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ABSTRACT 

This project is based on the implementation and testing of variable-time-delays-robust 

telemanipulation through master state prediction by using high level languages (C++) and 

Matlab software package. 

 

Time delay compensation in teleoperation can be achieved by predicting the human arm position 

and force (effectively the master state). The method is based on the prediction of the master state 

(position xm and force fm) only, which can be much more simple and accurate than predicting the 

slave and the remote environment, and incorporates this in a stable force-feedback scheme.  

 

The telemanipulation method was split into its fundamental elements and implemented as a 

number of functions. Furthermore two different methods (interpolation, curve fitting theories) 

for implementing the predictor model were developed and tested. 

 

Finally the telemanipulation method was simulated (using sinusoidal inputs as the neural 

input) several times and the results produced, were evaluated. Due to time limitations and 

programming difficulties, the programming of the force feedback joystick (role of master 

robot) was not included.     
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Chapter 

1 
INTRODUCTION 

1.1 Brief Introduction to Teleoperation 

The 20th century has shown a massive technology increase in development, at a point 

that our civilization can be characterized as technical. The use of machines has already 

replaced human activity in most repeated and heavy works. The limited physical 

abilities of the human body have been increased through the use of machines, and 

allow tasks beyond the human will. On the other side, human’s ability to think and 

decide has not been sufficiently understood, to allow intelligent systems to take over 

tasks that require important initiative and complex data processing. Recently the 

development of computers and more specifically of techniques of artificial intelligence 

has resulted in a concentration of science at this field of interest. 

 

One of the human’s inventions that hope to fully replace its inventor is no other than 
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the robot1. Programmed industrial robots are already used, for performing repeated 

tasks, such as welding, assembling and product spraying. The use of artificial 

intelligent in this type of robots is expected to allow them to be used in more complex 

duties, as to perform tasks in natural or unstructured environments. In the meantime, 

technology has not reached this point of maturity, but even when it does, several and 

serious problems will still require the cooperation between man and machine, or the 

continuous supervision for the correct function of the machines from qualified staff. 

 

In the above category of machines belong tasks with unpredictable outcomes, such as 

discovering of the ocean bed or outer space or even more dangerous, like processing of 

nuclear radioactive material, mines, fires or handling gun systems for military 

operations. It is obvious that these kinds of tasks cannot be left completely under the 

machine’s judgement, and even though human presence is necessary, it is impossible 

due to human biological limitations. Biological limitations include danger of death due 

to chemical toxic environments or generally due to inappropriate natural 

environments, as well as inadequacy of human senses and neural forces. 

 

From the above, rises the need of a mechanical arrangement, which will execute the 

operator’s orders and return the state of the current worksite back to him, while the 

operator is located in a safe or distant place. The machine acts in this way as an 

operator’s representative. The robotic arrangement described above is known as 

telerobotic system. 

 

A good staring point for realising telerobotic systems is the concept of teleoperation. 

                                                           
1 The word robot is derived from the Slav word robota, meaning obligatory work or servitude. 
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According to an expert in this field, T. B. Sheridan [26], teleoperation is the extension 

of a person’s sensing and manipulation capability to a remote location. A teleoperator 

includes at the minimum, artificial sensors, arms and hands, a vehicle for carrying 

these, and communication channels to and from the human operator. The term 

teleoperation refers most commonly to direct and continuous human control of the 

teleoperator, but can also be used generally to encompass telerobotics as well. 

 

A teleoperator system can be represented by the block diagram of Fig 1.1 and consists 

of five subsystems: the human operator, the master, the communication block, the 

slave and the environment. The slave is usually located in the worksite and is usually a 

classic industrial arm. The master is located in the same place with the human 

operator. Through the master, the human operator gives an order to the system and 

feels back the response of his actions. The master arm could very well be a force 

feedback joystick for example. The system roughly works as follows. The operator 

commands a force Fh through the master, communication block, and slave, to the 

environment. The master responds by changing the state of Xm (position and velocity), 

which is transmitted through the communication block to the slave. The slave also 

complies with environment force Fes. Both Xs and Fes are transmitted back to the 

master. Finally a new force Fem is produced towards the master in order to reconstruct 

the slave’s state. 

h um a n

o pe ra to r
m a s ter c om un n ic atio n e nv iron m e nts la v e

F
h

F
em

X
m

F
es

X
s

X
ds

F
es

X
s

Fig. 1.1: Block diagram of teleoperator system 

A teleoperator system must be able to reconstruct the touch feeling with the current 

object back to the master, who is away from the object.  This way, the concept of 
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telepresence is achieved. Telepresence is the ideal of sensing sufficient information 

about the teleoperator and task environment, and communicating this to the human 

operator in a sufficiently natural way, that the operator feels physically present at the 

remote site [26]. A perfect system should have such a design, so the human cannot 

realise its existence, but have the illusion that his touching the object with its own 

hands and seeing it as well. For example if the object is chattering then the human 

operator must feel exactly the same movement on his hands through the master (e.g. 

force feedback joystick). An ideal response according to the concept of teleoperation is 

only achieved, if the position and force on the master arm are equivalent to those on 

the slave arm for every time interval. 

 

The concept of teleoperation is playing a major role in telerobotics. Telerobotics is a 

form of teleoperation in which a human operator acts as a supervisor, intermittently 

communicating to a computer information about goals, constraints, plans, 

contingencies, assumptions, suggestions and orders relative to a limited task, getting 

back information about accomplishments, difficulties, concerns, and as requested, raw 

sensory data-while the subordinate telerobot executes the task based on information 

received from the human operator plus its own artificial intelligence [26]. The concept 

of telerobotics is illustrated in Fig. 1.2. The human operator provides largely symbolic 

commands (concatenations of typed symbols or specialized key presses) to the 

computer. However, some fraction of these commands still must be analogical (hand-

control movements isomorphic to the space-time-force continuum of the physical task) 

in order to point to objects or otherwise demonstrate to the computer relationships that 

are difficult for the operator to put into symbols [26]. 
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Fig. 1.2: Concept of telerobotics 

Mostly synonymous with telerobotics is supervisory control, referring to the analogy 

of a human supervisor directing and monitoring the activities of a human subordinate. 

The term supervisory control is used commonly to refer to human supervision of any 

semi-autonomous system (including an aircraft, a power plant, etc.), while telerobot 

commonly refers to a device having arms for manipulating or processing discrete 

objects in its environment. 

 

Teleoperation represents one of the first domains of robotics and one of the most 

challenging [2]. In teleoperation a human operator conducts a task in a remote 

environment via master and slave manipulators. Providing contact force information to 

the human operator can improve task performance. Although this information can be 

obtained from visual displays, it is more useful when provided directly, by reflecting 

the measured force to motors on the master. When this is done, the contact force is 

said to be “reflected” to the human operator, and the teleoperator is said to be 

controlled bilaterally [3], [4]. When teleoperation is performed over a great distance, 

such as in undersea and outer space operations, a time delay is incurred in the 

transmission of informing from one site to another [26]. 
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1.2 Early History and Applications 

From well before the sixteenth century there were teleoperators in the form of fire-

tongs, animal prods and other simple arm extensions. Early in the nineteenth century 

there were crude teleoperators for earth moving, construction and related tasks. By the 

1940s prosthetic limb fitters had developed arm hooks activated by leather thongs tied 

to other parts of the wearer’s body.  

 

In about 1945 the first modern master-slave teleoperators were developed by Goertz at 

Argonne National Laboratory near Chicago. These were mechanical pantograph 

mechanisms by which radioactive materials in a “hot cell” could be manipulated by an 

outside the cell. Electrical servomechanisms soon replaced the direct mechanical tape 

and able linkages (Goertz and Thompson, 1954), and closed circuit television was 

introduced, so that now the operator could be an arbitrary distance away. Figure 1.3 

shows the first electric master-slave teleoperator, built by R. Geortz (shown) at 

Argonne National Laboratory. 

 

Fig. 1.3: E1, the first (1954) electric master-slave teleoperator 
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By the mid 1950s technological developments in telepresence (they did not call it that 

at the time) were being demonstrated. Among these were: force reflection 

simultaneous in all six degrees-of-freedom (DOF); coordinated two-arm teleoperators; 

and head-mounted displays, which drove the remote camera position and thereby 

produced remarkable visual telepresence. Particularly impressive was Mosher’s (1964) 

development of the General Electric Co. Handy-man, which had two electro hydraulic 

arms with ten DOF in each arm (two DOF on each of two fingers). This is shown in 

Figure 1.4. 

 

Fig 1.4: Handyman, the first (1958) electrohydraulic master-slave teleoperator 

Already in the late 1950`s there was interest in applying this new servomechanism 

technology to human limb prostheses. Probably the first successful development was 

that of A. Kobrinskii (1960) in Moscow, a lower arm prosthesis driven by minute 

myoelectric signals picked up from the muscles in the stump or upper arm. This was 

followed rapidly by similar developments in the U.S. and Europe (in the mid to late 

1960s), including teleoperators attached to the wheel chairs of quadriplegics, which 

could be commanded by the tongue or other remaining motor signals (shown in Fig. 

1.5 overleaf). By that time remote touch sensing and display research was already 

underway. 
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Fig. 1.5: An early wheelchair arm-aid operated by the handicapped person’s tongue 

From the early 1960s telemanipulators and video cameras were being attached to 

submarines by the U.S., U.S.S.R., and French navies and used experimentally. For 

example, the U.S. Navy’s CURV vehicle (Fig. 1.6) was used successfully in 1966 to 

retrieve a nuclear bomb from the deep ocean bottom, accidentally dropped from an 

airplane off Polomares, Spain. Offshore mineral extraction and cable-laying firms 

soon became interested in this technology to replace human divers, especially as oil 

and gas drilling operations got deeper. 

 

By 1970 the western interest in teleoperation had turned to undersea, for there was 

great economic demand for offshore oil. The French developed their ERIC vehicle, the 

Americans the Hydro products RCV 150, both small-unmanned submarines with 

remotely controlled video and manipulation capability-plus the necessary thrusters for 

manoeuvring. 

 

By 1970 industrial (manufacturing) robotics was coming into full development, for 

Unimation, General Electric, and Cincinnati Milacron in the U.S., Hitachi, Fujitsu and 

others in Japan, and many firms throughout both western and eastern Europe had 
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begun using relatively simple assembly-line robots, mostly for spot welding and paint 

spraying. By 1980 industrial robots had wrist-force sensing and primitive computer 

vision, and push-button teach pendant control boxes were being used for relatively 

simple programming from the shop floor. It became clear that human teleoperation for 

working in space, undersea or other hazardous environments was to follow a different 

course than was industrial robotics. 

 

An example of a space teleoperator capability is the 20 m long remote manipulator 

system (RMS) built by the Canadian firm SPAR and carried aboard the U.S. space 

shuttle. It has six DOF and is controlled directly by a human operator viewing through 

a window or over video and using two three-axis variable rate command joysticks, one 

for three translations, one for three rotations. 

 

As discussed previously the use of telerobotics has been used in undersea applications. 

Figure 1.7 illustrates two subsea structures fitted with telerobotic systems. The 

operator in the first one is located inside the craft and therefore he takes his own 

decisions about the morphology of the ocean bed and the objects of which are to be 

collected. The second one is operated remotely and was used for installing and 

maintaining oceanographic base station on the ocean bed. Teleoperators in undersea 

applications are usually referred as ROVs or remotely operated vehicles. ROVs are 

commonly used in oil extraction industry. By the use of ROVs a dramatically 

reduction in the cost of installation and supervision of subsea structures is achieved as 

well as in the risk of human life. Not to mention of course that a diving hour costs near 

10,000 dollars and risks taken by the divers are highly increased. 
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One of the most interesting applications of telerobotics is telesurgery or more 

specifically operating patients from a distance, when under certain conditions 

their transfer in hospital is not feasible. The operation on a wounded soldier will 

take place in a special mobile surgery while the doctor-teleoperator stays away. 

In this way, fast medical attention is achieved without risking doctor’s life. The 

arrangement plan discussed above, is described by R.M. Satava [5] as 

telepresence surgery (Fig 1.8). 

 

Other areas of telerobotics include offshore mineral extraction, maintenance of 

underground installations - for example, Russians have constructed a robot for 

teleinspection and repair of pipelines – smart warehousing, firefighting, policing 

and military operations. 
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1.3 Scope of the project 

This project is based on the implementation and testing of variable-time-delays-robust 

telemanipulation through master state prediction by using high level languages (C++) and 

Matlab software package. 

 

A general technique for time delay compensation in teleoperation applications is utilised by 

predicting the human arm position and force (effectively the master state). The technique is based 

on the prediction of the master state (position xm and force fm) only, which can be much more 

simple and accurate than predicting the slave and environment dynamics.  

 

The telemanipulation method can be split into its fundamental elements and implemented as a 

number of functions. The first task is to implement some predictor model based on different 

theories, and decide which one is suitable for the current application. After that the rest of the 

functions should be developed. 

 

Furthermore the implemented method should be compiled, to make sure that there are no 

errors, and executed for a number of different parameters. The simulation results should be 

represented as a number of graphs and evaluated.  
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Chapter 

2 
CONTROL OF TELEOPERATION SYSTEMS 

2.1 Introduction 

In this chapter a brief presentation of the most important matters concerning the 

control of teleoperator systems is attempted. 

