

Abstract—In this paper a System-on-a-Chip (SoC) for the
path following task of autonomous non-holonomic mobile
robots is presented. The SoC consists of a digital fuzzy logic
processor and a flow control program that runs under the
Xilinx Microblaze™ soft processor core. The fuzzy processor
implements a fuzzy path tracking algorithm introduced by the
authors. The system was tied to an actual P3-DX8 robot and
field experiments have been performed in order to assess the
overall performance. Quantization problems and limitations
imposed by the system configuration are also discussed.

Index Terms—Non-Holonomic Mobile Robots, Path Tracking,
Digital Fuzzy Logic Processor (DFLP), System-on-a-Chip (SoC),
Intellectual Property (IP) core.

I. INTRODUCTION
This paper presents a System-on-a-Chip (SoC)

implementation for robot path tracking. The SoC mainly
consists of a parameterized digital fuzzy logic processor (DFLP)
[1] Intellectual Property (IP) core implementing the fuzzy
tracking algorithm and a Xilinx Microblaze™ soft processor
core as the top level flow controller. The SoC was tied to an
actual differential-drive Pioneer 3-DX8 robot that has been used
in experiments of the tracking scheme. Similar use of hardware
designs on field programmable gate array (FPGA) chips in
robotic applications have been considered by several other
researchers [16-19] since FPGAs provide several advantages
over single processor hardware, on the one hand, and custom
dedicated hardware (ASIC) on the other. FPGAs give a faster
time-to-market, have simpler and more predictable design
cycle, and offer field re-programmability, to name a few. A
review of the application of FPGAs in robotic systems is
provided be Leong and Tsoi in [16]. A notable case study is the
use of FPGA’s in the Mars Pathfinder, Mars Surveyor ’98 and
Mars Surveyor ’01 lander crafts, analyzed in [19].

In our application the DFLP facilitates scaling and can be
configured for different number of inputs and outputs, number
of triangular or trapezoidal fuzzy sets per input, number of
singletons per output, antecedent method (t-norm. s-norm),
divider type, and number of pipeline registers for the various
components in the model. This parameterization enabled the
creation of a generic DFLP IP core that was used to produce a

Manuscript received October 16, 2006.
G. Moustris, K.M. Deliparaschos and S. G. Tzafestas are with the School

of Electrical and Computer Engineering, National Technical University of
Athens, Intelligent Robotics and Automation Laboratory, Zographou Campus,
Athens, GR 157 73 (phone: +30-210-7721527, fax:+30-210-7722489, e-mails:
gmoustri@central.ntua.gr, kdelip@mail.ntua.gr, tzafesta@softlab.ntua.gr)

fuzzy processor of different specifications without the need of
redesigning the IP core from the beginning. The fuzzy logic
processor architecture assumes overlap of two fuzzy sets
between adjacent fuzzy sets and requires 2n clock cycles (input
data processing rate), where n is the number of inputs, since it
processes one active rule per clock cycle. At the present paper
the SoC design achieves a core frequency speed of 71 MHz.
The input data to the DFLP IP core can be sampled at a clock
rate equal to 1/4n of the core frequency speed and processing is
performed accounting for only the active rules. To achieve this
timing result the latency of the chip architecture involves 9
pipeline stages each one requiring 14.085 ns. The featured
DFLP IP core is based on a simple algorithm similar to the
zero-order Takagi-Sugeno inference scheme and the weighted
average defuzzification method, and using the chosen
parameters (see Table II (a)), employs two 12-bit inputs and one
12-bit output, with up to 9 trapezoidal or triangular shape
membership functions per input with a degree of truth
resolution of 8 bits and a rule base of up to 81 rules.

The fuzzy tracking algorithm used, is based on a previous
fuzzy path tracker developed by the authors [2]. The fuzzy logic
(FL) tracker has undergone some alterations due to the
hardware restrictions posed by the DFLP IP core. While the
original fuzzy logic controller (FLC) was Mamdani-based with
Gaussian membership functions, the one deployed here is a
Takagi-Sugeno zero-order type FLC with triangular
membership functions and an overlap of two between adjacent
membership functions. Besides the FLC, the “spatial window”
technique that was also introduced in the previous paper has
been incorporated in the tracking scheme.

II. OVERVIEW OF THE SYSTEM
The system consists of four parts that have been tied

together. An overview can be seen in Fig. 1, and an actual
depiction in Fig. 11.

Embedded
FL tracker

SoC - FPGA

Matlab GUI

Serial link Serial link

Pioneer 3 DX8 Robot

Fig. 1. Overview of the system.

The FPGA SoC implements the autonomous control logic of
the P3 robot. It receives odometry information from the
robot and issues steering commands outputted by the FL
tracker. The SoC realizes several other tasks besides the
steering control; it decodes the information packets sent by

Autonomous SoC for Fuzzy Robot Path Tracking
Kyriakos M. Deliparaschos, George P. Moustris and Spyros G. Tzafestas

Proceedings of the European Control Conference 2007
Kos, Greece, July 2-5, 2007

ThD02.3

ISBN: 978-960-89028-5-5 5471

the robot which include the pose estimation done by the
robot, the status of the motors, sonar readings etc, and
encodes the steering commands in a data frame that is
accepted by the robot. In other words, the SoC implements a
codec for the I/O communication with the P3 robot.
Furthermore, it also relays some critical information to a
Matlab monitoring program that has been developed. The
top-level program that attends to all these tasks is written in
C and executed by the Microblaze™ soft processor core.
This top-level program is also treating synchronization and
timing requirements.

