemented
and connected to the pins of the FPGAs.

In addition to general-purpose interconnect resources;
FPGAs have fast dedicated lines in between neighboring logic
blocks. The most common type of fast dedicated lines are
carry chains. Carry chains allow creating arithmetic functions
(like counters and adders) efficiently (low logic usage & high
operating speed).

In addition to logic, all new FPGAs have dedicated blocks
of static RAM distributed among and controlled by the logic
elements. RAMs may be single port or dual port or even quad
port. There are two types of internal RAMs in an FPGA
namely, blockrams and distributed RAMs. The size of the
RAM needed usually determines which type is used. The big
RAM blocks, are blockrams which are dedicated areas in the
FPGA. The small RAM blocks are either in smaller blockrams
(Altera FPGAs), or in distributed RAM (Xilinx FPGAs).
Distributed RAM allows using the FPGA logic-cells as tiny
RAMs which provide a very flexible RAM distribution in an
FPGA, but isn't efficient in term of area (a logic-cell can
actually hold very little RAM). Altera prefers building
different size blockrams around the device (more area
efficient, but less flexible). Other features that have been
observed more recently inside the FPGA architecture is the
introduction of dedicated blocks such as DSP accelerators
(hardwired multipliers with corresponding accumulators, high-
speed clock management circuitry, and serial transceivers),
embedded hard processor cores such as PowerPC [17] or
ARM [18], and soft processor cores such as Nios [17] or
Microblaze [18], [19]. Worth mentioned for control
applications is the recent integration of an analog to digital
converter in the Fusion mixed-signal FPGA from Actel [20].
However, this SoC trend does not replace the former generic
architecture, but it can be seen as a complement to this
original array.

FPGA pins are divided into 2 categories, dedicated pins
and user pins (Input-Output or I/O pins). Dedicated pins are

hard-coded to a specific function and are subdivided to power
pins (ground or power), configuration pins (used to download
to FPGA), and dedicated pins or clock pins. I/O pins can be
programmed to be inputs, outputs, or bi-directional (tri-state
buffers). Each I/O pin is connected to an IOB inside the
FPGA. The IOBs are powered by the VCCO pins (I/O power
pins). The FPGA VCCO pins (I/O power pins) are usually all
connected to the same voltage. New FPGA generations feature
user I/O banks in which I/Os are split into groups, each having
its own VCCO voltage. This is useful for example if one part
of the board works with 3.3V logic, and another with 2.5V.

FPGAs usually require two voltages to operate namely a
core voltage and an IO voltage. Each voltage is provided
through separate power pins. The internal core voltage or
VCCINT, is used to power the logic gates and flip-flops inside
the FPGA. The voltage can range from 5V for older FPGA
generations, to 3.3V, 2.5V, 1.8V, 1.5V and even lower for the
latest devices. The core voltage is fixed and is set by the
FPGA model used. The I/O voltage or VCCO is used to power
the IOBs of the FPGA and should match what the other
devices connected to the FPGA expect. Specifically, FPGA
devices allow VCCINT and VCCIO to be the same (i.e., the
VCCINT and VCCIO pins could be connected together). But
since FPGAs tend to use low-voltage cores and higher voltage
IOs, the two voltages are usually different.

The latest FPGAs are produced using a 40-nm copper
process [17] and their density can reach more than 680K logic
elements or 13 million equivalent gates per chip with clock
system frequencies approaching 600 MHz. Nevertheless, it is
important to note that these specifications are only valid for a
short while as technology evolves fast. The two major FPGA
manufacturers are Xilinx [18], and Altera [17], while Lattice
[21], Actel [20], Quicklogic [22] are smaller players.

To define the behavior of the FPGA, the user provides a
Hardware Description Language (HDL) or a schematic design.
The HDL form might be easier to work with when handling
large structures because it's possible to just specify them
numerically rather than having to draw every piece by hand.
On the other hand, schematic entry can allow for easier
visualisation of a design. Then, using an Electronic Design
Automation (EDA) tool, a technology-mapped netlist is
generated. The netlist can then be fitted to the actual FPGA
architecture using a process called place-and-route, usually
performed by the FPGA company's proprietary place-and-
route software. The user will validate the map, place and route
results via timing analysis, simulation, and other verification
methodologies. Once the design and validation process is
complete, the binary file generated (also using the FPGA
company's proprietary software) is used to (re)configure the
FPGA. This binary file is then transferred to the FPGA via a
serial interface (JTAG) or to an external memory device like
an EEPROM.

The most common HDLs are VHDL and Verilog,
although in an attempt to reduce the complexity of designing
in HDLs, there are moves to raise the abstraction level through
the introduction of alternative languages such as SystemC
(more of a system description language rather than hardware
one), HandelC and SystemVerilog.

To simplify the design of complex systems in FPGAs,
there exist libraries of predefined complex functions and
circuits that have been tested and optimized to speed up the
design process. These predefined circuits are called
Intellectual Property (IP) cores, and are available from FPGA
vendors and third-party IP suppliers.