2.2 Classification of Control Architectures 

The possible ways of control of a teleoperator system could be classified in four 

categories depending on the feedback information [6]. Although there are different 

variations of these basic control loops, all the existed arrangements could be fitted in 

one of those. The control loops mentioned before are further analysed on next page. 
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2.2.1 Position to Position Loop 

Position is the fundamental variable in this case. Master and Slave positions appear on 

the left side of the equations and describe the response of the system, ignoring the 

reaction force. The control law equations are given by: 

mtfeedbackmfeedbacksdfeedforwarmsmmaster
KKKKu   )(   (1) 

stfeedbacksfeedbackmdfeedforwarsmsslave
KKKKu   )(    (2) 

Figure 1.9 illustrates the above loop in terms of a block diagram. 
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Fig 2.1: Position – position loop 

2.2.2 Position – Force Loop 

The transferred variables in this case are the master’s position and the force at slave’s 

arm. In other words, force control is applied to the master, while position control is 

applied to the slave. The control law equations that describe the above type of loop are 

shown below: 

mtfeedbackmfeedbacksdfeedforwarmsmmaster
KKKffKu 


 ])[(   (3) 

stfeedbacksfeedbackmdfeedforwarsmsslave
KKKKu   )(    (4) 
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The block diagram representation of the current loop is shown in Figure 2.2. 
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Fig 2.2: Position – force loop 

It has to be mentioned that master’s force fm is not necessary required for the loop to 

close, due to the fact that the operator’s hand reacts with the hand-held pendant and 

balances the open loop force order. Block Kδ represents force sensors fitted on the 

master control arm (e.g. force feedback joystick) and on the end-effector of the slave 

robot. 

 

An advantage of this specific loop is that direct measurement of the master force can 

be achieved. As a result of that is that the slave force sent back to the master is free of 

friction or non-modelled parameters. In the previously discussed case of position – 

position loop (2.1.1), the reaction force sent to the master and felt by the operator was 

generated indirectly, with as a result to include all of the unwanted data mentioned 

above.  

 

Another advantage of the current method is that the high frequency details of the force 

are directly measured and sent to the master. Since the master is lighter and faster 
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compared to the slave, is able of reconstructing the high frequency details while the 

last rejects them due to different design. Finally the discussed control loop allows the 

application of mechanical impedance control methods. 

A great number of teleoperation methods use this type of control loop or variations 

based to that. 

2.2.3 Position – Force Loop 

This control method is a reversed version of the method described above (2.1.2). The 

method has several problems since it’s not possible for a robot controlled according to 

force to become stable when it touches a hard object. On the other side, the contact 

with soft objects is not causing any problems. On the master side, the force control is 

stable, since the operator’s hand conforms to the external force. 

2.2.4 Force - Force Loop 

Not any system with force control on both sides had been implemented by the time of 

publication of [6]. Bobgan and Kazerooni introduced the first system in 1991 and 

capable conditions were established for system stability [7]. 

2.3 Master-Slave System Representation by Two-Terminal-

Pair Network 

Two-terminal-pair network is usually used in the analysis of electrical circuits (shown 

in Fig 2.3). 
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Fig. 2.3: Two-terminal-pair network 
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Impedance matrix Z is defined from the relations (shown below) between current and 

voltage of a two-terminal-pair network. 

2121111
IzIzV       (5) 

2221212
IzIzV      (6) 












2221

1211

zz

zz
Z      (7) 

where I1 and I2 denote current at each terminal pair, and V1 and V2 denote voltage at 

each terminal pair. 

 

Lets consider a two-terminal-pair network, which is connected to a power source and a 

load at each terminal pair as shown in Figure 2.4. 
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Fig. 2.4: Connection of power source and load to a two-terminal-pair network 

Regarding the power source as an operator as an operator, the load as an object and the 

two-terminal-pair network as a master-slave system, the whole system can be replaced 

by the electric circuit of Fig. 2.4. The correspondence between a master-slave system 

and the circuit representation in Fig. 2.4 is given as: 

 velocity of the master arm 
mx     current Im 

 velocity of the master arm 
sx      current Is 

 operator’s force 
op       voltage Vop 

 force at the master side 
mf      voltage Vm 

 force at the master side 
sf      voltage Vs 
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Representation of master-slave system by a two-terminal-pair network is not a new 

idea. However, Razu [8], [9] has shown the framework where the operator and object 

are considered as a power source and load connected to the network. The concept of 

the two-terminal-pair network is well used to design electric filters. The master-

slave can also be considered as assort of mechanical filter between the operator 

and the object. 

 

This circuit representation does not change the nature of the problem all, but it enables 

us to formulate in compact forms [10], also the extraction of system equations 

becomes an easy task and could be solved by using one of many circuit analysis, 

computer packages available. 

2.4 Evaluation of Stability based on Passivity of the System 

The characteristic approach is applicable only when the dynamics of the operator and 

object can be represented by linear systems. Strictly speaking, however, the operator 

dynamics and some of the object dynamics may be non-linear. For this reason, the 

passivity of the system is used by many researchers, in order to study the stability of 

the system [10]. 

 

Passivity of the system can be a sufficient condition of stability only when then system 

interacts with passive environments. In the case of master-slave systems, assuming 

that the operator and the environment are passive systems, then the sufficient condition 

of stability is that the master-slave system itself must be passive [10]. However, the 

operator is not passive because he/she has muscles as the power source and therefore 

is not going to turn the system unstable. 
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2.5 Performance Evaluation of Teleoperator Systems 

Performance testing and the relative problem of comparing teleoperator systems is 

quite complex due to the fact that the systems are composite in nature plus that human 

factor is present. Moreover, the system should take under consideration several tasks 

for execution, such as the movement in free space, in liquid or when comes in contact 

with an object. 

 

A mathematical algorithm for performance evaluation is proposed by Yokokohji and 

Yoshikawa and presented below [10]. Initially, the ideal response is set, in which the slave 

and master position and force are identical at any instant of time, or in other words the 

perfect achieved form of teleoperation. Then a quantitative index of manoeuvrability2 is 

proposed based on the concept of ideal responses previously discussed. 

 

Let Gmp(s), Gsp(s), Gmf(s), and Gsf(s) be transfer function of the master-slave system 

from the operator’s force to the master side displacement, slave side displacement, 

master side force, and slave side force respectively. Then the two following indexes 

are defined: 








d
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jGjGJ spmpp 
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1
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0

   (8) 
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0

   (9) 

where ωmax is the maximum frequency of the manipulation bandwidth of human 

operators, T(Tωmax >1) is time constant of first-order-lag.  

                                                           
2 A high-performance master-slave system means that it can provide high manoeuvrability. 
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When index Jp is zero then the displacement is identical on both sides (master-slave). 

When index Jf is zero then the force is identical on both sides. For a non-ideal 

situation, the system becomes better as both Jp and Jf get closer to zero. 

2.6 Human Reaction and Modelling 

In [6] is discussed the nature of human senses that being used by master-slave systems. 

An analysis of the frequency response of the human body is performed and the 

bandwidth of stimulations that the operator can perceive is defined. Finally is 

concluded that human have an uneven number of input (stimulation perception) to 

output (action) abilities. Figure 2.5 illustrates in terms of a block diagram the human 

input/output abilities. 
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Fig. 2.5: Human Reaction 
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According to figure 2.5 a bandwidth of about 320 Hz is required for transmission of 

stimulations, while about 10 Hz is required for hands movement. 

 

In the next table (Table 2.1), the reaction time of a human to a number of stimulations 

and the different stages that intervenes before the end of reaction is analysed [11]. 

Response Stages Typical Delay (msec) 

Sensor 1 - 380 

Transmission delay to brain 70 - 300 

Natural transmission to muscle 10 - 20 

Reaction of muscle 30 - 70 

Total 113 - 528 

Table 2.1: Response stages 

Generally “fast” humans need in ideal situations, about 200 msec.  

 

Reaction time is also closely related to human senses and therefore affected by them as 

shown in table 2.2. 

Senses Time (msec) 

Hearing 150 

Vision 200 

Scent 300 

Pain up to 700 

Table 2.2: Human senses 

Human modelling can be achieved with several methods depending on the required 

degree of precision. For example when master-slave systems are compared in analogy 

with electric circuits (for analysis purposes), the operator is represented as the current. 
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It very common to model the operator as a simple spring-damper-mass system given 

by the following equation: 

mopmopmopmop xcxbxmf      (10) 

where mop, bop and cop denotes mass, viscous coefficient, and stiffness of the operator 

respectively, whereas τop means force generated by the operator’s muscles and fm 

denotes the force that the operator applies to the master arm. The displacement of the 

operator is represented by xm because it is assumed that the operator is firmly grasping 

the master arm and he/she never releases it during the operation [10]. 

 

The procedure of decision-making by the operator (estimating τop) is a difficult task 

that requires the use of artificial intelligence knowledge. 

2.7 Environment Modelling 

When the robot touches an object, a force Fe is applied to the robot, given by: 

eee xZF      (10) 

where vector
ex  represents the local deformation of object surface due to robot action 

(Fig. 2.6), and is equal to: 



 


0

e

e

xx
x     (11) 

The above simple model is used, since a precise model of contact would be very 

difficult to describe due to natural phenomena that appear. The error that occurs by 

using this simple model is corrected by the controller. Equation 10, describes the 

contact with an unbend surface, elastically conformed to the external pressure, without 

friction. A flat surface selection is a good approximation for the area near to the 

contact point, for regular curved surfaces.  
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Assuming an unbend surface, allows to omit local conformation results due to contact. 

Based on these considerations, matrix Ze can be represented as: 


nnkK      (12) 

where k>0 is the stiffness coefficient and n is a unity vector vertically directed on the 

surface area and hence defines the orientation of last.  

x
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x
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Fig. 2.6: Local deformation of object surface due to robot action 

2.8 The Yokokohji and Yoshikawa Control Law 

The Yokokohji and Yoshikawa [10] control law is a very important law that realizes 

teleoperation. The architecture used is a classical one, developed through a well-

defined general framework of teleoperation, and adopting the widely accepted design 

specifications of system transparency and passivity [12]. 

 

Usually master-slave systems consist of arms with multiple DOF. However for 

problem simplicity a one DOF system is considered. 

 

The dynamics of master and slave arms is given by the following equations: 

mmmmmm xbxmf      (13) 

ssssss xbxmf       (14) 



  MSc Mechatronics Project Report 

K.Deliparaschos   Page 23  

where xm and xs denote the displacements of the master and slave arms, and mm, bm,  ms, 

bs represent mass and viscous coefficient of the master and slave arms respectively. In 

addition, fm denotes the force that the operator applies to the master arm, and fs denote 

the force that the slave arm applies to the object. Finally, τm and τs represent actuator-

driving forces of master and slave arms respectively.  

 

The dynamics of the object interacting with the slave arm, is modelled by the 

following linear system: 

swswsws xcxbxmf      (15) 

where mw, bw, and cw represent mass, viscous coefficient, and stiffness of the object 

respectively. It is assumed that the slave arm is contacting the object, in such a way 

that it may not depart from the object. Moreover is assumed that the dynamics of the 

operator can be approximately represented as a simple spring-damper-mass system, 

described by the following equation: 

mopmopmopmop xcxbxmf      (16) 

where mop, bop and cop denotes mass, viscous coefficient, and stiffness of the operator 

respectively. In addition τop represents the force generated by the operator’s muscles 

and fm denotes the force that the operator applies to the master arm. The displacement 

of the operator is represented by xm because it is assumed that the operator is firmly 

grasping the master arm and he/she never releases it during the operation. Figure 2.6 

[10] shows the model of one DOF teleoperation system: 

 

Fig. 2.6: Teleoperation system 
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Assuming that the force is identical on both sides, and the displacement difference 

between master and slave is zero at any time, the following control schemes for τm and 

τs can be considered: 

      
msmmsmfmmmmsmmsmsmm fffkxbxxkxxkxm  21  (17) 

      
mssmssfsssmssmsmsss fffkxbxxkxxkxm  21  (18) 

where   2smms xxx   and   2smms fff   

The above control laws (Eqs. 17, 18) assume that all the information (position, 

velocity, acceleration, and force) are known and time delay due to data transmission 

between the master and slave sites is negligible. It is also assumed that the scales of 

position and force are identical between the master and slave sites.  

 

If the above considerations are obeyed then the system remains stable and achieves the 

ideal state of master-slave system. In other words the system is equivalent to a 

weightless rigid bar connecting the operator with the object (Fig. 2.7). 

 

Fig. 2.7: Ideal state of master-slave system 

However, the above state is very critical because only a small error of the inertia 

parameter may change the massless bar into a bar with negative mass. 

 

In order to avoid that, the control law is modified in such a way, that the dynamics of 

master-slave system are not cancelled, but the operator feels as if he was operating the 

object through a virtual bar of given mechanical impedance. This mechanical 
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impedance is mentioned by the authors as intervening impedance, and illustrated in 

Fig. 2.8, below. 