The Matlab application displays information about the
robot’s pose and speed, as estimated by the robot’s
odometry, as well as some other data used for the path
tracking control. It also calculates the robot’s position
relative to the world and the local coordinate systems.
Another important function of the Matlab application is to
provide a path for the robot to track. The current paper
deals only with the path tracking task and not path
planning. To compensate for this, the path is drawn in
Matlab, encoded properly and downloaded to the SoC.
Then, the SoC begins the tracking control.

The test platform on which the SoC is tested on is the
ActivMedia P3-DX8 robot [4]. The robot uses a 1 mm
resolution for the position estimation and 1°angle resolution
for the heading. The kinematics of the robot are emulated to
that of a bounded curvature vehicle and not of a differential
drive one i.e., there is an imposed constraint on the
maximum curvature it can turn with. This has been
introduced because the fuzzy tracking algorithm is intended
for the Dubin’s Car model [3] where there is a minimum
turning radius constraint on the robot and only forward
motion. As it will be explained in a later section, the
curvature constraint along with the one degree resolution of
the P3 robot presents a quantization problem on the
curvature.

The robot is connected to the FPGA through a serial
cable through which it sends and receives framed data.
ActivMedia has produced its own data frame that is encoded
into the robot’s microcontroller. The data that are sent from
the robot are named Server Information Packets (SIP packets)
while the data that are received are named Command Packets.
Both data frames can be found in the robot’s manual [5].
The experiments clearly showed that even though the FL
tracker performs well, its actual performance is severely
degraded by the odometry’s accumulation of errors over
time. Several calibration tests have been carried out in order
improve odometry localization but, as it was expected,
position estimation through odometry proved inefficient.

I. HARDWARE HIGH LEVEL SYSTEM VIEW

A high level view of the proposed SoC architecture is
shown in Fig. 2. The Microblaze™ soft processor core [6] is
licensed as part of the Xilinx Embedded Development Kit
(EDK) [7]. The processor is a soft core, meaning that it is
implemented using general logic primitives rather than a
hard dedicated block on the FPGA.

The Microblaze™ processor is based on a RISC
architecture which is very similar to the DLX architecture
described in [8]. It features a 3-stage pipeline with most
instruction completing in a single cycle. Both the
instruction and data words are 32-bits. The core alone can
obtain a speed of up to 100MHz on the Spartan 3 FPGA
family. The processor can connect to the OPB bus [9] for
access to a wide range of different modules, it can
communicate via the LMB bus [11] for a fast access to local
memory, normally block RAM (BRAM) inside the FPGA.

DFLP
Parameterized Fuzzy Logic

Processor Soft Core IP
(VHDL Implementation)

MicroBlaze™
Soft Processor

F
SL

_i
nt

er
fa

ce

FSL0 Bus

FSL1 Bus

BRAM
LMB Bus

Debug
Module

USB UART
Module

OPB Bus

GPIO Input Ports
(Push Buttons)

GPIO Output Ports
(User LEDs)

RS232 UART
Module

DDR

Fig. 2. SoC high-level hardware system view.

Moreover, the Fast Simplex Link (FSL) [10] offers the
ability to connect user IP cores acting as co-processors to
accelerate time critical algorithms. The FSL channels are
dedicated unidirectional point-to-point data streaming
interfaces. Each FSL channel provides a low latency interface to
the processor pipeline allowing extending the processor’s
execution unit with custom soft core co-processors. In this paper
the DFLP IP core is playing the role of such a co-processor and
is connected to the Microblaze™ via the FSL bus [13].

The architecture of the present SoC consists mainly of the
DFLP IP core that communicates with the Microblaze™
Processor through the Fast Simplex Bus (FSL), the utilized
block RAMs (BRAM) through the LMB bus, and other
peripherals such as the general purpose input/output ports
(GPIO), and UART modules via the OPB bus. Here, the DFLP
incorporates the fuzzy tracking algorithm, whereas the
Microblaze™ processor mainly executes the C code for the flow
control.

II. FUZZY LOGIC PATH TRACKING ALGORITHM

The FL tracking algorithm is based on [2], although
some modifications where appropriately made in order to
tailor it to the FPGA hardware platform available. The
original algorithm consists of a 9x9 Mamdani FL tracker
with Gaussian input and output membership functions. In
this work, the tracker was converted to a zero-order Takagi-
Sugeno FLC with triangular membership input functions
and an overlap of two. It is worth noting here that the two
controllers where tested in simulation against each other
and the Takagi-Sugeno FLC outperformed the Mamdani
controller.
The FL tracker uses two angles as inputs, and outputs the
curvature κ with which the robot has to turn. It is assumed

ThD02.3

5472

that the path is provided as a sequence of points in
2 following a fixed sampling spacing ∆s. In each control

loop the closest path point is picked up and the two input
angles are calculated. These angles are the angle φ1 of the
closest point with respect to the current robot heading and
the direction φ2 of the tangent of the path at that point, as
depicted in Fig. 3.