In a typical design flow depicted in Fig. 2, one starts by
modeling the behavior of the entire system (Electronic System
Level – ESL) using a high-level language such as C, C++, or
MATLAB prior to HDL coding of the RTL description of the
design. During the ESL stage several test vector files could be
extracted to be used during the verification stages.

Throughout a design process the design is simulated at
multiple stages. Initially the HDL RTL description is
simulated through a testbench running test vectors in order to
verify the system’s behavior and observe results. Following,
the synthesis engine turns the RTL design into a design
implementation in terms of logic gates (netlist file). At this
point simulation may be run (post-synthesis simulation) to
confirm that the synthesized circuit conforms to the initial
behavior (also verify timing). Finally the design is laid out in
the FPGA at which point propagation delays can be added and
the simulation run again with these values back-annotated
onto the netlist.

Figure 2. FPGA design flow.

III. FPGA IMPLEMENTATION OF FUZZY CONTROLLERS

Fuzzy chips are distinguished into two classes depending
on the design techniques employed: digital and analog. The
first fuzzy chip was reported in 1986 at AT&T Bell
Laboratories [23]. The digital approach originated from Togai
and Watanabe’s paper [23] and resulted in some interesting
chips [24], [25]. Other digital architectures were reported in
[26], [27]. Analog chip approaches begun with Yamakawa in
[28], [29].

This section presents the design of a parameterized digital
fuzzy logic controller (DFLC). By the term parameterized we
mean that the DFLC facilitates scaling and can be configured
for different number of inputs and outputs, number of
triangular or trapezoidal fuzzy sets per input, number of
singletons per output, antecedent method, divider type, and
number of pipeline registers for the various components in the
model. This parameterization enables the creation of a generic
Fuzzy Processor (FC) core than can be used to produce fuzzy
processors of different specifications without the need of
redesigning the FC core from the beginning. The fuzzy logic
processor architecture assumes overlap of maximum two

fuzzy sets between adjacent fuzzy sets and requires 2n clock
cycles (input data processing rate, n is the number of inputs),
since it processes one active rule per clock cycle. The
architecture of the design allows one to achieve a core
frequency speed of 100 MHz, while the input data can be

sampled at a clock rate equal to1 2n of the core frequency

speed (100 MHz), while processing only the active rules. To
achieve this timing result the latency of the chip architecture
involves 11 pipeline stages each one requiring 10 ns. The
discussed DFLC is based on a simple algorithm similar to the
Takagi-Sugeno (T-S) of zero-order type inference and
weighted average defuzzification method [30], [31], and based
on the chosen parameters employs four 12-bit inputs and one
12-bit output, with up to 7 trapezoidal or triangular shape
membership functions per input with a degree of truth
resolution of 8-bit and a rule base of up to 2401 rules.

It is well known that T-S fuzzy controllers can provide an
effective representation of complex nonlinear systems in terms
of fuzzy sets and fuzzy reasoning. The T-S method is
considered a quite simple method, leads to fast calculations
and is relatively easy to apply. Moreover a fuzzy controller
based on the T-S method provides a good trade-off between
the hardware simplicity and the control efficiency. In the T-S
inference rule, the conclusion is expressed in the form of
linear functions. Rules have the following form:

Rule Ri: IF x1 IS A
1
i AND … AND xk IS A

k
i

THEN yi = c
0
i + c

1
i x1 + … + c

k
i xk

where, x1,…xk represent the input variables, A
1
i,…A

k
i

represent the input membership functions, yi represent the
output variable, and c

0
i,…c

k
i are all constants. A zero-order

model arises (simplified T-S functional reasoning), if we only
use the constant c

0
i at the output, hence yi=c

0
i (singleton

outputs). In the discussed T-S model, inference with several
rules proceeds as usual, with a firing strength associated with
each rule, but each output is linearly dependent on the inputs.
The output from each rule is a moving singleton, and the
deffuzified output is the weighted average of the contribution
of each rule, as shown in the following equation (Eq.1):

 1

1

m
i i

i

m
i

i

w y

y

w

=

=

∑
=

∑

 (1)

where w
i
 is the weight contribution of the left part of the i

th

rule and for AND method connection is given by Eq.2:

1

()
i

k

n

i

kA

k

w xµ
=

= ∏ or
1

min ()
i

k

n
i

kA
k

w xµ
=

= (2)

A block diagram illustrating the T-S mechanism is
depicted in Fig. 3.

Figure 3. Takagi-Sugeno (T-S) mechanism.

The Table 1 below summarizes the characteristics of the
parameterized DFLC based on the chosen parameters (VHDL
package file).