 

Fig. 2.8: Intervening impedance model 

The state of Fig. 2.8 can be described by the following equation by setting xm=xs=x : 

xcxbxmff sm
     (19) 

where m  , b  and c  are the mass, coefficient of viscous fiction, and stiffness of the 

intervening impedance respectively. Since xm and xs may not coincide all the time, 

Eq. 19 can be rewritten as: 

msmsmssm xcxbxmff      (20) 

The position error e converges asymptotically into zero according to the following equation: 

2
21

sm ff
ekeke


     (21) 

where λ>0 is a positive constant. Finally the control law (Eqs. 17, 18) become: 

      
msmmsmfmmmmsmmsmsmm fffkxbxxkxxkxm  21  

 
  msmmsmsms
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  (22) 

      
mssmssfsssmssmsmsss fffkxbxxkxxkxm  21  

 
  mssmsmsms

sf
fmxcxbxm

k

22

1 



  (23) 

Depending on the availability of parameters and by adjusting them appropriately, the 

ideal response could be achieved. 
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2.9 Other Control Architectures 

B. Hannaford [13] introduced the bilateral impedance control method. According to 

this method, a local control loop on master tries to regenerate the intervening 

impedance that exist on the other side (operator), respectively a local control loop on 

slave tries to regenerate the intervening impedance that exist on the environment. So, 

this control scheme returns back except the master-slave position, the predicted 

intervening impedance as well.  Therefore, it cannot be enlisted to any of the 

categories discussed in 2.2. 

 

K. Funaya and N. Takanasi [14] introduced an interesting control method, for 

adjusting the stiffness of a teleoperation system, according to availability of object 

positions. 

 

A. Strassberg, A. Goldberg, A. Mills proposed a variation of the force-position loop 

described in section 2.2.2. The transmit information are the master speed and the slave 

force. However, the master is controlled in a special way; the force error is converted 

to speed information and the master is controlled according to speed. The slave is 

controlled according to speed as well. 

2.10 Transmission Time-Delays 

In many teleoperation applications the master and generally the control station is 

located away from the slave. Therefore, every master control order is transmitted 

delayed by a certain amount of time to slave. It has being proved, that this delay 

worsens the quality of teleoperation and may lead the system to instability. A typical 

delay of 20 msec appears, when the master-slave arms are near to each other. Delays 
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of 60-200 msec appear when the master and slave are connected through a computer 

network. Over 500 msec to a number of seconds, delays are introduced, when the 

transmission is via a satellite link. An example of such a delay could be the assembly 

of a satellite station in orbit from earth. 

 

Two main approaches that can be followed to produce a passive (stable) 

communication law between master and slave, and overcome the instability and 

functionality problems caused by time delays are discussed below. 

2.10.1 Scattering Theory 

The first approach developed by Anderson and Spong (1998) using scattering theory 

(Johnson, 1950). A scattering operator, S, can be defined for a two port network by the 

relationship between force and velocity: 

 vfSVF      (23) 

where S is a matrix in the frequency domain. Any communication law can be tested 

for stability using a theorem stating that a two-port network (section 2.3) is passive if 

only if the norm of its scattering operator is less than or equal to one. 

 

Noting that an analogue electrical transmission line delays signals and is inherently 

passive, Anderson and Spong manipulated the transmission line equations to obtain 

the control laws for passive behaviour of the communications block: 

)()()()( TtFtFTtxtx mdsmsd     (24) 

)()()()( TtxtxTtFtF sdmsmd     (25) 

where T is the communication time delay. These communications laws are passive 

(stable) for all time delays, assuming the human operator, master, slave, and 
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environment can be all represented as passive systems. Furthermore under steady state 

conditions, the forces and velocities of master and slave are identical [16]. 

2.10.2 The Wave Variable or Energy Approach 

The second approach developed by Niemeyer and Slotine (1990), uses an energy-

based formulation. The total power flow into the teleoperator network is given by: 

2211 FxFxP       (26) 

The power flows can also be formulated with wave variables. Wave variables are 

motivated by the physical concept of waves with an input and output wave at each port 

of a network. In this manner, the total power flow can be written as: 

2222
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1

2

1
ssmm vuvuP     (27) 

Where u and v are the input wave variables. Equating equations (26) and (27) leads to 

asset of transformation equations between power variables and wave variables. 

2.11 Semiautonomous Control 

Even if the operator can execute a task by himself, it’s a waste of human resources and 

time to have to execute repeatable tasks, which they could very well executed by the 

system, itself. However, a repeated task might tire out the operator and hence reduce 

his performance. A good solution to these problems is to use semiautonomous control 

on the slave side. Semiautonomous control is used, because there is no point using a 

teleoperation system, if the task is fully defined in a structured environment. The 

operator must be present, first of all to direct the system and finally to intervene in 

autonomous control when something unpredicted happens. The concept of 

semiautonomous control is closely related to supervisory control, introduced by Ferrell 

and Sheridan on 1967. 
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Semiautonomous control is split into two categories: 

 Serial type, where manual and autonomous control are alternated serially. 

This is shown in Fig. 2.9-b. Traditional supervisory control (section 1.1) is 

included among this scheme. 

 Parallel type, where manual and autonomous control are acting together. 

Two sub-categories can be distinguished according to this type. 

 The combined case, where the control inputs are combined together 

(Fig. 2.9-c). This is necessary when autonomous control alters the 

operator’s order or when the operator wants to alter the results 

caused by autonomous control. 

 The shared case, where the current task is shared between the 

operator and autonomous control (Fig. 2.9-d) An example, could be 

the transfer of a glass full of water, where the orientation of the 

glass is autonomously controlled and the position and speed by the 

operator. 
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Fig. 2.9: Categories of Semiautonomous Control
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Chapter 

3 
TIME-DELAYS-ROBUST TELEMANIPULATION THROUGH 

MASTER STATE PREDICTION 

3.1 Introduction 

Although in the telerobotics community significant effort has been concentrated on the 

compensation of time delays (t.d.s) in the communication channel between master and 

slave, simple and reliable solutions are still being sought. Three main groups of 

techniques robusti-fying against t.d.s have appeared up to date (two of them discussed 

in sections 2.10.1 and 2.10.2). The first is based on the use of predictive displays for 

the slave and the remote environment [17]. The future slave state is calculated, so that 

the operator effectively interacts with an adaptable model of the remote site. Models 

have to be both dynamically and visually correct, thus requiring complicated graphics 

data and image processing. The second group entails the use of wave variables to form 

a passive communications channel [18-20]. These provide stability but alter the force 
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fed back. A final solution is to use supervisory control [17], leading to a non-

continuous form of teleoperation, i.e. changing the basic specification of manipulating 

as close to physical as possible. Recently, significant interest was focused on variable 

t.d.s, arising for example through the Internet [21-25]. 

 

The method proposed in this chapter, uses a prediction of the master state (position xm 

and force fm) only, which can be much more simple and accurate than predicting the 

slave and the remote environment, and incorporates this in a stable force-feedback 

scheme. It will also be shown that this scheme cancels the computational burden of 

visually representing the slave future state, needed in predictive displays: the slave-

side cameras’ image is sufficient for optical feedback, since it turns out to be 

synchronized with the master. This is to the best of the authors’ knowledge an 

unexplored approach. Two early efforts cited in [17], which predict the control input 

along with the rest of the system state in non-telemanipulation tasks, were judged there 

to be inadequate for telemanipulation. 

 

Two predictor implementations have been explored. The first, called trajectory 

extrapolating prediction, simply predicts the values of the macroscopic measurable 

variables xm and fm. Simulations were carried out either, as is usual in the literature, 

ignoring the human arm dynamics and considering predefined shapes of force input, 

or, more realistically, also including the human dynamics, represented by the Stark 

model of the human arm, as modified in previous work [21] of the authors. The Stark 

model and its modifications are given in Appendix A. The second implementation is 

built around a model-based predictor, also employing the Stark model, and the 

prediction of the neural input to it. Relevant results are reported in [21], [22]. The 
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proposed method was applied to the "enhanced Yokokohji and Yoshikawa scheme" 

[22], a modification of [10] accommodating the master state predictor. 

 

The chapter is organized as follows. The proposed concept is introduced in Section 

3.2. Model-based predictors are discussed in Section 3.3, and trajectory extrapolating 

ones in Section 3.4. Section 3.5 outlines the control scheme used [1]. 

3.2 The Concept of Predicting the Master State 

The basic feature of the present design is the incorporation of a predictor for the 

master state rather than the slave and environment one. This offers significant 

advantages over previous solutions. The key idea is to command the slave robot to 

follow the predicted command, so that it is "ahead in time" from the master. After the 

two transmissions of signals through the communications channel (shown in Fig. 3.1), 

the reflected slave position / force has the same time index as the local master 

variables. According to Fig. 3.1, exp(-sTt/2) denotes delay due to transmission through 

the communication channel and exp(+sTt) denotes prediction. The other blocks are 

free of delay. "Hat" ^ denotes estimate. Xss is only used to illustrate the signals’ 

timing. Setup for predictors does not require neural input measurement or estimation 

(e.g. trajectory extrapolation). 

 

 

exp (+ sT t ) 

X m*exp (+ sT t /2) 

exp (-sT t /2) 

X m   *exp (-sT t /2) 

Slave&  
Environment  

X s=  
X ss*exp (+ sT t /2) 

X m  

exp (-sT t /2) 

M aster &  
H uman A rm  

X s*exp (-sT t /2)=  
X ss  

 

Fig. 3.1: Teleoperation through time delay and predictor 
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This way the "feel" of teleoperation is natural, since the variables are simultaneous, 

and are not altered by the algorithm, as in existing approaches [18], [20]. This is 

exactly what happens when a human manipulates by his own hands, i.e. the scheme is 

transparent. With a prediction horizon of Tt sec, t.d.s up to Tt /2 can be compensated 

for.  If the t.d. is smaller than Tt /2 or the t.d. is not equal in the two directions, then an 

additional artificial delay (buffering) has to be introduced. This would be the case if 

the computational delays were taken into account. They would probably not be 

matched in the two robots, since incorporating simpler hardware at the slave can be 

advantageous in space, underwater and other on-field applications. Thus variable t.d.s, 

arising for example through the Internet, can also be accommodated, provided the 

exact t.d. is calculated as in [24]. Even for small t.d.s, this prediction can be helpful in 

providing us time for control error corrections and compliance. 

A significant advantage offered by predicting the master state, is that only the plain 

camera image transmitted back to the operator is needed. No special analysis, such as 

object recognition to form a world model and make an accurate prediction or use of 

complicated graphics to overlap the predicted slave position on the camera image, 

demanded by conventional predictive display systems, is needed. This simplification 

occurs because the slave leads in time the master in the real world, not as a computer 

model. In other schemes is the opposite, i.e. the master leads in time the slave. 

 

The performance is clearly affected by the prediction accuracy. When the error is 

significant, the reaction fed back from the slave corresponds to the falsely predicted 

operator movement rather than the actual one, so that the human will form a wrong 

impression for the results of his actions and the remote site, and instability may arise. 

The prediction fidelity depends on the complexity of the predictor and the profile of 
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the master movements. The latter are determined by the human physiology and the task 

to be performed, and can be smoother and thus more predictable by operator training. 

This chapter investigates the trade-off between predictor complexity and final accuracy, 

i.e. the feasible t.d. compensation capabilities for various predictor implementations. 

 

The predictors considered can be cast in two groups: model-based and trajectory 

extrapolating predictors and are analytically discussed in sections 3.3 and 3.4. 

3.3 Model-Based Prediction 

Model-based predictors employ a model of the system that generates the master state, 

thus producing an accurate prediction, provided that this model and a prediction of its 

input are known. If the macroscopic variables xm and fm are considered as input, and 

due to the control feedback, the human arm, the two robots and the remote 

environment should be included in this model. Identifying an online-adapting neural 

network-based “holistic” model of this type was considered in earlier work, but has 

not so far resulted in robust performance. A non-adaptive model suffers from robot 

and environment parameter uncertainties and is anyhow quite complex. Despite the 

apparent similarities, this approach differs from predictive displays, since the master 

state is also predicted, the slave leads the way and no visual representation is needed. 

 

A simplification tried in the simulations, consisted in considering the slave state as 

steady during the prediction horizon (only within the predictor, of course). Thus 

effectively the slave and remote environment are not taken into account. This led to 

slight degradation of the prediction fidelity, which was not destabilizing. 
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Luckily, well-established physiological evidence reveals that the brain, rather than 

controlling the movement on-line, “programs” the arm with an action plan of a 

complete movement, which is then executed largely in open loop, regulated only by 

local reflex loops [27]. Therefore, by measuring the neural input (NI- its measurement 

termed electroneurograph - ENG) to the arm muscles and predicting it before a new 

"program" is "downloaded", a reliable reproduction of the intended master state can be 

obtained without fear of sudden change of the input. In [22] a control scheme assuring 

that this intended movement is realized by the actual master state, is designed (shown 

in Figs. 3.2, 3.3). Fig. 3.2 is the same as Fig 3.1, but setup for Neuropredictive 

Teleoperation.  is the HNI (Hypothetical Neuropredictive Input). In Fig. 3.3, the 

traditional and proposed schemes are shown, where, B: Brain, P: Muscle command 

program buffer, V: Screen and optical pathway, A: Arm, M: Master, eM: Arm Model 

and Predictor, S: Slave, E: Environment. Dashed lines should be ignored, unless HNI 

is estimated through an inverse arm model or when the arm model is tuned online. The 

dotted connection is open most of the time. 