Robot Heading

Path Tangent

Closest Point

φ1

φ2

Fig. 3. Illustration of the controller inputs.

The authors have also introduced in [2] a technique
called “spatial window” that enhances the path tracking
control. This technique is based on the idea of having a
spatial window on the path rather just a single point. In this
arrangement a window of the path is used in order to
calculate the steering command, thus introducing a
“perspective” to the controller. The “spatial window” is
defined by three parameters; the window order, which is the
number of points used in the window, the window step,
which is the number of points skipped for each active point,
and the window offset which is the number of points,
counting from the closest, that moves the window forward
on the path. These parameters are depicted in Fig. 4.

Closest Point

offset

step

order

Fig. 4. Illustration of the spatial window.

Every point of the window is presented to the controller
and an appropriate curvature is calculated for each one.
Consequently, there are n computed curvatures for each
control loop, where n is the window order. From these
curvatures a final output curvature must be calculated. The
simplest method, which was exclusively used in this paper,
is the mean of the curvatures i.e.,

1 2 ... n
n

κ κ κ
κ

+ + +
= (1)

The spatial window technique provides a smoother path
tracking control and an overall better performance. It also
introduces some other interesting attributes that are
analyzed in [2] mainly high robustness and path

“denoising”.

III. TOP-LEVEL CONTROL PROGRAM

The top-level program that coordinates all actions is
written in C and runs in the FPGA under the Microblaze™
soft processor core. For the communication with the outside
world it uses two I/O channels, one serial and one USB,
having 16-byte input and output buffers. The flow chart of
the main program is illustrated in Fig. 5.

Initiate robot
communication

Hear for
incoming SIP

packets

Is whole SIP
availiable ?

no

Checksum
validno

Discard
packet

yes

Decode packet
and relay to

Matlab

yes

Extract inputs for
FLC and relay info

to Matlab

Call DFLC and
calculate
curvature

Is closest point
the last path

 point ?

Stop motors
and exit

no

Calculate steering
commands

Encode commands
and transmit them

Check for
encoder overflows

Overflow
occurred? Fix readings

no

Send
acknowledgement

to Matlab

yes

Start program
Wait for path

download

Checksum
valid

no

Send “bad
checksum” to

Matlab

yes

yes

a

b

Fig. 5. Main program flow-chart.

At the beginning, the program waits for the reference path to
download. If the checksum is valid it continues execution,
opens the connection to the robot and performs synchronization
by sending specially formed packets. At this point the robot
starts sending the SIP packets to the FPGA.

Next, the program enters into the main control loop, which
can be seen in the flowchart and, it hears for incoming SIP
packets by flushing the input buffer to an array variable. As
soon as a whole valid SIP packet is present, is decoded and
odometry information is extracted (x, y, θ). At the same time,
the packet is relayed to the Matlab environment. Due to the
small word length that is used in the SIP packet for data
encoding along with the high odometry resolution (millimeter),
the encoder readings cannot be readily used for localization. All
data in the SIP packet are encoded in signed 16-bit integers.
The data in the odometry packets are multiplied by a scaling
factor 0.485, which yields an effective range of -15892 to 15892
mm i.e., -16 to 16 meters, which is rather limited. To overcome
this obstacle, the program uses two internal coordinate variables
of type double, which maximize the range of the localization.
Essentially the program calculates the difference in the
coordinates’ change at each step and adds it to an absolute
coordinate variable. This also incorporates a “fix” algorithm
since the 16-bit integer coordinates overflow when their range
is exceeded (group (b) of Fig. 5).

ThD02.3

5473

After the calculation of odometry data, the program
execution passes to the algorithm responsible for the path
tracking control (group (a) of Fig. 5). This algorithm
implements the spatial window technique of the path tracker. It
picks up the closest path point to the robot, calculates the two
controller inputs 1 2,j jφ φ of point j of the window and calls the
DFLP for each set of inputs. Upon completion it outputs the
mean of all computed curvatures κj and returns to the main
loop.

In order to find the closest path point, the square of the
Euclidean L2 norm is being used due to the fact that the square
root calculation of the standard Euclidean distance is
computationally costly hence is being avoided in this way.
Moreover the variables used to compute this norm are of type
long long int (64-bit integer) instead of type double because
code execution is much faster this way when executed in the
Microblaze™ processor without the use of the FPU unit. This is
of crucial importance since the main algorithm bottleneck takes
place in this operation. If one considers the fact that the
downloaded path can consist of hundred of sample points, the
algorithm must cycle through all of them in order to find the
closest one. The latter can delay the execution long enough so
that the packets sent by the robot are not flushed fast enough to
the variable that contains the data, resulting to fragmented SIP
packets. This leads to the loss of the synchronization between
the FPGA and the robot because no whole SIP packet can be
reconstructed from the FPGA.