TABLE I. DFLC SOFT CORE CHARACTERISTICS

Fuzzy Inference System (FIS)

type

Takagi-Sugeno zero-order type

Inputs 4

Input resolution 12-bit

Outputs 1

Output resolution 12-bit

Antecedent Membership
Functions (MF’s)

7 Triangular or Trapezoidal
shaped per fuzzy set

Antecedent MF degree of truth

(α value) resolution

8-bit

Consequent MF’s 2401 Singleton type

Consequent MF resolution 8-bit

Maximum number of fuzzy

inference rules 2401 (
. .

. .
no of IPs

no of MFs)

AND method MIN (Gödel minimum t-norm)

Implication method PROD (Larsen product t-norm)

MF overlapping degree 2

Defuzzification method Weighted average

The DFLC architecture [11] (shown in Fig. 4) is composed
of a number of blocks coded in a parameterized style to result
in a fully parametric core. The design architecture is broken in
three major hierarchical blocks, namely: “Fuzzification”,
“Inference” and “Defuzzification”. The “CPR” blocks
represent the number of pipeline stages for each component
(component pipeline registers), the “PSR” blocks indicate the
path synchronization registers, while the “U” blocks represent
the different components of the DFLC. The component named
after DCM (U0) is the Digital Clock Manager and is one of

four components available in the specific FPGA library
chosen (Spartan-3 1500-4FG676) [18]. The latter accepts the
FPGA board (Memec 3SMB1500) clock (clk) of 75 MHz and
is configured to generate a divided clock signal (clkdv) of 75
MHz/12=6.25 MHz and a multiplied clock signal (clkfx)
which is 6.25·16=100 MHz for the DFLC core operation. It is
worth mentioning here that the above frequency values can
vary by adjusting the DCM generic parameters. A control
logic component (control_logic_p, U2) is implemented on the
top structural entity (binds FC core, DCM, R1, R2 and control
logic) of the design that provides two signals named
“ready_in” and “ready_out”, used to provide input and output
data-ready signals for handshaking with external devices.

Figure 4. Parameterized DFLC soft core architecture.

Processing all rule combinations for each new data input
set would greatly reduce the overall processing rate, for this
reason we have chosen to process only the active rules, i.e.
those rules that give a non null contribution to the final result.
Given the fact that the overlapping between adjacent fuzzy
sets is of order 2, the described processing bottleneck is
overcome by using an active rule selection block (ars_p) to
calculate the fuzzy set region in which the input data
corresponds to. As a consequent, for the 4-input DFLC with 7
membership functions per input, only 16 active rules need to
be processed instead of all 2401 rule combinations in the rule
base,.

The simulation snapshot in Fig. 5 depicts the data flow for
all the signals specified in Fig. 4. A newly arrived input data
set is clocked on the rising edge of the clkdv_out clock, with a
fraction of 1/16 the frequency of the clkfx_out clock, providing
the necessary time (16 algorithmic clock cycles) for the Address
Generator (pipeline stage, cpr1) to generate the signals
corresponding to all active rules (2

nd
-17

th
 clock cycles). Here, we

remind that by using the ars_p block we effectively identify and
process 16 active rules per clock cycle instead of 2401.

c
p
r1

c
p
r3

c
p
r5

cp
r7

c
p
r9

Figure 5. Pipelined data flow

The total data processing time starting from the time a new
data set is clocked at the inputs until it produces valid results
at the output requires a processing time of 270 ns which is
analyzed in 16 algorithmic clock cycles (each active rule is
processed in one clock cycle) and 11 clock cycles due to
pipelining. This effectively characterizes the input data
processing rate of the system (a new valid data set is given at
the output every 16 clocks or 160 ns), while the DFLC core
operates at an internal clock frequency operation of 100 MHz
or 10 ns period. Along with the proposed DFLC architecture, a
modified model with LUT based Membership Function (MF)
generator blocks, instead of arithmetic based, has been
implemented which is not analyzed here. The latter DFLC
model achieves a better timing result with the same levels of
pipelining, but with significant increase in FPGA area
utilization compared to the discussed model. It is obvious that
since the MF’s are ROM based any type and shape could be
implemented.

To further improve the data processing rate of afore
mentioned DFLC a method named “Odd-Even” by the authors
[12] has been used to effectively separate the fuzzy sets to odd
and even regions. The modified DFLC featuring the discussed
method features two 8-bit inputs and a 12-bit output, with up
to 7 trapezoidal or triangular shape membership functions per
input and a rule base of up to 49 rules (see Fig. 6).

Figure 6. DFLC architecture with “Odd-Even” method.

Using the “Odd-Even” method, we manage to process for
the same model case scenario, two active rules per clock
cycle, thus increasing significantly the input data processing

rate of the system to 2 2
n , where n is the number of inputs.

The architecture of the design achieves a core frequency speed
of 200 MHz, allowing the input data to be sampled at a clock
rate equal to half of the core frequency speed (100 MHz). The
total processing time of the chip architecture involves 13
pipeline stages each one requiring 5 ns.

It’s worth mentioning here that all the VHDL codes for the
DFLC models are fully parameterized allowing us to generate
and test DFLC models with different specification scenarios.