Human Arm

Model



exp(+sTt)

 *exp(+sTt/2) Xm*exp(+sTt/2)

exp(-sTt/2)

 *exp(-sTt/2)

Slave&

Environment

Xs=

Xss*exp(+sTt/2) Xm

exp(-sTt/2)
Master &

Human Arm

Xs*exp(-sTt/2)=

Xss

 

Fig. 3.2: Teleoperation through time delay and predictor, but setup for Neuropredictive Teleoperation 

A

B

eM

M

V

S EP
A

eM

M

V

S E

B

P

 

Fig. 3.3: (a) Traditional, and (b) proposed scheme 
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There, the control loop traditionally closed around the master and slave is broken, so 

that the system reduces to open loop, for the interval during which the arm moves 

autonomously from the brain, i.e. most of the time (since the forward path from the 

brain to the slave passes through the predictor rather than the physical arm and 

master). By the combination of measuring and predicting the NI, the human arm is 

reduced to a sensory feedback platform for the brain, and a source of correcting the 

model and the prediction. This scheme was named "Neuropredictive Teleoperation" 

(NPT). Since invasive techniques would be required to measure the ENG, the 

electromyograph (EMG) and relevant models can be employed instead. A multitude of 

human arm models can be found in bioengineering literature  [21]. 

 

The ENG / EMG are not used in the models as measured, but are rectified and further 

processed [28], [21], [29]. To emphasize this, the term "hypothetical neural input" 

(HNI) will be used. The HNI has a simple form and some well studied characteristics: 

it is a three pulses’ sequence, modeled by varying the amplitude or the period. It is a 

square or triangular waveform, either continuous or "spiky" modulated by a square or 

triangular function, whereas the rectified EMG is (roughly) sinusoidal [21]. Such a 

signal is indeed easily predictable. Depending on the model, this is accomplished 

either by simulation ("running the model forward") or by modifying it to a predictive 

formulation (i.e. by analytical calculations). 

 

A central problem is specifying a horizon Tt for reliable prediction. A clear upper limit 

is posed by the frequency with which the brain changes its "program", i.e. its 

predefined sequence of pulses. Such an upper limit is estimated at about 1 sec, 

whereas a safe limit is 500 msec [30]. Within this limit a predictable set of three pulses 
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can be expected. To achieve this, good estimation of the duration of each pulse or 

robust control laws, with fast errors correction, are required. Given the margin of 500 

msec, such control tactics are feasible. To be safer, we can resort to short term 

predictions of HNI / EMG and "invest" on the activation time of the muscle as a 

response to HNI. Since this is modeled as a 1st order linear system with typical time 

constant 50 msec [30], its step response to the squared input used in [30] will have 

settled after around 200 msec. So, after measuring the ENG, one can predict the 

muscle response after approx. 200 msec. 

 

Considering typical values, t.d. is not considered for many ground applications, for 

example telesurgery with dedicated communication lines or Internet link (which 

introduces delays with a mean as small as 0.1 sec [23]), underwater ones for depth of 

400m (delay of 1/850 sec/m [17]), or even single-link earth-to-orbit ones(delay of 0.4 

sec,6 sec for multiple link [17]). Employment of hints about the intended movement or 

a combination with existing techniques could increase these limits. Intermediate 

systems, employing hints about the dynamics rather than an accurate model, are also 

under development by the authors [22]. 

3.4 Trajectory Extrapolating Prediction 

The disadvantage of the model-based techniques is that identifying a model and 

measuring its input is not an easy task, while the complexity of the calculations 

involved is quite high. Another option is to ignore the internal system dynamics and 

just interpolate xm and fm with a simple, say polynomial, function. The prediction is 

then made by extrapolating this coarse model up to the desired horizon. The decision 

to test this idea was reinforced by observing that the profiles of position and force 

trajectories reported in the literature are rather simple. An advantage of this technique 
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is that it can be directly applied to existing schemes without any modification of the 

control laws or their underlying assumptions. In contrast to NPT, there is no need to 

consider the human physiology, since only measurable macroscopic variables are 

required. In addition, it is computationally non-demanding. However, by separately 

predicting xm and fm their values will not necessarily be compatible to each other, in 

the way dictated by the nonlinear human dynamics.  

 

Several interpolating families of functions were considered. While the simplest were 

polynomial functions of low order, exponential ones, and (as in [29]) a 1st order 

Taylor extrapolator, cubic splines gave the double tolerance to delays. Neural 

Networks were considered but not tested, since they would either require off-line 

training to form an initial curve, or comprise of just a few neurons, leading to a 

performance not better than the other methods. Finally, heuristic modifications did not 

result in any significant improvement.  

3.5 The Enhanced Yokokohji and Yoshikawa Scheme 

As mentioned in the Introduction, a conservative improvement of the Yokokohji and 

Yoshikawa teleoperator architecture [10] was also developed [22]. 

 

The Yokokohji and Yoshikawa architecture is a classic one, developed through a well-

defined general framework of teleoperation, and following the widely accepted design 

specifications of aiming at transparency and passivity of the system. In [22] it is 

robustified against time delays, by being augmented with the predictor outlined above. 

The general system set-up is actually the same as in [11], except that the goal is now 

modified to achieving xm(t) = xs(t-Tp/2) (Ideal response I), or  fm(t) = fs(t-Tp/2) (Ideal 

response II), or both simultaneously (Ideal response III).  
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The enhanced scheme “pushes” the master and slave state to the mean values:  

  2/2)T-(tx+(t)x=(t)x psmms
    (28) 

f (t) =m s   f (t) + f (t - T / 2)
m s p

2    (29) 

These differ from [11], as the slave states are now delayed. A more important 

difference is that while the master is directed to (t)x ms
 , (t)f ms

 , the slave is pushed to 

/2)T+(tx pms
 ,  /2)T+(tf pms

  ,i.e. it leads the master arm along the desired trajectory.  

 

The dynamics of master and slave arm are given by the equations: 

mmmmmm xbxmf+(t)    (30) 

ssssss xbxmf    (31) 

where  is actuator driving force and mm, ms, bm, bs are constant parameters.  

By applying the control law (Fig. 3.4): 

    m m ms 1 ms m 2 ms m m m mf ms m ms(t) m x (t) k (x (t) x (t)) + k (x (t) x (t)) b x (t) k f (t) - f (t) f (t)                (32) 

 
s s s sf s m s p m s p
(t) b x (t) k f (t) - f (t + T / 2) f (t + T / 2) +    

 (t))x/2)T+(tx(k+(t))x/2)T+(tx(k/2)T+(txm spms2spms1pmss    (33) 

where kmf, ksf, k1, k2 are constant control parameters, it can be shown that 

f (t - T / 2) = f (t)
s p m

 and    e (t) + k e (t) + k e (t) = 01 2 , where  e (t) x (t) - x (t - T / 2)
m s p  , i.e. 

force tracking is perfect and position error is minimized through the 2nd order error 

equation above. So, the ideal performance is achieved, despite of the time delay. 

 

As in [11], the above control law can turn the system unstable if the dynamic 

parameters’ estimation is erroneous. It can be enhanced by applying the intervening 

impedance, concept of Yokokohji and Yoshikawa: the force tracking is relaxed, by 

imposing, through a modified control law: 
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f (t) - f (t - T ) mx (t) + bx (t) + cx (t)m s t ms ms ms2           (34) 

    e (t) + e (t) + e (t) = f (t) + f (t - T )m s t 2 2   (35) 

where  is a constant parameter. This way, the operator feels as if manipulating 

through a virtual rod, an intervening impedance, whose (constant) parameters are 

denoted by above "hat" symbols. 

 

In [22] it is shown that the combination of the teleoperator and the predictor is passive 

under perfect prediction. It is also shown that it can be passive under non-perfect 

prediction, depending on the prediction error bounds and the control parameters. 

 

If, in the control laws above, we use on the master side x (t), f (t)m m  instead of 

 x (t),  f (t)m m , we obtain a succession of blocks in an open-loop connection. Thus, 

through the design process following the classic thinking, the mechanical part reduced 

to an open-loop system. This was due to the use of NI and a perfect predictor, and 

indicates that the master-slave-master loop becomes an obsolete specification. Under 

non perfect prediction or if online adaptation of the model is needed, the enhanced 

scheme of this subsection remains closed loop.  
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Fig. 3.4: The enhanced Yokokohji and Yoshikawa telemanipulation scheme
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Chapter 

4 
IMPLEMENTATION OF PROPOSED METHOD 

4.1  Introduction 

In this chapter the design work followed for the implementation of the variable-time-

delays-robust telemanipulation through master state prediction (described in chapter 3) 

is presented. The program was developed and debugged using Microsoft Visual C++ 

6.0 part of Microsoft Visual Studio 6.0. Great attention was paid to the explanation of 

functions used during the program and the theory involved behind them. Two different 

functions for predicting the master state were investigated and developed, according to 

interpolation using Lagrance polynomial, and polynomial least squares curve fitting 

theories. 

4.2 Program Explanation 

The program accepts a script file, where the user is called to enter the desired 

simulation parameters. The two main functions of the program are the master and 



  MSc Mechatronics Project Report 

K.Deliparaschos   Page 42  

slave. When the simulation is over a log file is created containing all the results (at 

each sample) that occurred during the execution of the algorithm. 

 

In order to simulate a random delay line between master and slave, the master 

information (at every sample), are first written in the hard disk, and then red from the 

slave and vice versa, adding this way the resulted write-read time of hard disk (hard 

disk access time). The delay feature is neutral in the current program (master and slave 

are executed under the same counter) and was only developed for future expansion of 

the program, where master and slave would be using independent execution counters. 

4.3 Interpolation 

4.3.1 Interpolation Theory 

In this section the problem of obtaining a function for the case when the data points 

are precisely known will be addressed. In the case of interpolation, the curve has to 

pass through every data point. The resulting polynomial is called an interpolating 

polynomial, and the process of obtaining intermediate points between precise known 

points is called interpolation. The most common use of interpolation is to obtain 

intermediate values from tabulated data. 

 

As a first approximation the data points can be connected by a series of straight lines. 

Figure 4.1 on next page, shows one such a segment connecting xi and xi+1. 
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Fig. 4.1: Linear Interpolation [31] 

The equation of the straight line of 1st degree interpolating function can be written as: 

f(x) = a0+a1x    (36) 

Considering the straight line segment between the points xi and xi+1, the 

coefficients a0 and a1 can be obtained by noting that the function f(x) must pass 

through the points xi and xi+1: 

f(xi+1) = a0+a1xi+1    (36) 

Solving the above simultaneous equations the following values for a0 and a1: 
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Substituting for a0 and a1 in Eq. (36) and rearranging: 
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   (39) 

Equation (39) can be used for estimating the value of f(x) corresponding to a given 

value of x. The particular form of the equation is called the Lagrance 1st order 

interpolating polynomial. 
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The accuracy of the approximation can be improved by presenting some curvature in 

the function connecting the points (x0,f(x0)),…,(xn,f(xn)). This can be done by 

approximating f(x) with a 2nd degree interpolating function: 

f(x) = a0+a1x+a2x
2   (40) 

Similarly as above, the equation for a 3rd order degree polynomial is: 

f(x) = a0+a1x+a2x
2+ a3x

3   (41) 

The coefficients a0, a1, a3 are determined by requiring that f(x) pass through the points 

(x0,f(x0)), (x1,f(x1)), (x2, f(x2)), and (x3, f(x3)), which yields the following equation: 
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  (42) 

The Lagrance interpolating polynomial of degree n can be written as: 

f(x)=L0(x)f(x0)+L1f(x1)+L2f(x2)+…+Lnf(xn)  (43) 

or more simply as: 
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The functions Li(x) are defined as: 
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or more simply as: 
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where the Greek capital letter Π represents a repeated product. Replacing Li(x) from 

Eq. (46) in Eq. (44), the Lagrance interpolation function can be written as: 
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The functions Li(x) have the following properties: 

Li(x)=1, at x=xi  

Li(x)=0, at xxi 

Thus the product Li(x)f(xi) is equal to f(xi) at x=xi and is zero for all other values of xi. 

This means that the polynomial passes exactly trough each of the n+1 points [31]. 

4.3.2 Interpolation Function 

Function lagrance_poly() performs interpolation using an nth order Lagrance 

interpolating polynomial. It determines a polynomial that passes through a set of n+1 

data points, (x0, f(x0)), and computes the value of the dependent variable for a given x 

value. The function accepts as input parameters: 

 x[]  array containing values of independent variable xi 

 y[]  array containing values of independent variable f(xi) 

 n  number of data points 

 x_value x_value for interpolation 

and returns: 

 fx  value of dependent variable f(x) at x=x_value 

The code for lagrance_poly() is very simple and consists of two nested for loops. The 

inner loop computes Li(x), while the outer loop computes the sum of Li(x)f(xi). The 

function returns a value of type double in the variable fx, which is the interpolated 

value of f(x) at the given value of x [31]. 
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4.3.3 Pseudo Code for Function, lagrance_poly() 

The pseudo code for the function is shown below. 

Declare fx as double 

Declare x, f as double arrays of size defined in variable MAXSIZE 

Declare n as integer 

Declare x_value as double 

 

Declare loop counters i, j as integers 

Declare fx, as double and set to 0.0  

Declare li, as double and set to 1.0 

 

Start incremental counter for i=0 to i< n 

Set li equal to 1.0 

Start incremental counter for j=0 to i< n 

If j is not equal to i then 

Compute li 

Compute sum of li*f[i] and store in variable fx 

Return variable fx 

4.4 Polynomial Least Squares Curve Fitting 

4.4.1 Polynomial Least Squares Curve Fitting Theory 

In this section the problem of developing a curve that follows the general trend of the 

data and passes as close as possible but not necessarily through every data point, is 

presented.  