Following the calculation of the steering curvature from the
previous routine, the steering commands must be computed.
Since the Pioneer robot does not have an explicit command
regarding the curvature a turn of predefined curvature must be
implicitly issued through the combination of two other
commands; one regarding the linear velocity and one regarding
the angular velocity. Curvature κ is defined by:

/
/

d d dt
ds ds dt
θ θ ωκ

υ
= = = (2)

where θ is the steering angle of the robot, s the traveled
distance, ω the angular velocity (rad/sec) and υ the linear
velocity (m/sec). Robot command packets use linear velocity in
mm/sec and angular velocity in deg/sec. Suppose that the actual
curvature to be followed is κ in rad/m. If the linear velocity υ’
(mm/sec) is given, then the angular velocity ω’ (deg/sec) that
must be issued as a command is calculated by:

(deg/ sec) /180 180
()

(/ sec) /1000 1000
rad
m mm

ω ω π
κ ω κ υ

υ υ π
′

′ ′= = ⇒ = ⋅ ⋅′ ⋅
 (3)

However, the actual curvature κ outputted by the DFLP is an
integer ranging from -2048 to 2047 (12-bit resolution). This
curvature is normalized to [-1, 1] and multiplied by a user-
defined maximum curvature κmax since the differential drive
does not have bounds on the turning radius. In this way, one
can control the minimum turning radius that can be steered
by the P3 robot. Thus, (3) is transformed to:

max
180

2048 1000
κω κ υ

π
′ ′= ⋅ ⋅

⋅
 (4)

As soon as the robot’s velocity1 υ′ is extracted from the SIP
packet and the angular velocity ω’ is calculated from (4),
the two motion commands are transmitted back to the robot
resulting in an augmented curvature-ruled motion. One can
also note that the velocity is decoupled from the tracking
control since the control input is the curvature. The velocity
can be controlled from a speed controller independently.
This path tracking control is actually a geometric tracking
control since the curvature completely defines the robot’s
route. In other applications, such as kinodynamic tracking
where the dynamics of the robot are taken into account, one
must also incorporate the velocity into the control loop.
However in this work the velocity control is not necessary
for the tracking problem under the assumption that the
speed of the robot is small enough such that the dynamics
do not affect the kinematic behaviour.
 In an actual car-like robot the curvature constraints and the
actual motion are mechanically imposed, not emulated in the
manner described here. The way that the curvature is being
emulated in this work, presents us with another problem that is
analyzed in the following section.

IV. QUANTIZATION ISSUES
The P3 robot makes use of 16-bit integer to encode SIP

packet data. Accordingly, it also uses 16-bit integers to encode
command arguments in a command packet. However, the range
of the angular velocity command is [0, 300] deg/sec with one
deg/sec/bit. Sinceω′ can take only integer values with one
deg/sec resolution, this imposes a quantization on the curvature
as well. Solving. (3) for κ (or R=1/κ, the turning radius in
meters), one gets (5):

180
1000

R υ
ω π

′
= ⋅

′ ⋅
 (5)

Plotting the radius R versus the quantized angular
velocityω′ for 100 / secmmυ′= (see Fig. 7) one can see that the
resolution towards small curvatures (big radii) is poor going
from R=5.73 (ω′ =1) to R=2.86 (ω′ =2) to R=1.91 (ω′ =3)
while the resolution towards big curvatures (small radii) is high.
This has a severe impact on the way the controller can follow
the path. When the robot is on the path i.e., , 01 2φ φ ≈ the FLC

issues commands of small curvature (big radius) to avoid
“nervous” steering, e.g. oscillations. If the resolution in the
range of small curvatures is poor, as described above, the
control is degraded since the curvature commands are clipped
to the available resolution levels. Furthermore, since there is a
constraint on the minimum turning radius, all values of Fig. 6
below the lower bound Rmin, which was set to 1m in our case
studies, are unattainable by the robot. For 100 / secmmυ′= , there
are only six radii over 1m i.e. only six curvatures the robot can

1 The P3 robot uses its own controller for velocity control. When the user

issues a velocity command, the robot uses a velocity profile algorithm to
acquire the prescribed speed. Thus, the speed used in the calculation of (4) is
not the set-point speed but the actual robot speed as reported back from the
robot in the latest SIP packet.

ThD02.3

5474

turn with. Since R is monotonically decreasing with respect
toω′ and the latter starts from 1deg/sec, one can find the
number of available quantization levels by substituting R=1 in
(5) and solving for ω′ , i.e.,

180
1000

Lnum υ
π

 ′= ⋅ ⋅
 (6)

, where is the floor function.
By inspection of (5) and (6) one can see that by increasing

the velocityυ′ , the maximum turning radius increases
linearly along with the resolution in that range i.e., the Lnum.

Fig. 6. Illustration of the quantization of the actual turning radius for
υ'=100 mm/sec.