IV. FPGA IMPLEMENTATION OF GENETIC ALGORITHMS

Genetic Algorithms (GAs), initially developed by Holland
[32], are based on the notion of population individuals
(genes/chromosomes), to which genetic operations as
mutation, crossover and elitism are applied. GAs obey
Darwin’s natural selection law i.e., the survival of the fittest.
GAs have been successfully applied to several hard
optimization problems, due to their endogenous flexibility and
freedom in finding the optimal solution of the problem [33],
[34].

However, the most serious drawbacks of software-
implemented GAs are both the vast time and system resources
consumption. Keeping that in mind, a multitude of hardware-
implemented GAs have been evolved mainly during the last
decade, exploiting the rapid evolution in the field of the
FPGAs technology and achieving impressive time-speedups.

This section deploys the design and hardware
implementation of a parameterized GA IP core on an FPGA
chip [13], [14]. The genetic operators applied to the genes of
the population are crossover, mutation and elitism, whose
employed method is parametrically selected. The designed
selection algorithm is the “Roulette Wheel Selection
Algorithm”. A software implementation of the designed GA
using the MATLAB platform has also been developed to
produce input and output test vectors for the performance
evaluation of the hardware implemented GA using several
benchmark functions. Finally, after adapting the proposed
hardware implemented GA to the Travelling Salesman
Problem (TSP), a successful solution to it has been found. The
evaluation of the algorithm was performed using the TSP and
several benchmark functions.

A high level view of the architectural structure of the
presented GA is shown in Fig. 7. The system is composed of
six basic modules i.e. control module, fitness evaluation
module, selection module, crossover module, mutation module
and observer module. The control module implements a
Mealy state machine, which feeds all other modules with the
necessary control signals guaranteeing their synchronized
execution. The selection module implements the Roulette
Wheel Selection Algorithm [33], [34] picking the genes of the
current population (parents), which will be genetically
processed in order to create the individuals of the new
population (offsprings/children).

Following, the crossover and mutation modules perform
the corresponding genetic operations on the selected parents of
the current generation. Thereafter, the fitness evaluation
module not only computes the fitness of each offspring
produced by the previous mentioned modules but also applies
elitism to them, creating the elite genes for the next
generation. The task of the observer module is to determine if
the stopping criteria of the GA i.e., maximum number of
generations, fitness limit, have been met so as to decide the
continuation or not of the algorithm.

Four random number generators (RNG) are also used to
produce both the initial random generation and the necessary
random numbers. Additionally, one RAM is needed for the
storage of the current gene population (RAM 1) and another
one for the storage of the selected parents (RAM 2) of each
generation.

C
o
n
tr

o
l

M
o
d
u
le

C
o
n
tr

o
l

M
o
d
u
le

Figure 7. Architectural structure of the GA (high level view).

The parameters of the GA are summarized in Table 2.

TABLE II. CHARACTERISTICS OF THE GA IMPLEMENTATION

Parameter name Description Possible

Value

genom_lngt Chromosome length in bits 16

score_sz Fitness value bit resolution 16

pop_sz Population size 32

scaling_factor_res Bit resolution of the random
number used in RWS algorithm

4

elite Number of elite children 2

mr Mutation rate 80

The GA architecture (Fig. 8) is broken into separate blocks
each one of which performs a particular task, coordinated by
the control block. Moreover, the blocks communicate with the
control module notifying their state i.e., ready out signals.
Signal and data buses are noted on the block diagram with
tenuous and bold lines respectively.

A performance evaluation of the GA using the TSP has
been performed by comparing the time needed to find the
optimal solution using the software version vs. the hardware
implementation of. Table 3 summarizes the results for eight
cities, 60 generations and 32 individuals where an impressive
speedup ratio of 11,035 can be observed. Moreover, the

algorithm was tested using the benchmark burma14 derived
from the TSPLIB [35] (analytical results presented in [13]).

Figure 8. GA architecture

TABLE III. SOFTWARE VS. HARDWARE IMPLEMENTED GA

GA version Time (ms)

Hardware (clk =10.8 ns) 1.702

Software (Pentium 4 3.2Ghz 1Gb RAM) 18,783

The performance of a GA can be evaluated by several
benchmark functions found in literature [36], [37], i.e. its
ability to reach the optimum of an objective function. The GA
core discussed here has been tested using the before
mentioned functions. The results are analyzed in [13].

The GA IP core is fully parameterized in terms of the
number of population individuals (pop_sz) and their resolution
in bits (genom_lngt), resolution in bits of the fitness
(score_sz), number of elite genes in each generation (elite),
method used for crossover (cross_method) and mutation
(mut_method), number of maximum generations (max_gen),
mutation probability (mr) and its resolution in bits (mut_res),
as well as the resolution in bits of the scaling factor r used by
the RWS algorithm. The core parameterization allows the
adaptation of the GA to any problem specifications without
any further change to the developed VHDL code. The
hardware implemented GA operates at a clock rate of 92 MHz
(10.8 ns) and achieves a remarkable speedup when compared
to its software version implemented in MATLAB.
Furthermore, the FPGA resources regarding area and RAM
requirements are kept small according to the place and route
report [13], [14].