The most widely used technique for fitting a line through a series of observed data 

points is the least squares method. This method is based on minimizing the sum of the 

squares of the difference between the observed data points and the values given by the 

approximating line. The method is illustrated graphically in Fig. 4.2. 
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Fig. 4.2: Regression line and error associated with point (xi, yi) [31] 
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The predicted values are given by: 

ii xaay 10 


    (48) 

The vertical deviating δi of the ith point from the regression line is: 

δi=yi- iy


= yi- ( ixaa 10  )   (49) 

where δi is the difference between the observed value yi and the ordinate 
iy


 of the 

fitting straight line at xi. The sum of the squares of deviations is: 
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The values of a0 and a1 are chosen so as to minimise S.  S can be minimised by taking 

the partial derivatives of S with respect to a0 and a1 and setting the resulting equation 

to zero: 
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Replacing 
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and rearranging gives the following 

two simultaneous equations: 
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Solving the above simultaneous equations, the solutions of a0 and a1 can be obtained. 

The method presented above can easily be extended to higher-order polynomials.  

An N degree regression polynomial has the form: 

xaxaxaay Ni  ...
2

210   (55) 
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the sum of squares of the deviations is given by: 
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By setting the partial derivatives, 
0a
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equal to zero, the following 

system of n+1 linear simultaneous equations in the unknown coefficients a0, a1, …, aN 

are obtained. 
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All the summations are from i=1 to i=n. Equation (57) can be written in a matrix form: 
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 (58) 

When the summations that appear in the coefficient matrix and the right-hand vector have 

been evaluated, the equations can be solved using a method for solving simultaneous 

equations [31]. 

4.4.2 Polynomial Least Squares Curve Fitting Function 

Function poly_leastsqr() determines the best-fit polynomial of the form y= a0 + a1x + a2x
2 

+...+ aN xN-1 and computes the coefficients a0, a1, aN of the best-fit polynomial of 

degree N-1 for a set of observations (x1, y1), (x2, y2), ...,(xm, yn). The computations are 

performed by function, poly_leastsqr(). The function first assembles the square 

coefficient matrix and the right-hand vector given in Eq. (58) in the previous section. 

The coefficient matrix is saved in the two-dimensional array c[][], and the right-hand 
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vector is saved in the one-dimensional array a[]. The function then calls the triangular 

factorisation with pivoting elimination routine to solve the system of equations and 

obtain the coefficients of the best-fit polynomial. The same function also calculates the 

value of y (predicted value) for a given x_value. The elimination function is discussed 

in the next section. The function expects six arguments, described next: 

 x[]  array containing observed values of xi 

 y[]  array containing observed values of yi 

 num_points number of data points, n 

 num_poly degree of polynomial, which is equal to N-1 

 x_value x value of polynomial 

and returns: 

 a[]  coefficients of best-fit polynomial, a0, a1, …,an 

The function creates two local arrays, a one-dimensional array s[] and a two-

dimensional array c[][]. The array s[] is used to store various sums that used to create 

the coefficient matrix. The elements of the array s[] are obtained from: 
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On the other hand the elements of the coefficient matrix c[][] are obtained from the 

array s[], knowing that the relation between them is, c[i][j]=s[i+j]. 

The right-hand vector is saved in the array a[], the elements of which are obtained from:  
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The function first creates the arrays s[] and a[]. Next it creates the array c[][] by 

placing the elements of s[] in their appropriate positions in c[] [31]. It then calls the 

function Triangular_Factorization(), to solve the system of equations and returns the 

value of y (fx, predicted value) based on x_value. 
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4.4.3 Pseudo Code for Function, poly_leastsqr() 

The pseudo code for the function is shown below. 

Declare x, y as double arrays of size defined in variable MAXPOINTS 

Declare a as double arrays of size defined in variable MAXSIZE 

 

Declare c as 2x2 double array of size defined in variable MAXSIZE 

Declare s as double array of size twice the one defined in variable MAXSIZE 

Declare loop counters i, j as integers 

Declare predicted value fx as double 

 

Compute sums routine 

Set s[0] equal to number of data points, num_points 

Start incremental counter for i=1, to i<= to twice num_points 

Set s[i] equal to 0.0  

Start incremental counter for j= 0, to j<num_points 

 

Create coefficient matrix routine 

Start incremental counter for i=0, to i<= to degree of polynomial, num_poly 

Start incremental counter for j=0, to i<= to num_poly 

Set the relation between the elements of c[][] and s[], c[i][j]=s[i+j] 

 

Create right-hand side vector routine 

Set a[0] equal to 0.0 

Start incremental counter for j=0 to j<num_points 

Compute sums of y[j] and store in a[0] 

Start incremental counter for i=0 to i<=num_poly 

Set a[i] to 0.0 

Start incremental counter for j=0 to j<num_points 

Compute the product of y[j] with x[j] in power of I, add to previous result and store in a[i] 

 

Call Triangular_factorisation() elimination faction, with input parameters,  

c[], a[], num_poly+1, x_value, a[]   

 

4.5 Triangular Factorisation 

4.5.1 Triangular Factorisation Theory 

A system of linear simultaneous equations is usually represented by the form: 
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  (61) 
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In the above form, aij are known coefficients, bi are known constants, and xi are the 

unknowns for which the equations are to be solved. The unknown xi’s are raised only 

to the 1st power and do not multiply each other. Therefore, each equation is linear. 

The system of equations above can be represented in a matrix form as: 
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  (62) 

or simply using vectors as: 

Ax=B    (63) 

Where A represents the square array of coefficients aij and is known as the coefficient 

matrix, x represents the n component matrix of unknowns xi, and B is the column 

matrix of the right-hand side constants bi. 

 

Assuming that the matrix A can be written as a product of three matrices, as: 

PA=LU    (64) 

Where L is the lower triangular matrix (has elements only on the diagonal and below), 

U is the upper triangular matrix (has elements only on the diagonal and above), and P 

is the permutation matrix. 

 

Decomposition can be used to solve the linear set: 

Ax=(LU)x=L(Ux)=PB   (65) 

By first solving for the vector y such that: 

Ly=PB    (66) 

and then solving: 



  MSc Mechatronics Project Report 

K.Deliparaschos   Page 52  

Ux=y    (67) 

Equation (66) can be solved by forward substitution as follows: 
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while Eq.(67) can be solved by backsubstitution as follows: 
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4.5.2 Triangular Factorisation with Pivoting Function 

Function Triangular_factorisation() (PA=LU Factorisation with Pivoting), solves 

the linear system Ax = B by performing the following steps: 

 Computes PB and forms the equivalent linear system LUx=PB 

 Solves the lower-triangular system Ly=PB for y. 

 Solves the upper-triangular system Ux=y for x. 

Then it performs forward and back substitution according to equations (68), (69) in 

order to find the solutions to system of equations. Finally the solution matrix (a0,… 

,an) is used to determine the predicted value y (fx) according to x (x_value). 

4.5.3 Pseudo Code for Function, Triangular_factorisation() 

Declare loop counters i, ii, z, j, l as integers 

Declare field with row number, Row, as double array of size defined in variable MAXSIZE 

Declare temporary variable for storing intermediate values, temp, as integer 

Declare y as double array of size defined in variable MAXSIZE 

Declare adder variable, SUM, as double 

Declare determinant of [A], DET, as variable and set equal to 1.0 

Declare predicted value fx as double 

 

Initialise pointer vector routine 

Start incremental counter for l=1 to l<=degree of polynomial, num_poly  

Set Row[l-1]=l-1 
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Start LU factorisation routine 

Start incremental counter for z=1 to z<=n_poly-1 

Start pivot element routine 

Start incremental counter for i=z+1 to i<=n_poly 

If absolute value of A[Row[i-1]][z-1] greater than absolute value of A[Row[z-1]][z-1] 

Switch the index for the p-1 pivot row if necessary  

Set temp=Row[z-1] 

Set Row[z-1]=Row[i-1] 

Set Row[i-1]=temp 

Set DET=-DET 

Simulated row interchange ends here 

 

If A[Row[z-1][z-1] equal to 0 then 

Prompt “The matrix is singular! Cannot use algorithm to solve the system of equations Ax=B” 

 

Multiply the diagonal elements routine 

Set DET=DET*A[Row[z-1][z-1] 

 

Form multiplier routine 

Start incremental counter for i=z+1 to i<=n_poly 

Set A[Row[i-1]][z-1]=A[Row[i-1]][z-1]/A[Row[z-1]][z-1] 

 

Eliminate p-1, routine 

Start incremental counter for j=z+1 to j<=n_poly 

Set A[Row[i-1]][j-1]-=A[Row[i-1]][z-1]*A[Row[z-1]][j-1] 

 

LU factorisation routine ends here 

 

Set DET=DET*A[Row[n_poly-1][n_poly-1] 

 

Start forward substitution routine 

Set y[0] equal to B[Row[0]] 

Start incremental counter for i=2 to i<=n_poly 

Set SUM equal to 0 

Start incremental counter for j=1 to j<I-1 

Compute product of A[Row[I-1]][j-1] and y[j-1] add to previous value and store in SUM 

Set y[i-1] equal to B[Row[i-1]]-SUM 

 

If A[Row[n_poly-]][[n_poly] equal to 0 then 

Prompt “The matrix is singular! Cannot use algorithm to solve the system of equations Ax=B” 

Forward substitution routine ends here 

 

Start back substitution routine 

Set a[n_poly-1] equal to y[n_poly-1]/A[Row[n_poly-1]][n_poly-1] 

Start decrement counter for i=n_poly-1 to i>=1 

Set SUM equal to 0 

Start incremental counter for j=i+1 to j<=n_poly 

Compute product of A[Row[i-1]][j-1] and a[j-1] add to the previous value and store in SUM 

 

Set a[i-1] equal to (y[i-1]-sum)/A[Row[i-1]][i-1] 

Back substitution routine ends here 

 

Compute predicted value fx, routine 

Start incremental counter for ii=0 to ii<=n_poly 

Set fx equal to 0.0 

Compute product of a[ii] and x_value to the power of ii, add to previous value and store in SUM 

Return value of fx 
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4.6 Master Section 

4.6.1 Master Theory 

The theory behind the master was analytically discussed in chapter 3, where the 

proposed method was presented. The master function consists of four main routines 

namely as follows: 

 Neural input routine 

 Read data files routine 

 Master algorithm 

 Create data files routine 

A detailed description of above routines is presented in the next sections. 

4.6.2 Neural Input Routine  

The neural input routine generates the neural input that drives the master. For 

simplicity reasons, neural input was selected to be a sine wave of constant frequency 

and unity amplitude [sin(2πft)]. The time duration of the sine wave was defined as the 

product of number of samples by the sampling frequency [t=nTs]. 

4.6.3 Read Data Files Routine 

The purpose of read data file routine is to read the slave force and position as well as 

the sample number for every sample till the simulation is over, and pass the data to the 

master algorithm. The data files read by the routine are of the form datan.dat, where n 

is the sample number. The functions strcpy and strcat included in string.h include file 

are used in order to build the above data file form, by coping a string to a specified 

data location (strcpy) and adding more strings to it (strcat). Function _itoa included in 

stdlib.h include file was used to convert the current sample number (integer) to a 
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character string, in order to attach it to the data file form. Since it is not possible to 

save double numbers (limit to float numbers) in a data file, the numbers before written 

into the data file are converted and stored as strings. Then when read back, are 

converted back from string to double, without loss of information. This is achieved by 

using the function _itof (converts a string to double) included in stdlib.h. 

4.6.4 Master Algorithm 

The master-slave force and position data are computed for two cases. The first case is 

while the number of samples (n) is less or equal to half of the given time delay (Tt/2 

expressed in msec). The computations are based on Eqs. (28), (29) for Tt=0 (or Tp). 

The second case arises when the number of samples is greater to Tt/2. Again the 

computation of master-slave force and position is based on Eqs. (28), (29) for the 

given Tt. To make things more clear, in the first case Tt is set to zero since there is not 

prediction (prediction model is discussed in slave section) of slave force and position 

(fs, xs) previous values, thought in the second case where n>Tt the prediction has 

started, therefore previous values of (fs, xs) can be obtained. 

 

In order to obtain master-slave velocity and acceleration from master-slave position, a 

differentiation method needs to be applied. An easy and simplified method to 

differentiate arises from the definition of differentiation and can be expressed as: 

sT

xx
x

0
  and 

sT

xx
x

0





    (70) 

where Ts needs to be small enough to reduce errors. 

 

Euler method for solving a differential equation is applied in order to find master 

position, velocity, and acceleration. Equation (30) is solved for x  and becomes: 
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   (71) 

Then according to equation (70), x , x can be found as well: 

msmm xTxx  
0

   (72) 

msmm xTxx 
0

   (73) 

 

Finally from the control law equation for master actuator driving force, Eq. (32), τm 

can be obtained. 