The obvious solution for the increase of the curvature
resolution is to increase the speed. Of course, this raises the
problem of finding an appropriate robot speed since low
speed reduces the curvature resolution but a high speed
might result to an unresponsive system. To estimate an
acceptable error level between the curvature computed by
the FLC and the actual curvature the robot follows, we draw
the maximum relative error versus all available speeds over
all available inputs i.e.,

1 2100 max() / , ,ACTUAL ACTUALFLCκ κ κ ϕ ϕ⋅ − ∀ (7)
In this way one can see the maximum possible relative

error for each speed between the actual and the desired
curvature. This error is illustrated in Fig. 7. The minimum
turning radius was set to one meter (κmax=10-3).

Fig. 7. Maximum relative error between actual and desired turning
curvature versus speed, over all possible inputs of the controller.

As one can see, as the speed increases the error decreases.
An acceptable trade-off speed seems to be 1000 mm/sec (or 1
m/sec) where the error drops below 1.745%. For this speed,
the available quantization levels, as derived from (6) are

Lnum=57. As a result, the robot’s speed was set to 1000 mm/sec
in all field experiments.

V. SOC HARDWARE ARCHITECTURE
The SoC design presented in this work was implemented

on the Spartan-3 MB development kit (DS-KIT-3SMB1500)
by Memec Design [14].

TABLE I
FPGA PLATFORM KEY FEATURES

Xilinx XC3S1500-4FG676C Spartan-3 FPGA
16 M x 16 DDR memory, 2 M x 16 flash memory
Platform Flash ISP PROMs
10/100 Ethernet PHY, USB 2.0 and RS232
2 7-segment LED displays
4 User LEDs, 2 Push Buttons, 8 Pos. Dip Switches
On-board clock oscillator
JTAG configuration port
75 MHz Clock Oscillator
2 x 16 Character LCD
Two P160 expansion slots
System ACE/User I/O Header
LVDS tx/rx interface

The Spartan-3 MB system board utilizes the 1.5million-gate
Xilinx Spartan-3 device (XC3S1500-4FG676) in the 676-pin
fine-grid array package. The key features of the selected FPGA
platform are synopsized in Table I.
The component pipeline registers (CPR) blocks on Fig. 10
indicate the number of pipeline stages for each component;
the “PSR” blocks indicate the path synchronization
registers, while the “U” blocks represent the different
components of the DFLP IP core. The U_fpga_fc
component is embedded in flc_ip top structural entity
wrapper, which basically provides all the necessary
peripheral logic to the DFLP IP core in order to be able to
receive/send data to the FSL bus and thus be compliant with
the FSL bus standard. The flc_ip wrapper architecture is
also shown in Fig. 10. The chosen (generic) parameters
(generics definition VHDL package) for the parameterized
DFLP IP core (U_fpga_fc) and its characteristics are
summarized in Table II (a), (b) respectively. The U_fpga_fc
alone was synthesized using Synplify Pro synthesizer tool,
while the rest of the design components were synthesized by
Xilinx Synthesis Tool (XST) through the EDK Platform
Studio. The produced .edf file for the U_fpga_fc is been
seeing by the flc_ip wrapper as a blackbox during the XST
flow.
 The placement and routing of the SoC design into the FPGA
was done through the EDK by calling the Xilinx ISE tool.
Based on the total device utilization (see Table IV), the
DFLP IP itself occupies 1600 (6%) LUTs, 4 Block
Multipliers (MULT18X18s), 12 64x1 ROMs (ROM64X1),
and 56 256x1 ROMs (ROM256X1). The implemented
design uses two Digital Clock Manager (DCM) Modules
(DCM_0 and DCM_1) for the different clocks production in
the FPGA. The SoC achieves a system clock’s (DCM_0)
operating frequency of 14.140ns or ~71 MHz, while
DCM_1 is mainly used for clocking the external DDR
RAM. The FPGA device utilization summary after the
design has been placed and routed is shown in Table III.

ThD02.3

5475

TABLE II (A)
DFLP SOFT CORE IP CHOSEN PARAMETERS

Parameters
(VHDL generics) Value Generic Description
ip_no 2 Number of inputs
ip_sz 12 Input bus width (bits)
op_no 1 Number of outputs
op_sz 12 Output bus width (bits)

FS_no 9
Number of membership functions
(same for all inputs)

dy 8 Degree of Truth width

sel_op 0
Antecedent method connection:
0 : min, 1: prod, 2: max, 3: probor

div_type (Divider
Model)

1 0 : restoring array
1 : LUT reciprocal approximation

PSR Signal Path Route
psr1_no 1 ip_set→psr1_no→trap_gen_p
psr2_no 4 s_rom→psr2_no→mult
psr3_no 1 s_rom→psr3_no→rul_sel_p
psr4_no 1 cpr5→psr→int_uns
CPR Component (Entity) Name
cpr1_no 1 addr_gen_p
cpr2_no 1 cons_map_p
cpr3_no 3 trap_gen_p
cpr4_no 0 rule_sel_p
cpr5_no 2 minmax_p
cpr6_no 1 mult
cpr7_no 0 int_uns
cpr8_no 0 int_sig
cpr9_no 2 div_array