The presented IP core design when compared to other GAs
hardware implementations [38], [39], [40], [41], operates at a
clock frequency up to five times faster and implements more
than one crossover and mutation methods, which can be
changed during its execution. In addition, the core utilizes
more parameters and is evaluated not only by using
benchmarking functions but also by solving the NP–complete
TSP.

V. SOC FOR ROBOT PATH TRACKING

A SoC implementation for robot path tracking [15], [16]
on a differential-drive Pioneer 3-DX8 mobile robot is
presented in this section. The SoC mainly consists of a DFLC
core implementing the fuzzy tracking algorithm and a Xilinx
Microblaze soft processor core acting as the top level flow
controller.

The FPGA board hosting the SoC was attached to an
actual differential-drive Pioneer 3-DX8 robot that has been
used in running experiments of the tracking scheme. The
developed SoC attains a core frequency speed of 71 MHz. The
input data to the DFLC IP can be sampled at a clock rate equal to

1 2n of the core frequency speed, and processing is performed

accounting for only the active rules. To achieve this timing result
the latency of the chip architecture involves 9 pipeline stages
each one requiring 14.085 ns.

The fuzzy tracking algorithm used, is based on a previous
fuzzy path tracker developed by the authors [42]. The fuzzy
logic (FL) tracker has undergone some alterations due to the
hardware restrictions posed by the DFLC soft IP core. While the
original fuzzy logic controller (FLC) was Mamdani-based

[43]with Gaussian membership functions, the one deployed here
is a Takagi-Sugeno zero-order type FLC with triangular
membership functions and an overlap of two between adjacent
membership functions. The parameterized DFLC IP core
discussed in Section III is utilized here and according to the
specifications of the fuzzy tracker model, its parameters were
appropriately set to form the following characteristics: two 12-bit
inputs, one 12-bit output, and 9 triangular shape membership
functions per input with a degree of truth resolution of 8 bits and
a rule base of up to 81 rules [15], [16]. Further, the “spatial
window” technique that was also introduced in [42] has been
incorporated in the tracking scheme.

The system consists of four modules tied together. An
overview can be seen in Fig. 9 (a), and an actual depiction in
Fig. 9 (b).

Figure 9. Overview of the system (b) Actual depiction of the system during

an experiment. The FPGA, laptop and GPS antenna are clearly visible while
the GPS receiver is under the laptop

The SoC implements the autonomous control logic of the
P3 robot. It receives odometry information from the robot and
issues steering commands outputted by the FL tracker. Several
other tasks realized by the SoC besides the steering control
include: (i) decoding the information packets sent by the robot
which include the pose estimation done by the robot, (ii) the
status of the motors, and (iii) encoding the steering commands
in a data frame that is accepted by the robot. So, in other
words, the SoC implements a codec for the I/O
communication with the P3 robot. Additionally, it also relays
some critical information to a MATLAB monitoring program
that has been developed. The top-level program that attends to
all these tasks and also handles synchronization and timing
requirements is written in C and executed by the Microblaze
soft processor core.

The ActivMedia P3-DX8 robot [15], [16] is the platform
where the SoC was tested on. The robot employs a 1 mm
resolution for the position estimation and 1° angle resolution
for the heading. The kinematics of the robot are emulated to a
bounded curvature steering vehicle and not that of a
differential drive one i.e., there is an imposed constraint on the
maximum curvature it can turn with. This constraint is a result
of the fuzzy tracking algorithm being intended for the Dubin’s
Car model [44] where there is a minimum turning radius
constraint on the robot and only forward motion.

The robot connects to the FPGA board through a serial
cable to send and receive framed data. ActivMedia uses its
own data framing protocol handled by the robot’s
microcontroller. The data sent from the robot are named Server

Information Packets (SIP packets) while the received data are
named Command Packets. More information on the data
framing protocol can be found in the robot’s manual [45].
Experiments clearly showed that even though the FL tracker
performs well, its actual performance is severely degraded by
the odometry’s accumulation of errors over time. Several
calibration tests were carried out in order improve odometry
localization but as it was expected, position estimation through
odometry proved ineffective.

A high level view of the proposed SoC architecture is
illustrated in Fig. 10.

Figure 10. SoC high-level hardware system view.

The architecture of the SoC consists mainly of the DFLC
that communicates with the Microblaze processor through the
Fast Simplex Bus (FSL), the utilized block RAMs (BRAM)
through the LMB bus, and other peripherals such as the
general purpose input/output ports (GPIO), and UART
modules via the OPB bus. The DFLC incorporates the fuzzy
tracking algorithm, whereas the Microblaze processor mainly
executes the C code for the flow control.