4.6.5 Write Data Files Routine 

The structure of write data files routine is more or less the same as of the read data 

files routine described in section 4.6.3. The specific routine is used for storing the 

master force and position as well as the sample number in the data file. The main 

difference is that function _gcvt (stdlib.h include file) is used for converting double 

number to string. Since the function requires the number of decimal points to be 

converted, double numbers considered having 15 decimal points (16 is the maximum 

for double by definition). Therefore the truncation error is negligible. 
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4.6.6 Pseudo Code for Function, Master() 

Define time duration = no. of samples * sampling frequency 

 

Neural input (master force) simulation 

Define rad=2* π(pi4)*frequency(fi3)*time 

Master force, fm=sin(rad) 

 

If number of samples, n>1 

 

Start read data files routine 

Convert n+1 (integer) to character, no2 

Copy path for slave data files4 to filename2 

Add slave filename for data files to filename2 

Add current no. sample to filename2 

Add slave extension for data files to filename2 

Open filename2 (slave data file) for reading only 

Read slave force information stored in data file, buffer_fs 

Read slave position information stored in data file, buffer_xs 

Read current sample number stored in data file, n  

Convert string to double, buffer_fs to fs[n] 

Convert string to double, buffer_xs to xs[n] 

Close file 

 

If no. of sample, n<=delay, Tt4 

Start master algorithm routine 

Master-slave position calculation, xms[n]=(xm[n]+xs[n])/2 

Master-slave force calculation, fms[n]=(fm[n]+fs[n])/2 

 

If n>Tt/2 

Master-slave position calculation, xms[n]=(xm[n]+xs[n-Tt/2])/2 

Master-slave force calculation, fms[n]=(fm[n]+fs[n-Tt/2])/2 

 

Perform classic differentiation to find xxm (master velocity), xxxm (master acceleration) 

xxms[n]=(xms[n]-xms[n-1])/Ts 

xxxms[n]=(xxms[n]-xxms[n-1])/Ts 

 

Control law equation for master actuator driving force calculation, Eq. (32) 

tm[n]=mm4(xxxms[n]+k14*(xxms[n]-xxm[n])+k24(xms[n]-xm[n]))+ 

+bm4*xxm[n]-kmf4(fms[n]-fm[n])-fms[n] 

 

Euler method for finding xxxm, xxm, xm 

xxxm[n+1]=(tm[n]+fm[n]-(bm*xxm[n]))/mm 

xxm[n+1]=xxm[n]+(Ts4*xxxm[n+1]) 

xm[n+1]=xm[n]+(Ts*xxm[n+1]) 

 

Start create data files routine 

Convert n (integer) to character, no1 

Copy path for master data files4 to filename1 

Add master filename for data files to filename1 

Add current no. sample to filename1 

Add slave extension for data files to filename1 

Open filename1 (master data file) for writing only 

                                                           

 

 

 
4 User defined in script.h include file 
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Convert double to string, fm[n] to buffer_fm 

Convert double to string, xm[n] to buffer_xm 

Write master force information in data file, buffer_fm 

Write master position information in data file, buffer_xm 

Write master sample number in data file, n 

 

4.7 Slave Section 

4.7.1 Slave Theory 

The theory behind the slave was analytically discussed in chapter 3, where the 

proposed method was presented. The slave function consists of four main routines 

namely as follows: 

 Read data files routine 

 Predictor model 

 Slave algorithm/Slave dynamics 

 Create data files routine 

A detailed description of above routines is presented in the next sections. 

4.7.2 Read Data Files Routine 

The routine is the same as the one described in section 4.6.3, with the only difference 

that here it is used for reading the master force and position and pass the data to the 

slave algorithm. 

4.7.3 Predictor Model 

In sections 4.3 and 4.4 the two predictor methods used were discussed. After a number 

of tests it proved that the method belonging in section 4.4, gave the most correct 

results.  

The horizon of prediction (n_start) or after how many samples the prediction starts, is 

user defined in script.h include file. If the no. of samples, n is less than n_start then the 
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estimated master force and position for n+Tt/2 samples will be equal to master force 

and position of the 1st  sample, until the initial condition changes. If n is greater than 

n_start then the prediction starts (with x_value=n+Tt/2) in order to get the estimated 

master force and position data ( efm[n+Tt/2], exm[n+Tt/2] ) . Summarising,   

 If n<=n_start then there is no prediction (xm[1], fm[1]). 

 If n>n_start 

 If n>(n_start+np) then perform prediction with data: xm[n-np]…xm[n] 

 Else perform prediction with data: xm[1]…xm[n] 

4.7.4 Slave Algorithm 

The master-slave force and position are based on Eqs. (28), (29), but the estimated 

master force and position data obtained from the predictor model are used instead. To 

avoid confusion with master algorithm, the master-slave force and position are 

renamed as xmss, fmss. The rest of algorithm follows exactly the same steps as in 

master algorithm (section 4.6.4), with the only difference that Eq. (33) is used for 

computing slave actuator driving force, τs. For simplicity reason slave force fs was set 

to zero, assuming no collision of slave robot with any object. 

4.7.5 Write Data Files Routine 

The routine is exactly the same as the one described in section 4.6.5, with the only 

difference that here it is used for writing the slave force and position, fs, xs to the data 

file. 

4.7.6 Pseudo Code for Function, Slave() 

Start read data files routine 

Convert n (integer) to character, no1 

Copy path for master data files to filename1 

Add master filename for data files to filename1 

Add current no. sample to filename1 

Add master extension for data files to filename1 
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Open filename1 (master data file) for reading only 

Read master force information stored in data file, buffer_fm 

Read master position information stored in data file, buffer_xm 

Read current sample number stored in data file, n 

Convert string to double, buffer_fm to fm[n] 

Convert string to double, buffer_xm to xm[n] 

Close file 

 

Start predictor model 

Collect  no. of samples for prediction function and save in st[n], st[n]=n 

Collect current master position for prediction function and save in sx[n], sx[n]=xm[n] 

Collect current master force for prediction function and save in sf[n], sf[n]=fm[n] 

 

If n<=prediction horizon, n_start 

 

Set predicted master position, exm[n+Tt/2]=xm[1] 

Set predicted master force, efm[n+Tt/2]=fm[1] 

 

If n>prediction horizon, n_start 

Set x_value equal tp n+Tt/2 

Call curve-fitting function for efm, fx1=poly_leastsqr(st,sf,np,2,x_value,a) 

Save predicted value fx1 into efm[n+Tt/2] 

 

Call curve-fitting function for exm, fx2=poly_leastsqr(st,sx,np,2,x_value,a) 

Save predicted value fx2 into exm[n+Tt/2] 

 

Start slave algorithm/slave dynamics 

Master-slave position calculation, xmss[n]=(exm[n]+xs[n])/2 

Master-slave force calculation, fmss[n]=(efm[n]+fs[n])/2 

 

Perform classic differentiation to find xxs (slave velocity), xxxs (slave acceleration) 

xxmss[n]=(xmss[n]-xmss[n-1])/Ts 

xxxmss[n]=(xxmss[n]-xxmss[n-1])/Ts 

 

Control law equation for slave actuator driving force calculation, Eq. (32) 

ts[n]=bs5*xxs[n]-ksf5*(fs[n]-fmss[n])+fmss[n]+ 

+ms5*(xxxmss[n]+k15*(xxmss[n]-xxs[n]+k25*(xmss[n]-xs[n]) 

 

Euler method for finding xxxs, xxs, xs 

xxxs[n+1]=(ts[n]+fs[n]-(bs*xxs[n]))/ms 

xxs[n+1]=xxs[n]+(Ts*xxxs[n+1]) 

xs[n+1]=xs[n]+(Ts*xxs[n+1]) 

 

Start create data files routine 

Convert n+1 (integer) to character, no2 

Copy path for slave data files to filename2 

Add slave filename for data files to filename2 

Add current no. sample to filename2 

Add slave extension for data files to filename2 

Open filename2 (master data file) for writing only 

Convert double to string, fs[n+1] to buffer_fs 

Convert double to string, xs[n+1] to buffer_xs 

Write slave force information in data file 

Write slave position information in data file 

Write slave sample number+1 in data file 

                                                           
5 User defined in script.h include file 
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4.8 Simulation Logfile Section 

4.8.1 Logfile Creation Function  

After the simulation has finished a number of individual master and slave data files 

have been created, containing the simulation values of master and slave force and 

position during the simulation run. Function logfile_create reads those files one by one 

(read data files routine for master and slave, sections 4.63, 4.7.2, with no conversion 

from string to double), collects all data contained in them and saves them in a log file. 

Other interesting simulation results, such as the master-slave force and position (fmss, 

xmss), predicted master force and position (efm, exm), master and slave actuator 

driving forces (τm, ts), remain in the computer memory after the simulation is over, and 

can be saved in the log file as well. The simulation elapsed time is saved as well and 

added at the bottom end of the logfile. If another simulation is run by the user, the new 

results are simply added in the logfile without replacing the old ones. This way the 

user can compare the old results with the new ones. The logfile structure was chosen 

to be as described before, since it can be directly manipulated by Matlab without 

modification, for further analysis of the results.  

4.8.2 Pseudo Code for Function, logfile_create() 

Open logfile. Perform a seek to the end of file. When new bytes are written to the file, they are always 

appended to the end, even if the position is moved with the function. 

 

Store heading description on first row of simulation data to be stored, “n”, “xm”, “fm”, “xs”, “fs”, 

“fmss”, “xmss”, “exm”,”efm”,“tm”, “ts” 

 

Run loop for n=1 to n<=no. of samples, k6 

 

Start read master data files routine 

Convert n (integer) to character, no1 

Copy path for master data files to filename1 

Add master filename for data files to filename1 

Add current no. sample to filename1 

                                                           
6 User defined in script.h include file 
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Add master extension for data files to filename1 

Open filename1 (master data file) for reading only 

Read master force information stored in data file, buffer_fm 

Read master position information stored in data file, buffer_xm 

Read current sample number stored in data file, n 

Close file 

 

Start read slave data files routine 

Convert n+1 (integer) to character, no2 

Copy path for slave data files to filename2 

Add slave filename for data files to filename2 

Add current no. sample to filename2 

Add slave extension for data files to filename2 

Open filename2 (slave data file) for reading only 

Read slave force information stored in data file, buffer_fs 

Read slave position information stored in data file, buffer_xs 

Read current sample number stored in data file, n  

Close file 

 

Convert double to string,  fmss[n] to buffer_ fmss 

Convert double to string,  xmss[n] to buffer_ xmss 

Convert double to string,  exm[n] to buffer_ exm 

Convert double to string,  efm[n] to buffer_ efm 

Convert double to string,  tm[n] to buffer_ tm 

Convert double to string,  ts[n] to buffer_ ts 

Write in log file, all values of  n, buffer_xm, buffer_fm, buffer_xs, buffer_fs, buffer_fmss, buffer_xmss, 

buffer_efm, buffer_exm, buffer_tm, buffer_ts during the simulation 

 

Write in logfile the simulation elapsed time, stored in variable duration  

 

4.9 Simulation Elapsed Time Section 

4.9.1 Elapsed Time Start and Finish Functions 

Two functions were developed for measuring the duration of the simulation. The first 

function starts the system clock and the second function stops the system clock and 

estimates the elapsed time (duration). The functions are inserted before and after the 

task to be measured. Both of the functions use the time.h include file. 

4.9.2 Pseudo Code for Function, elapsed_time_start() 

Start system clock, start=clock() 

4.9.3  Pseudo Code for Function, elapsed_time_finish() 

Stop system clock, finish=clock() 

Estimate elapsed time, duration=(double)(finish-start)/CLOCKS_PER_SEC 

Prompt “Simulation elapsed time:” 
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4.10 Program Variable Initialisation Section 

4.10.1 Initialisation Function 

Function init() was developed to simply initialise the different variables used 

throughout the program code. The values used were obtained from feedback 

information based on similar simulation tests. 

4.10.2 Pseudo Code for Function, Init() 

Set master position at n=1, xm[1]=1.2217 rad or 7o 

Set estimated master position at n=1, xm[1]=1.2217 rad or 7o 

Set master velocity at n=1, xxm[1]=0.0 

Set master acceleration at n=1, xxxm[1]=0.0 

Set slave position at n=1, xm[1]=1.2217 rad or 7o 

Set slave velocity at n=1, xxm[1]=0.0 

Set slave acceleartion at n=1, xxm[1]=0.0 

Set master-slave velocity at n=1, xxms[1]=0.0 

Set master-slave acceleration at n=1, xxxms[1]=0.0 

Set slave force at n=1, fs[1]=0.0assume no collision 

Set master-slave position at n=0, xms[0]=(xm[1]+xs[1])/2 

Set master-slave velocity at n=0, xxms[1]= xxms[0] 

 

Set master-slave position at n=0, xmss[0]=(exm[1]+xs[1])/2 

Set mster-slave velocity at n=1, xxmss[1]=0.0 

Set master-slave velocity at n=0, xxmss[0]=xxmss[1] 

Set master-slave acceleration at n=1, xxxmss[1]=0.0 

 

4.11 Include Files and Declaration of Global Variables 

The list of include files used in the program code are given below: 

 stdio.h stdlib.h 

 iostream.h, iomanip.h 

 math.h 

 string.h 

 time.h 

 script3.h 
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Include file script3.h holds user-defined parameters for the program simulation. It is 

further discussed in the next section.  

 

All global variable definitions used, are described analytically in the table below. 