TABLE II (B)
DFLP CHARACTERISTICS

Fuzzy Inference System (FIS) type Takagi-Sugeno zero-order type
Inputs 2
Input resolution 12 bit
Outputs 1
Output resolution 12 bit
Antecedent Membership
Functions (MF’s)

9 Triangular or Trapezoidal
shaped per fuzzy set

Antecedent MF Degree of Truth
(α value) resolution width

8 bit

Consequent MF’s 81 Singleton type
Consequent MF resolution 8 bit
Max. no. of fuzzy inference rules 81 (no. of fuzzy sets no. of inputs)
AND method MIN (T-norm operator

implemented by minimum)
Implication method PROD (product operator)
MF overlapping degree 2
Defuzzification method Weighted average

TABLE III
FPGA DEVICE UTILIZATION SUMMARY

Resource Used Available Utilization
BSCANs 1 1 100%
BUFGMUXs 6 8 75%
DCMs 2 4 50%
External IOBs 121 487 24%
LOCed IOBs 120 121 99%
MULT18X18s 11 32 34%
RAMB16s 16 32 50%
Slices 4021 13312 30%
SLICEMs 668 6656 10%
Total LUTs: 5,956 26,624 22%

VI. THE MATLAB INTERFACE
A Matlab program was developed for monitoring and

initialization purposes. Matlab is connected to the FPGA
through a bridged USB connection. It receives and analyzes
data relayed by the SoC, mainly the SIP packets that the robot
sends. The program decodes the SIP packets and extracts

odometry information. It also incorporates the same routine
used in the SoC for catching and fixing encoder overflows.

Fig. 8. Snapshot of the GUI after an experiment. The solid line represents
the desired path while the dashed line the actual path. The map illustrates
part of the 2nd floor of the Electrical & Computer Engineering faculty of
NTUA. All units are in millimeters.

The main world frame is also incorporated in this program.
Transformations from local to global coordinates are being
carried out in Matlab. The GUI depicts the world map in global
coordinates, as illustrated in Fig. 8. Since there is no path
planning routine implemented in this work, the path is drawn
in the GUI by hand as a sequence of points. Consequently the
program uses a linear interpolation scheme to produce all the
data samples of the path under a fixed sampling spacing, i.e.,
the distance between two sample points on the path is constant.
The user can define the number of interpolation points. This
interpolation routine was chosen after field observations on
different interpolation schemes such as polynomial, cubic and
linear. The interpolation chosen produced the best results. The
Matlab GUI depicts the pose of the robot in real time along with
other information sent by the FPGA. In particular, when the
spatial window is of order one, i.e., when only the closest point
is considered, the SoC sends the two calculated controller
inputs.

VII. EXPERIMENTS
In this section the results of two experiments of the system

are presented. The experiments took place inside the NTUA
campus. The goal was to assess the overall efficiency of the
system and particularly the fuzzy tracker. The experiments
consist of tracking two prescribed paths. The first is a straight
line path and the second is an S-shaped path. In order to log the
actual position of the robot during the runs, a DGPS antenna
and receiver was mounted onto it. The DGPS system used is the
Trimble 4700 GPS receiver. The GPS was set to Kinematic
Survey mode where the path is solved in post-processing. In
this mode the horizontal precision is ±1cm+1ppm for a baseline
under 10Km. The occupation is 1 second i.e. a positional
sample is calculated at each second. An actual picture of the
system can be seen in Fig. 11. The results of the two
experiments can be seen in Fig. 9(a, b).

ThD02.3

5476

Fig. 9. The straight run (a) and the S-shaped (b) experiments with the
reference path (solid), the odometry position estimation (dashed) and the
DGPS estimation (dotted).

In the straight run experiment the robot was set to follow a
25m straight path. The robot’s initial position was not on the
path. The depiction in Fig. 9 does not present the entire run, but
rather the segment where the GPS solution is of the highest
quality (quality factor Q=1) since in order to assess the path
tracker’s performance we need a high precision position
estimation. This must not be confused with the position
estimation module that the tracker uses, which in this case is
derived from odometry data. The GPS is used in order to see the
actual position of the robot. Thus a degraded GPS solution is
useless and positional data of a Q factor greater than 1 (with 1
being the best and 6 the worst) have been discarded.

The second experiment presents the tracking of an S-shaped
path. The same conditions regarding the GPS data also apply to
this run. The S-shaped path has a length of approximately 25m.
All GPS data with Q>1 have been discarded. It is evident from
both experiments that the path tracker performs well. It should
also be noted that the S-shaped path is not actually a feasible
reference path since the curvature derivative is discontinuous at
the polygon vertices. However if the discontinuity is small, the
robot is expected to provide an accurate tracking. Furthermore
the odometry position estimation is very close to the path. This
means that if a higher precision position estimation is used with
the path tracker, such as a Real-Time Kinematic DGPS data
feed that provides positional data to the path tracker in real-
time, the tracker will perform even better. This is part of the
future work of the authors. Moreover, the FPGA can easily
incorporate data from other sensors and provide additional
output. The inherent design of FPGAs allows for great
scalability. By writing codecs similar to that of the SIP deframer
in the Microblaze environment, data from more external
sources can be easily manipulated.