The U_fpga_fc component is embedded in the flc_ip top
structural entity wrapper which is compliant with the FSL
standard and provides all the necessary peripheral logic to the
DFLC soft core IP in order to send/receive data to/from the FSL
bus. The flc_ip wrapper architecture is shown in Fig. 11.

A MATLAB application was developed for monitoring and
initialization purposes. The MATLAB application displays
useful information about the robot’s pose and speed, as
estimated by the robot’s odometry, as well as some other data
used for the path tracking control. Furthermore it calculates
the robot’s position relative to the world and the local
coordinate systems.

The application communicates with the FPGA board through
a bridged USB connection. It receives and analyzes data relayed
by the SoC, mainly the SIP packets that the robot sends. The
program decodes the SIP packets and extracts odometry
information. It also incorporates the same routine used in the
SoC for catching and fixing encoder overflows.

Moreover, the MATLAB application incorporates the
main world frame and carries out transformations from local

to global coordinates. The GUI depicts the world map in
global coordinates, as illustrated in Fig. 12.

Figure 11. Top wrapper.

Figure 12. Snapshot of the GUI after an experiment. The solid line represents

the desired path while the dashed line the actual path. The map illustrates

part of the 2nd floor of the Electrical & Computer Engineering faculty of

NTUA. All units are in millimetres.

An additional important function of the MATLAB
application is to provide a path for the robot to track. Since the
current application deals only with the path tracking task and
not path planning routine, the path is drawn in the
application’s GUI by hand as a sequence of points encoded
properly and downloaded to the SoC. At that point in time, the
SoC begins the tracking control. The program uses a linear
interpolation scheme to produce all the data samples of the
path under a fixed sampling spacing, i.e., the distance between
two sample points on the path is constant. The application
allows choosing the number of interpolation points. The
aforementioned interpolation routine was chosen after field
observations on different interpolation schemes such as
polynomial, cubic and linear and produced the best results.

The MATLAB GUI depicts the pose of the robot in real
time along with other information sent by the SoC. In
particular, when the spatial window is of order one, i.e., when
only the closest point is considered, the SoC sends the two
calculated controller inputs.

Next, the results of two experiments of the system are
discussed. The experiments took place inside the NTUA
campus. The goal was to assess the overall efficiency of the
system and particularly of the fuzzy tracker. The experiments
include tracking two prescribed paths. The first one is a
straight line path while the second one is an S-shaped path. In
order to log the actual position of the robot during the runs, a
DGPS antenna and receiver was mounted onto it. The DGPS
system used is the Trimble 4700 GPS receiver. The GPS was
set to Kinematic Survey mode where the path is solved in
post-processing, not real time. In this mode the horizontal
precision is ±1cm+1ppm for a baseline under 10Km. The
occupation is 1 second i.e., a positional sample is calculated
each second. The results of the two experiments for the
straight and the S-shape runs are shown in Fig. 13 (a) and (b)
respectively.

0 1 2 3 4 5

2

4

6

8

10

12

14

X (m)

Y
 (
m
)

GPS

odometry

path

-2 0 2 4

2

4

6

8

10

12

14

16

18

X (m)

Y
 (
m
)

odometry

GPS

path

Figure 13. (a) The straight run experiment with the reference path (solid), the

odometry position estimation (dashed) and the DGPS estimation (dotted). (b)
The S-shaped path experiment with the reference path (solid), the odometry

position estimation (dashed) and the DGPS estimation (dotted).

In the straight run experiment the robot was set to follow a
25m straight path while its initial position was not on the path.
The depiction in Fig. 13 (a) does not present the entire run, but
rather the segment where the GPS solution is of the highest
quality (quality factor Q=1) since in order to assess the path
tracker’s performance we need a high precision position
estimation. This must not be confused with the position
estimation module that the tracker uses, which in this case is
derived from odometry data. The GPS is used in order to see
the actual position of the robot, thus a degraded GPS solution
is useless and positional data of a Q factor greater than 1 (with
1 being the best and 6 the worst) have been discarded.

The second run in Fig. 13(b) presents the tracking of an
S-shaped path. The same conditions regarding the GPS data
also apply to this run. The S-shaped path has a length of

approximately 25m. All GPS data with Q>1 have been
discarded. It is evident from both experiments that the path
tracker performs well. It should also be noted that the S-
shaped path is not actually a feasible reference path since the
curvature derivative is discontinuous at the polygons vertices.
However if the discontinuity is small, the robot is expected to
provide an accurate tracking. Furthermore the odometry
position estimation is very close to the path. This means that if
higher precision position estimation is used with the path
tracker, such as a Real-Time Kinematic DGPS data feed that
provides positional data to the path tracker in real-time, the
tracker will perform even better. This is part of the future
work of the authors. Moreover, the FPGA can easily
incorporate data from other sensors and provide additional
output.