Variable name Data Type Explanation 

 

rad double Angle variable 

Timing variables 

t=0 double Time 

n=0 integer Program counter 

start clock_t Defined in time.h  Start system clock 

finish clock_t  Stop system clock 

duration double Simulation duration 

Master variables 

tm[k] k defined in script3.h double  Master actuator driving force 

xm[k] k defined in script3.h double Master position 

xxm[k] k defined in script3.h double Master velocity 

xxxm[k] k defined in script3.h double Master acceleration 

fm[k] k defined in script3.h double Master force 

Slave variables 

ts[k] k defined in script3.h double Slave actuator driving force 

xs[k] k defined in script3.h double Slave position 

xxs[k] k defined in script3.h double Slave velocity 

xxxs[k] k defined in script3.h double Slave acceleration 

fs[k] k defined in script3.h double Slave force 

Master-Slave variables 

xms[k] k defined in script3.h double Master-slave position 

xxms[k] k defined in script3.h double Master-slave velocity 

xxxms[k] k defined in script3.h double Master-slave acceleration 

fms[k] k defined in script3.h double Master-slave acceleration 

Slave dynamics variables 

xmss[k] k defined in script3.h double Master-slave position 

xxmss[k] k defined in script3.h double Master-slave velocity 

xxxmss[k] k defined in script3.h double Master-slave acceleration 

fmss[k] k defined in script3.h double Master-slave force 

Master data files variables 

no1[10] char Data file number 

filename1[80] char Filename of data file 

buffer_fm[50] char Master force converted to string 

buffer_xm[50] char Master force converted to string 

Slave data files variables 

no2[10] char Data file number 

filename2[80] char Filename of data file 

buffer_fs[50] char Slave force converted to string 

buffer_xs[50] char Slave force converted to string 

Log file Creation Variables 

buffer_fmss[50] char Master-slave force converted to string 

buffer_xmss[50] char Master-slave position converted to string 

buffer_efm[50] char Estimated master force converted to string 

buffer_exm[50] char Estimated master position converted to string 

buffer_tm[50] char Estimated master actuator driving force conv. to string 

buffer_ts[50] char Estimated slave actuator driving force conv. to string 
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a[MAXSIZE] MAXSIZE 

defined in 

script3.h 

double Polynomial coeffiecients 

Curve-fitting variables 

fx1 double Predicted value for master force 

fx2 double Predicted value for master position 

x_value double x value of polynomial 

Curve-fitting external variables 

st[k] k defined in script3.h double same as n 

sf[k] k defined in script3.h double same as xf[n] 

sx[k] k defined in script3.h double same as xm[n] 

efm[2*k] k defined in script3.h double Predicted master force 

exm[2*k] k defined in script3.h double Predicted master position 

np=50  integer Number of data points for prediction 

Table 4.1: Global variable declarations 

4.12 Simulation Script File Section 

A script file in the form of included file from the main program code was created in 

order to hold the simulation parameters. The user can alter the simulation parameters 

by simply editing the script file through any text editor. The following table, accounts 

the availability of user defined simulation parameters, contained in the script file. 

Variable name Explanation and Units 

 
Timing Parameters 

Tt Time delay (msec) 

Ts Sampling frequency (sec) 

fi Frequency of sinusoidal i/p signal (Hz) 

k Number of samples 

Human arm parameters 

mo Mass (kgr) 

bo Damping coefficient (N/m2) 

ko Spring constant (N/m) 

Master parameters 

mm Mass (kgr) 

bm Damping coefficient (N/m2) 

km Spring constant (N/m) 

Slave parameters 

ms Mass (kgr) 

bs Damping coefficient (N/m2) 

ks Spring constant (N/m) 

Control Parameters 

kmf Spring constant (N/m) 

ksf Spring constant (N/m) 

k1 Spring constant (N/m) 

k2 Spring constant (N/m) 

Definition of π (pi) 

pi π (pi) 
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Curve Fitting Parameters (predictor) 

n_start Prediction staring point (prediction horizon) 

MAXSIZE Maximum degree of polynomial 

MAXPOINTS Max number of data points for prediction 

Parameters for Master data files 

path_master Master data file path 

file_name_master Master datafile filename 

extension_master Master datafile extension 

Parameters for Slave data files 

path_slave Slave data file path 

file_name_slave Slave datafile filename 

extension_slave Slave datafile extension 

Logfile Parameters 

log_file Logfile path, name, and extension 

Table 4.2: Script file parameters 

4.13 Main Section 

4.13.1 Main Function 

The main function simply calls the functions described in the sections above. Initially 

the function init() is called to initialise the program variables. Next, the function 

elapsed_time_start() is called to measure the simulation time. An external counter 

loop containing the master and slave functions is set for the simulation purposes. The 

function elapsed_time_finish() is called after the simulation has finished to return the 

simulation elapsed time. Finally, function logfile_create() is called to create a logfile 

containing the simulation results. 

4.13.2 Pseudo Code for Function, main() 

Call function init() to initialise variables 

Call function elapsed_time_start() to start the system clock 

 

Start external counter loop for n=1 to n<=k (defined in script.h) 

Call function master() for master model 

Call function slave() for slave model 

 

Call function elapsed_time_finish() to stop the system clock and return the simulation elapsed time 

Call function logfile_create to save simulation results. 
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Chapter 

5 
SOURCE CODE 

5.1 Introduction 

In this chapter the source code of the programs is presented. The source code was 

developed and debugged using Microsoft Visual C++ 6.0 part of Microsoft Visual 

Studio 6.0. Section 5.2 shows the source code of the main program, while the 

following section shows the source code for the script file. Finally in section 5.3 the 

source code for the interpolation function is given. 
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5.2 Source Code of Main Program 

#include <stdio.h> 

#include <math.h> 

#include <iostream.h> 

#include <iomanip.h> 

#include <fstream.h> 

#include <stdlib.h> 

#include <string.h> 

#include <time.h> 

#include "script.h" //Holds required simulation parameters 

 

 

 

//_____________global variable declarations_____________ 

 

 //angle variable 

 double rad;   //angle variable 

 

 //timing variables 

 double t=0;  //time or simulation duration 

 int n=0;   //master counter 

  

 clock_t start, finish; //start & stop system clock 

 double duration;  //simulation duration 

 

 //master variables 

 double tm[k];  //master actuator driving force 

 double xm[k];  //master position 

 double xxm[k];  //master velocity 

 double xxxm[k];  //master acceleration 

 double fm[k];  //master force 

  

 //slave variables 

 double ts[k];  //slave actuator driving force 

 double xs[k];  //slave potition  

 double xxs[k];  //slave velocity 

 double xxxs[k];  //slave acceleration 

 double fs[k];  //slave force  

  

 //master-slave variables 

 double xms[k];  //master-slave position 

 double xxms[k];  //master-slave velocity 

 double xxxms[k]; //master-slave acceleration 

 double fms[k];  //master-slave force 

 

 //slave dynamics variables 

 double xmss[k];  //master-slave position 

 double xxmss[k]; //master-slave velocity 

 double xxxmss[k]; //master-slave acceleration 

 double fmss[k];  //master-slave force 

 

 //variables for master data files  

 char no1[10];  //data file number 

 char filename1[80]; //filename of data file 

 char buffer_fm[50]; //master force converted to string 

 char buffer_xm[50]; //master position converted to string 
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 //variables for slave data files 

 char no2[10];  //data file number 

 char filename2[80]; //filename of data file 

 char buffer_fs[50]; //slave force converted to string 

 char buffer_xs[50]; //slave position converted to string 

  

 

 //variables for logfile_create function 

 char buffer_fmss[50]; //master-slave force converted to string 

 char buffer_xmss[50]; //master-slave position converted to string 

 char buffer_efm[50]; //estimated master force converted to string 

 char buffer_exm[50]; //estimated slave position converted to string 

 char buffer_tm[50]; //estimated master actuator driving force conv. to string 

 char buffer_ts[50]; //estimated slave actuator driving force conv. to string 

 

 //variables for curve-fitting function 

 double a[MAXSIZE]; //polynomial coefficients 

 double fx1;  //predicted value for master force 

 double fx2;  //predicted value for master position 

 double x_value;  //x value of polynomial 

  

 //external variables for curve-fitting function 

 double st[k];  //same as k 

 double sx[k];  //same as xf[k] 

 double sf[k];  //same as xm[k] 

 double efm[2*k];  //estimated master force 

 double exm[2*k];  //estimated mster position 

 int np=50;  //number of data points for prediction 

  

  

void init(void); 

void main(void); 

void master(void); 

void slave(void); 

void logfile_create(void); 

void elapsed_time_start(void); 

void elapsed_time_finish(void);  

 

double poly_leastsqr(double x[],double y[],int num_points,int num_poly,double x_value,double a[]); 

double Triangular_Factorization(double A[][MAXSIZE],double B[],int n,double x_value,double a[]); 

 

/*-------------------------------------------------------------------------*/ 

/* Function: init()      */ 

/*       */ 

/* Purpose:      */ 

/*       */ 

/* Initialises variables     */ 

/*       */ 

/* Returns:      */ 

/* void      */ 

/*--------------------------------------------------------------------------*/ 

 

void init(void) 

{ 

  

 //initial values (n=1) both master-slave 

  xm[1]=1.221700000000000; 

  exm[1]=1.221700000000000; 

  xxm[1]=0.000000000000000; 

  xxxm[1]=0.000000000000000; 
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  xs[1]=1.221700000000000; 

  xxs[1]=0.000000000000000; 

  xxxs[1]=0.000000000000000; 

  xxms[1]=0.000000000000000; 

  xxxms[1]=0.000000000000000; 

  xms[0]=(xm[1]+xs[1])/2; 

  xxms[0]=xxms[1]; 

  fs[1]=0.000000000000000; 

  ts[0]=0.000000000000000; 

   

  xmss[0]=(exm[1]+xs[1])/2; 

  xxmss[1]=0.000000000000000; 

  xxmss[0]=xxmss[1]; 

  xxxmss[1]=0.000000000000000; 

} 

 

 

/*-----------------------------------------------------------------------------------------------*/ 

/* Function: master()   */ 

/*         */ 

/* Purpose:        */ 

/*         */ 

/* Performs simulation of the master model. Reads the data file containing */ 

/* the values of xs and fs and calculates the values for xm and fm and saves */ 

/* them in a data file(for the slave function to read).    */ 

/*         */ 

/* Returns:        */ 

/* void        */ 

/*-----------------------------------------------------------------------------------------------*/ 

  

void master(void) 

{ 

  //pointers  

  t=n*Ts;  //time duration = no. of samples * sampl. freq 

   

  //neural input 

  rad=(2*pi*fi*t); //rad definition 

  fm[n]=sin(rad); //neural input signal 

 

  if (n>1) 

  { 

   //Read data files routine 

   _itoa(n+1,no2,10); //convert int to char 

   

   strcpy(filename2,path_slave); //copy string to specified location 

   strcat(filename2,file_name_slave); //add string to specified location 

   strcat(filename2,no2);  //add string to specified location 

   strcat(filename2,extension_slave); //add string to specified location 

   

   ifstream slave_data (filename2); //open file for reading 

 

   slave_data >> buffer_fs; //read string from file 

   slave_data >> buffer_xs; //read string from file 

   slave_data >> n;  //read integer from file 

 

   fs[n]= atof(buffer_fs); //convert string to double 

   xs[n]= atof(buffer_xs); //convert string to double 

    

   slave_data.close(); //close file   

  }      
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  if (n<=Tt/2) 

  { 

   //master-slave position calculation 

   xms[n]=(xm[n]+xs[n])/2; 

   

   //master-slave force calculation 

   fms[n]=(fm[n]+fs[n])/2; 

  }  

     

  if (n>Tt/2) 

  { 

   //master-slave position calculation 

   xms[n]=(xm[n]+xs[n-Tt/2])/2; 

   

   //master-slave force calculation 

   fms[n]=(fm[n]+fs[n-Tt/2])/2; 

  } 

 

  //Perform classic Differentiation to find xxm, xxxm 

  xxms[n]=(xms[n]-xms[n-1])/Ts; 

  xxxms[n]=(xxms[n]-xxms[n-1])/Ts;  

  

  

  //control law eq. for master actuator driving force calculation 

  tm[n]=mm*(xxxms[n]+k1*(xxms[n]-xxm[n])+k2*(xms[n]-xm[n])) 

     +bm*xxm[n]-kmf*(fms[n]-fm[n])-fms[n]; 

 

  //Euler method for finding xxxm,xxm,xm 

  xxxm[n+1]=(tm[n]+fm[n]-(bm*xxm[n]))/mm; 

  xxm[n+1]=xxm[n]+(Ts*xxxm[n+1]); 

  xm[n+1]=xm[n]+(Ts*xxm[n+1]); 

 

   

  //Create data files routine 

    

  _itoa(n,no1,10); //convert int to char 

   

  strcpy(filename1,path_master); //copy string to specified location 

  strcat(filename1,file_name_master);//add string to specified location 

  strcat(filename1,no1);  //add string to specified location 

  strcat(filename1,extension_master); //add string to specified location 

   

     

  ofstream master_data (filename1); //open file for writing 

   

  _gcvt( fm[n], 15, buffer_fm ); //convert double to string 

  _gcvt( xm[n], 15, buffer_xm ); //convert double to string 

 

   

  master_data << buffer_fm << endl; //write string to file  

  master_data << buffer_xm << endl; //write string to file 

  master_data << n << endl;  //write integer to file 

   

  master_data.close(); //close file 

} 



  MSc Mechatronics Project Report 

K.Deliparaschos   Page 72  

/*-----------------------------------------------------------------------------------------------*/ 