VIII. CONCLUSION
This paper presents a novel SoC for the path following task

of autonomous non-holonomic mobile robots. The latency of the
control is very small although it is bounded by the response of
the controlled system i.e. the robot. Simulations and field
experiments showed that the fuzzy tracking algorithm,
introduced by the authors, and the overall system performance
is satisfactory even under the limitations presented by the real
system, namely the quantization of available steering
commands and the existence of a dead zone. This is due to the
high robustness exhibited by the fuzzy tracking algorithm along
with the “smoothing” behavior of the spatial window technique
inserted in the control loop.

IX. APPENDIX

U_fpga_fc

rst_n
clk
ip0
ip1

op

fpga_fc
State

Machine
FSL_S_Data

32

FSL_Clk
FSL_M_Full
FSL_Rst
FSL_S_Exists

FSL_S_Data_r
32

GFSL_Clk

GFSL_Rst_n

GFSL_S_Data_r

FSL_Rst_n

FSL_Rst_n
FSL_Clk

FSL_S_Data_r : (12:23)
FSL_S_Data_r : (0:11)

FSL_M_Data_i

FSL_M_Data

12
12

FSL_M_Write_sync_proc

FSL_M_Write_i

FSL_Clk
FSL_M_Write_cnt

32 FSL_M_Write

FSL_S_Read

FSL_S_Control

FSL_M_Clk

FSL_M_Control

FSL_S _Clk

Top Wrapper (flc_ip)

Process

NC

NC

NC

NC

G

NC

Block magnified below
(U_fpga _fc)

U2

ip_data

sel
op_data

U7

alpha _val
ip_data

mf_param

PSR2

CPR3 CPR4
U3

ip_data
op_data

U0

ip_data
fs _start _addr

addr _gen_p
ip_data

rst_n
clk

int_zer

U4

addr _in addr _out

CPR1

PSR1

PSR3

cons_map_p
U1

ars_p

trap_gen _p
rule_sel_p

andor _meth_p

CPR2
U5

dataaddr
s_rom_p

mf_rom_p
data addr

U6

gen_addr

CPR5

Fuzzyfication Area Inference Engine Area

R1ip0

ip1

24

6

8

8

80

24 16

16

7 7

16 16

2 (MSBs)

12

2

8

clkx
rst_n

Top Structural DFLP Parameterized
Soft Core IP Design (U_fpga_fc)

U8

x_signed

x_unsigned

mult
y

CPR6

U9

y
clk

x
rst_n

clear

int_uns
CPR7

CPR8
U10

y
clk
x

rst_n

clear
int_sig U12

opY
X
div_array

U11

op
divs
divd
div _ppa

IF*

Defuzzyfication Area

R2

op

clkx
rst_n

*IF GENERATE Statement

CPR9

8

21
21 23

23

10

10

12

12

CPR{1,9}, PSR{1,3} Register
delays (R{1,2}), clocked by clkx .
All reset by rst _n.

Divider Type Selection

Truncated to 12 bits

Global Connection

No Connection

Combinatorial Logic

14 12
12

12

Fig. 10. DFLP Soft Core IP Architecture.

Fig. 11. Actual depiction of the system during an experiment. The FPGA, laptop and
GPS antenna are clearly visible while the GPS receiver is under the laptop.

ACKNOWLEDGEMENTS
The authors would gratefully like to thank Prof. Demetris

Paradissis, Mr. Athanassios Zissopoulos and Mr. Vangelis
Zacharis from the Dionyssos Satellite Observatory at NTUA,

ThD02.3

5477

for their invaluable help in providing the GPS equipment and
their expertise. Their expert contribution in performing the field
experiments is what made them possible.

REFERENCES
[1] K. M. Deliparaschos, S.G. Tzafestas, “A Parameterized T-S Digital Fuzzy

Logic Processor: Soft Core VLSI Design and FPGA Implementation” in
International Journal of Factory Automation, Robotics and Soft Computing,
Vol. 3, July 2006, pp. 7–15.

[2] G. P. Moustris, S. G. Tzafestas, “A Robust Fuzzy Logic Path Tracker for non
Holonomic Mobile Robots” in International Journal of Artificial Intelligence
Tools, World Scientific, Vol. 14, No. 6, Dec. 2005, pp. 935–965.

[3] L. E. Dubins, "On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents" in
American Journal of Mathematics, Vol. 79, 1957, pp. 497–517.

[4] ActivMedia Robotics, “P3-DX, World’s most popular intelligent wheeled
robot”, Available from:

http://www.activrobots.com/ROBOTS/p2dx.html
[5] ActivMedia Robotics, “Pioneer 3TM & Pioneer 2TM H8-Series Operations

Manual”, ActivMedia Robotics, version 3, August 2003, pp. 33–36.
[6] Xilinx, Inc., Microblaze Processor Reference Guide, UG081 (v6.0) June 1,

2006, Available:
http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf

[7] Xilinx, Inc., Embedded System Tools Reference Manual, UG111 (v5.0)
October 24, 2005, Available:
http://www.xilinx.com/ise/embedded/edk82i_docs/est_rm.pdf

[8] John L. Hennessy and David A. Patterson, “Computer Architecture: A
Quantitative Approach 2nd Ed.”, Morgan Kaufmann Publishers, San Mateo,
California (1996).