VI. CONCLUSION

FPGA technology, HDLs and EDA tools in recent years
has allowed for the development of high performance
intelligent control systems for industrial and robotic
applications. Modern EDA software tools are used nowadays
by the designers to create, simulate and verify the correct
operation of a model of a complex system without the need of
committing to hardware.

In this work several intelligent control system applications
implemented on FPGA chips were presented. Three
parameterized reusable FPGA cores, among them two fuzzy
logic processors [11], [12] and a genetic algorithm processor
unit [13], [14], previously developed by the authors, were
discussed. Furthermore, a SoC for a path tracking task
application on a differential-drive Pioneer 3-DX8 mobile
robot [15], [16] was presented, that successfully utilizes the
previously developed parametric DFLC core. The DFLC
interfaces with a soft processor core and other secondary
cores. The scalability of the fuzzy logic processor core [11]
easily allowed adapting it to the fuzzy tracker model [42]
without the need of recoding the core.

REFERENCES

[1] Dong-Hahk Lee, Anna Choi, Jun-Mo Koo, Jin-Ick Lee, and Byung

Moo Kim, “A wideband DS-CDMA modem for a mobile station,”
IEEE Transactions on Consumer Electronics, vol. 45, 1999, pp.

1259-1269.

[2] S. Ovaska and O. Vainio, “Evolutionary-programming-based
optimization of reduced-rank adaptive filters for reference generation

in active power filters,” IEEE Transactions on Industrial Electronics,

vol. 51, 2004, pp. 910-916.

[3] P. Pirsch, N. Demassieux, and W. Gehrke, “VLSI architectures for

video compression-a survey,” Proceedings of the IEEE, vol. 83,
1995, pp. 220-246.

[4] Ruei-Xi Chen, Liang-Gee Chen, and Lilin Chen, “System design

consideration for digital wheelchair controller,” IEEE Transactions
on Industrial Electronics, vol. 47, 2000, pp. 898-907.

[5] M. Gabrick, R. Nicholson, and J. Patton, “FPGA considerations for
automotive applications,” Detroit, Michigan: 2006.

[6] T. Li, Shih-Jie Chang, and Yi-Xiang Chen, “Implementation of
human-like driving skills by autonomous fuzzy behavior control on

an FPGA-based car-like mobile robot,” IEEE Transactions on

Industrial Electronics, vol. 50, 2003, pp. 867-880.

[7] P. Leong and K. Tsoi, “Field Programmable Gate Array technology

for robotics applications,” in Proceedings of the 2005 IEEE

International Conference on Robotics and Biomimetics (ROBIO '05),
2005, pp. 295-298.

[8] A. Kongmunvattana and P. Chongstivatana, “A FPGA-based
behavioral control system for a mobile robot,” in Proceedings of the

1998 IEEE Asia-Pacific Conference on Circuits and Systems (IEEE

APCCAS '98), Chiangmai, Thailand: 1998, pp. 759-762.

[9] T. Chang, Biao Cheng, and P. Sriwilaijaroen, “Motion control

firmware for high-speed robotic systems,” IEEE Transactions on

Industrial Electronics, vol. 53, 2006, pp. 1713-1722.

[10] R. Reynolds, P. Smith, L. Bell, and H. Keller, “The design of Mars

Lander cameras for Mars Pathfinder, Mars Surveyor '98 and Mars
Surveyor '01,” IEEE Transactions on Instrumentation and

Measurement, vol. 50, 2001, pp. 63-71.

[11] K.M. Deliparaschos and S.G. Tzafestas, “A parameterized T-S digital

fuzzy logic processor: soft core VLSI design and FPGA

implementation,” International Journal of Factory Automation,
Robotics and Soft Computing, vol. 3, Jul. 2006, pp. 7-15.

[12] K.M. Deliparaschos, F.I. Nenedakis, and S.G. Tzafestas, “Design and

implementation of a fast digital fuzzy logic controller using FPGA
technology,” Journal of Intelligent and Robotics Systems, vol. 45,

Jan. 2006, pp. 77-96.

[13] K.M. Deliparaschos, G.C. Doyamis, and S.G. Tzafestas, “A
parameterised genetic algorithm IP core: FPGA design,

implementation and performance evaluation,” International Journal
of Electronics, vol. 95, Nov. 2008, p. 1149.

[14] K.M. Deliparaschos, G.C. Doyamis, and S.G. Tzafestas, “A

parameterized genetic algorithm IP core design and implementation,”
in Proceedings of the 4th International Conference on Informatics in

Control, Automation and Robotics (ICINCO '07), Angers, France:

2007, pp. 417-423.

[15] K.M Deliparaschos, G.P Moustris, and S.G Tzafestas, “Autonomous

SoC for fuzzy robot path tracking,” in Proceedings of the European
Control Conference 2007 (ECC '07), Kos, Greece: 2007.

[16] S.G. Tzafestas, K.M. Deliparaschos, and G.P Moustris, “Fuzzy logic

path tracking control for autonomous non-holonomic mobile robots:
design of system on a chip,” IEEE Robotics and Automation

Magazine (under review).

[17] Altera literature, Jan. 2008. http://www.altera.com

[18] Xilinx documentation, 2008. http://www.xilinx.com

[19] H. Calderon, C. Elena, and S. Vassiliadis, “Soft core processors and

embedded processing: a survey and analysis,” Safe ProRisc

Workshop, 2005.

[20] Actel documentation, 2008. http://www.actel.com

[21] Lattice documentation, 2008. http://www.latticesemi.com

[22] Quicklogic documentation, 2008. http://www.quicklogic.com

[23] M. Togai and H. Watanabe, “A VLSI implementation of a fuzzy-
inference engine: toward a expert system on a chip,” Information

Sciences, vol. 38, 1986, pp. 147-163.

[24] H. Watanabe, W. Dettloff, and K. Yount, “A VLSI fuzzy logic

controller with reconfigurable, cascadable architecture,” IEEE

Journal of Solid-State Circuits, vol. 25, Apr. 1990, pp. 376-382.

[25] K. Shimuzu, M. Osumi, and F. Imae, “Digital fuzzy processor FP-
5000,” Fuzzy Logic Systems Institute, Iizuka, Fukuoka, Japan: 1992,

pp. 539-542.

[26] M. Patyra, J. Grantner, and K. Koster, “Digital fuzzy logic controller:

design and implementation,” IEEE Transactions on Fuzzy Systems,
vol. 4, Nov. 1996, pp. 439-459.

[27] H. Eichfeld, T. Kunemund, and M. Menke, “A 12b general-purpose

fuzzy logic controller chip,” IEEE Transactions on Fuzzy Systems,
vol. 4, 1996, pp. 460-475.

[28] T. Yamakawa, “High-speed fuzzy controller hardware system: the
Mega-FIPS machine,” Information Sciences, vol. 45, Jul. 1988, pp.

113-128.

[29] T. Yamakawa and T. Miki, “The current mode fuzzy logic integrated
circuits fabricated by the standard CMOS process,” IEEE

Transactions on Computers, vol. 35, Feb. 1986, pp. 161-167.

[30] T. Takagi and M. Sugeno, “Derivation of fuzzy control rules from
human operator's control actions.,” in Proceedings of the IFAC

Symposium on Fuzzy Information Representation and Decision

Analysis, 1984, pp. 55-60.

[31] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its

applications to modeling and control,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 15, Feb. 1985, pp. 132, 116.

[32] J. Holland, adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and
artificial intelligence, University of Michigan Press, 1975.

[33] J.R. Koza, Genetic programming: on the programming of computers
by means of natural selection, The MIT Press, 1992.

[34] M. Mitchell, An introduction to genetic algorithms, MIT Press, 1996.

[35] G. Reinelt, “TSPLIB - A traveling salesman problem library,”

INFORMS Journal on Computing, vol. 3, Jan. 1991, pp. 376-384.

[36] J.G. Digalakis and K.G. Margaritis, “An experimental study of

benchmarking functions for genetic algorithms,” International

Journal of Computer Mathematics, vol. 79, 2002, pp. 403-416.

[37] L. Zhang and B. Zhang, “Research on the mechanism of genetic

algorithms,” Journal of Software, vol. 11, 2000, pp. 945-952.

[38] Z. Zhu, D.J. Mulvaney, and V.A. Chouliaras, “Hardware

implementation of a novel genetic algorithm,” Neurocomputing, vol.

71, Dec. 2007, pp. 95-106.

[39] C. Aporntewan, “A hardware implementation of the compact genetic
algorithm,” IEEE Congress on Evolutionary Computation, vol.

2001, 2001, pp. 624--629.

[40] Tu Lei, Zhu Ming-cheng, and Wang Jing-xia, “The hardware

implementation of a genetic algorithm model with FPGA,” in

Proceedings of 2002 IEEE International Conference on Field-
Programmable Technology (FPT'02), 2002, pp. 374-377.

[41] Wallace Tang and Leslie Yip, “Hardware implementation of genetic

algorithms using FPGA,” in Proceedings of the 2004 47th Midwest
Symposium on Circuits and Systems (MWSCAS '04), 2004, pp. I-549-

552.

[42] G. Moustris and S.G. Tzafestas, “A robust fuzzy logic path tracker

for non holonomic mobile robots,” International Journal on Artificial

Intelligence Tools, vol. 14, Nov. 2005, pp. 935-965.

[43] E. Mamdani, “Application of fuzzy algorithms for the control of a

dynamic plant,” IEEE Proceedings, vol. 121, Dec. 1974, pp. 1585-
1588.

[44] L.E. Dubins, “On curves of minimal length with a constraint on

average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, Jul. 1957,

pp. 497-516. http://www.activrobots.com/ROBOTS/p2dx.html.

[45] ActivMedia Robotics, “Pioneer P3-DX,” 2008.