[9] Xilinx, Inc., On-Chip Peripheral Bus V2.0 with OPB Arbiter (v1.10c), DS401
December 2, 2005, Available:
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_v20.pdf

[10] Xilinx, Inc., Fast Simplex Link (FSL) Bus (v2.00a), DS449 December 1,
2005, Available:
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/FSL_V20.pdf

[11] Xilinx, Inc., Local Memory Bus (LMB) v1.0 (v1.00a), DS445 April 4, 2005,
Available:
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/lmb.pdf

[12] Xilinx, Inc., Processor Local Bus (PLB) v3.4, DS400 (v1.6) July 7, 2003,
Available:
http://www.xilinx.com/ipcenter/catalog/logicore/docs/plb_v34.pdf

[13] Xilinx, Inc., Connecting Customized IP to the MicroBlaze Soft Processor
Using the Fast Simplex Link (FSL) Channel, XAPP529 (v1.3) May 12, 2004,
Available:
http://www.xilinx.com/bvdocs/appnotes/xapp529.pdf

[14] Memec Design Spartan-3™ MB Development Kit, Product Brief, Available:
http://avnet.co.jp/products/kits/docs/spartan3mb-1.pdf

[15] Synplicity Synplify Pro, Available:
http://www.synplicity.com/products/synplifypro/index.html

[16] P.H.W. Leong and K.H. Tsoi, “Field Programmable Array Technology
for Robotics Applications,” IEEE International Conference on Robotics
and Bioimetics (ROBIO), Hong Kong 2005.

[17] A. Kongmunvattana and P. Chongstitvatana, “A FPGA-based Behavioral
Control System for a Mobile Robot”, IEEE Asia-Pacific Conference on
Circuits and Systems (IEEE APCCAS 98), Chiangmai, Thailand, 1998.

[18] T.-H. S. Li, S.-J. Chang, and Y.-X. Chen, “Implementation of humanlike
driving skills by autonomous fuzzy behavior control on an FPGA based car-
like mobile robot,” IEEE Transactions on Industrial Electronics, Vol. 50, no. 5,
pp. 869–880, Oct 2003.

[19] R. Reynolds, P. Smith, L. Bell, and H. Keller, “The design of mars lander
cameras for mars pathfinder, mars surveyor ’98 and mars surveyor ’01,” IEEE
Transactions on Instrumentation and Measurement, vol. 50, no. 1 Feb 2001,
pp. 63–71.

Kyriakos M. Deliparaschos received the B.Eng. Hons degree in Electronics
Engineering from De Montfort University, Leicester, U.K., and the M.Sc.
degree in Mechatronics from De Montfort University with the collaboration of
National Technical University of Athens (NTUA), Athens, Greece. He is
currently completing the Ph.D. degree at the NTUA. His research focuses on
digital system design for high-performance FPGA architectures, VLSI systems,
System-on-a-Chip (SoC), hardware/software co-designs, fuzzy systems, genetic
algorithms and mobile robotics.

George P. Moustris received his M.Eng. in Electrical & Computer
Engineering from the Aristotle University, Thessaloniki, Greece and is
currently pursuing his Ph.D. in computational intelligence and robotics at the
National Technical University of Athens (NTUA), Athens, Greece. His fields
of interest include mobile robotics, computational and artificial intelligence,
non-holonomic systems, non-linear control theory and the philosophy of
information.

Spyros G. Tzafestas professor emeritus, Director of the Institute of
Communication and Computer Systems (ICCS), Senior Research Associate of the
Signals, Control and Robotics Division and the Intelligent Robotics and Automation
Laboratory (IRAL) of the National Technical University of Athens (NTUA). Holder
of Ph.D. and D.Sc. in Control and Automation. Recipient of Honorary Doctorates of
the International University (D.Sc. (Hon.)), the Technical University of Munich (Dr.-
Ing. E.h.) and the Ecole Centrale de Lille (Docteur Honoris Causa). Fellow of IEEE
(N.Y.) and IEE (London); Member of ASME (N.Y.) , New York Academy of
Sciences , IMACS (Rutgers, N.J.) and SIRES (Brussels). Member of IFAC SECOM
and MIM TCs. Project evaluator of national european and international projects
(USA, Canada, Italy, Hong Kong, Japan). Project coordinator of national and EU
projects in the fields of robotics, CIM and IT (ESPRIT, BRITE-EURAM , TIDE,
INTAS , SOCRATES, EUREKA, GROWTH etc.). Publications: 30 research
books, 60 book chapters, over 700 journal and conference technical papers. Editor-
in-Chief of the Journal of Intelligent and Robotic Systems (1988-2005) and the book
series "Microprocessor-Based and Intelligent Systems Engineering" (K1uwer).
Organizer of several international conferences (IEEE, IFAC, IMACS, IASTED,
SIRES etc.). Listed in several international biographical volumes. Current interests
include: control, robotics and CIM

ThD02.3

5478