/* Function: slave()       */ 

/*         */ 

/* Purpose:        */ 

/*         */ 

/* Performs simulation of the slave model. Reads the data file containing */ 

/* the values of xm and fm and calculates the values for xs and fs and saves */ 

/* them in a data file(for the master function to read).    */ 

/*         */ 

/* Returns:        */ 

/* void        */ 

/*-----------------------------------------------------------------------------------------------*/ 

 

void slave(void) 

{ 

   

  fs[n]=0.000000000000000; //assume no collision 

 

  //Read data files routine 

  

  _itoa(n,no1,10);   //convert int to char 

   

  strcpy(filename1,path_master);  //copy string to specified location 

  strcat(filename1,file_name_master); //add string to specified location 

  strcat(filename1,no1);   //add string to specified location 

  strcat(filename1,extension_master);  //add string to specified location 

   

  ifstream master_data (filename1); //open file for reading 

 

  master_data >> buffer_fm; //read string from file 

  master_data >> buffer_xm; //read string from file 

  master_data >> n;  //read string from file 

 

  fm[n]=atof(buffer_fm);  //convert string to double 

  xm[n]=atof(buffer_xm);  //convert string to double 

   

  master_data.close(); //close file 

   

        

//Predictor 

  st[n]=n; 

  sx[n]=xm[n]; 

  sf[n]=fm[n]; 

 

  if (n<=n_start) 

  { 

   exm[n+Tt/2]=xm[1]; 

   efm[n+Tt/2]=fm[1]; 

  } 

   

  if (n>n_start) 

  { 

   if (n>(n_start+np)) 

   { 

    x_value= (n+Tt/2); 

    

    //Call curve-fitting function for efm 

    

    fx1 =poly_leastsqr(st,sf,np,2,x_value,a); 

    efm[n+Tt/2]=fx1; 
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    //Call curve-fitting function for exm 

    fx2 =poly_leastsqr(st,sx,np,2,x_value,a); 

    exm[n+Tt/2]=fx2; 

   } 

   else 

   { 

    x_value= (n+Tt/2); 

    

    //Call curve-fitting function for efm 

    fx1 =poly_leastsqr(st,sf,n,2,x_value,a); 

    efm[n+Tt/2]=fx1; 

       

    //Call curve-fitting function for exm 

    fx2 =poly_leastsqr(st,sx,n,2,x_value,a); 

    exm[n+Tt/2]=fx2;   

   } 

  } 

 

  //Slave Dynamics 

  xmss[n]=(exm[n+Tt/2]+xs[n])/2; 

  fmss[n]=(efm[n+Tt/2]+fs[n])/2; 

 

   

  //Perform classic Differentiation to find xxmss, xxxmss 

  xxmss[n]=(xmss[n]-xmss[n-1])/Ts; 

  xxxmss[n]=(xxmss[n]-xxmss[n-1])/Ts; 

 

  //control law eq. for slave actuator driving force calculation 

  ts[n]=bs*xxs[n]-ksf*(fs[n]-fmss[n])+fmss[n] 

    +ms*(xxxmss[n]+k1*(xxmss[n] 

    -xxs[n])+k2*(xmss[n]-xs[n])); 

   

  //Euler method for finding xxxs,xxs,xs 

  xxxs[n+1]=(ts[n]-fs[n]-(bs*xxs[n]))/ms; 

  //xxxs[n+1]=((ts[n]+ts[n-1])/2-fs[n]-(bs*xxs[n]))/ms; 

  xxs[n+1]=xxs[n]+(Ts*xxxs[n+1]); 

  xs[n+1]=xs[n]+(Ts*xxs[n+1]); 

   

  if (n==1) 

  { 

   //Create data files routine  

//for n 

   _itoa(n,no2,10); //convert int to char 

   

   strcpy(filename2,path_slave); //copy string to specified location 

   strcat(filename2,file_name_slave); //add string to specified location 

   strcat(filename2,no2);  //add string to specified location 

   strcat(filename2,extension_slave); //add string to specified location 

   

   ofstream slave_data (filename2); //open file for writing 

 

   _gcvt( fs[n], 16, buffer_fs ); //convert double to string 

   _gcvt( xs[n], 16, buffer_xs ); //convert double to string 

   

   slave_data << buffer_fs << endl; //write string to file  

   slave_data << buffer_xs << endl; //write string to file  

   slave_data << n << endl;  //write string to file  

   slave_data.close();  //close file    

  }  
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  //Create data files routine 

  //for n+1 

  _itoa((n+1),no2,10); //convert int to char 

   

  strcpy(filename2,path_slave);  //copy string to specified location 

  strcat(filename2,file_name_slave);  //add string to specified location 

  strcat(filename2,no2);   //add string to specified location 

  strcat(filename2,extension_slave);  //add string to specified location 

   

   

  ofstream slave_data (filename2); //open file for writing 

 

  _gcvt( fs[n+1], 15, buffer_fs ); //convert double to string 

  _gcvt( xs[n+1], 15, buffer_xs ); //convert double to string 

   

  slave_data << buffer_fs << endl; //write string to file 

  slave_data << buffer_xs << endl; //write string to file 

  slave_data << n+1 << endl; //write string to file 

   

  slave_data.close();  //close file 

 

} 

 

/*-----------------------------------------------------------------------------------------------*/ 

/* Function: logfile_create()      */ 

/*         */ 

/* Purpose:        */ 

/*         */ 

/* The purpose of the function is to collect individual step data and to create */ 

/* a Log File containing all sinulation data for the master and slave models */ 

/* when simulation is over       */ 

/*         */ 

/* Returns:        */ 

/* void        */ 

/*-----------------------------------------------------------------------------------------------*/ 

 

void logfile_create(void) 

{ 

   

 //Read data files routine 

  

 /*The function performs a seek to the end of file.  

   When new bytes are written to the file,  

   they are always appended to the end,  

   even if the position is moved with the function.*/ 

 

 ofstream logfile (log_file, ios::app ); //open log file 

  

 //create heading info. pointers 

 logfile << "n" << setw(30) << "xm" << setw(35) << "fm" ; 

 logfile << setw(45)<< "xs" << setw(45) << "fs"; 

 logfile << setw(25)<< "fmss" << setw(50) << "xmss"; 

 logfile << setw(40)<< "exm" << setw(35) << "efm"; 

 logfile << setw(35)<< "tm" << setw(40) << "ts" <<endl; 

 

 for (n=1;n<=k;n++) 

 { 

      

  _itoa(n,no1,10); //convert int to char 
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  //put path and filename together and  

  //store final string in filename1 

 

  strcpy(filename1,path_master);  //copy string to specified location 

  strcat(filename1,file_name_master); //add string to specified location 

  strcat(filename1,no1);   //add string to specified location 

  strcat(filename1,extension_master);  //add string to specified location 

   

  ifstream master_data (filename1);  //read master simulation files 

 

  master_data >> buffer_fm;  //read string from file and store in buffer_fm    

  master_data >> buffer_xm; //read string from file and store in buffer_xm 

  master_data >> n;  //read integer from file   

 

  master_data.close(); //close file 

 

   

  _itoa(n,no2,10);  //convert int to char 

   

 

  //put path and filename together and  

  //store final string in filename2 

 

  strcpy(filename2,path_slave); //copy string to specified location 

  strcat(filename2,file_name_slave); //add string to specified location 

  strcat(filename2,no2);  //add string to specified location 

  strcat(filename2,extension_slave); //add string to specified location 

   

  ifstream slave_data (filename2); //read slave simulation files 

 

  slave_data >> buffer_fs; //read string from file and store in buffer_fs 

  slave_data >> buffer_xs; //read string from file and store in buffer_xs 

   

  slave_data.close(); //close file 

 

  //write in log file, all values of  n, xm, fm, xs, fs,   

  //fmss, xmss, exm, efm, tm, ts during the simulation 

   

  _gcvt( fmss[n], 15, buffer_fmss ); //convert double to string 

  _gcvt( xmss[n], 15, buffer_xmss ); //convert double to string  

  _gcvt( exm[n], 15, buffer_exm ); //convert double to string 

  _gcvt( efm[n], 15, buffer_efm ); //convert double to string 

  _gcvt( tm[n], 15, buffer_tm ); //convert double to string 

  _gcvt( ts[n], 15, buffer_ts ); //convert double to string 

   

   

  logfile << n << setw(30)<< buffer_xm << setw(30)  

<< buffer_fm<< setw(30) << buffer_xs; 

  logfile << setw(30) << buffer_fs << setw(30)<<buffer_fmss<<setw(30)  

<<buffer_xmss<<setw(30)<<buffer_exm; 

  logfile <<setw(30)<<buffer_efm<<setw(30)<<buffer_tm<<setw(30) 

<<buffer_ts<< endl; 

 } 

  

//write in log file the duration 

 logfile <<endl; 

 logfile <<"Simulation elapsed time: "<<duration<<" sec"<<endl; 

} 
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/*------------------------------------------------------------------------------------*/ 

/* Function: elapsed_time_start()     */ 

/*        */ 

/* Purpose:       */ 

/*        */ 

/* It activates (starts) the system clock    */ 

/*        */ 

/* Returns:       */ 

/* void       */    

/*------------------------------------------------------------------------------------*/ 

 

void elapsed_time_start(void) 

{ 

 start=clock(); //start system clock 

} 

 

 

/*------------------------------------------------------------------------------------*/ 

/* Function: elapsed_time_start()     */ 

/*        */ 

/* Purpose:       */ 

/*        */ 

/* It stops the system clock and estimates the elapsed time (duration) */ 

/*        */ 

/* Returns:       */ 

/* void       */ 

/*------------------------------------------------------------------------------------*/ 

 

void elapsed_time_finish(void) 

{ 

 finish=clock(); //stop system clock 

 

 duration=(double)(finish-start)/CLOCKS_PER_SEC; //compute duration 

 

 cout<<"Simulation elapsed time: "<<duration<<" sec"<<endl; //display duration 

} 
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/*-----------------------------------------------------------------------------------------------*/ 

/* Function: Poly_lsrsqr()      */ 

/*         */ 

/* Determines the best-fit polynomial of the form   */ 

/* y= a0 + a1*x + a2 * x * x +.....+ aN * x^(N-1)   */ 

/* and computes the coefficients a0, a1, aN of the best-fit  */ 

/* polynomial of degree N-1 for a set of observations (x1,y1),  */ 

/* (x2,y2),...(xm,yn)       */ 

/*         */ 

/* Input Parameters:       */ 

/*  x[] - array containing observed values of x  */ 

/*  y[] - array containing observed values of y  */ 

/*  num_points - number of observations   */ 

/*  num_poly - degree of polynomial - 1   */ 

/*         */ 

/* Output Parameters:      */ 

/*  a[] - coefficients of best-fit polynomial   */ 

/*         */ 

/* Returns:        */ 

/*  results - status of computation   */ 

/*     0 - computation was successful */ 

/*     1 - coefficient matrix is singular */ 

/*         */ 

/* Calls:        */ 

/*  Triangular_Factorization() -    */ 

/*  -for the solution of simultaneous equations [A]{x}={B} */ 

/*-----------------------------------------------------------------------------------------------*/ 

 

double poly_leastsqr(double x[],double y[],int num_points, 

      int num_poly,double x_value,double a[]) 

{ 

 double c[MAXSIZE][MAXSIZE]; //coefficient matrix 

 double s[2 * MAXSIZE];  //matrix containing sums of products 

 double fx; 

 int i,j;    //loop counters 

   

     

 // compute sums 

 s[0] = num_points; 

 for (i=1; i<= 2*num_poly;++i) 

  { 

  s[i]=0.0; 

  for(j=1; j<= num_points; ++j) 

   s[i] += pow(x[j],i); 

  } 

  // create coefficient matrix 

  for (i=0; i<= num_poly;++i) 

   for (j=0; j<= num_poly;++j) 

    c[i][j]=s[i+j]; 

 //create right-hand side vector 

 a[0]=0.0; 

 for (j=1; j<= num_points;++j) 

  a[0] +=y[j]; 

 for(i=1; i<= num_poly;++i) 

  { 

  a[i]=0.0; 

  for(j=1; j<= num_points;++j) 

   a[i] +=y[j]*pow(x[j],i); 

  } 
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 //estimate predicted value for a given x value 

 fx=Triangular_Factorization(c,a,num_poly+1,x_value,a); 

 return(fx); 

} 

 

/*-----------------------------------------------------------------------------------------------*/ 

/* Function: Triangular_Factorization()    */ 

/*         */ 

/* ( PA = LU Factorization with Pivoting)    */ 

/* Solves the linear system  [A]x = [B]    */ 

/* by performing the steps :      */ 

/*         */ 

/* 1. Find a permutation matrix  P, lower-triangular matrix  L,   */ 

/*    and upper-triangular matrix  U  that satisfy:    */ 

/*         PA = LU.        */ 

/*         */ 

/* 2. Computer PB and form the equivalent linear system   */ 

/*         LUx = PB.       */ 

/*         */ 

/* 3. Solve the lower-triangular system     */ 

/*         Ly = PB   for  y.       */ 

/*         */ 

/* 4. Solve the upper-triangular system     */ 

/*         Ux = y    for  x.        */ 

/*         */ 

/* Parameters:       */ 

/*  n  - number of equations   */ 

/*  A[n][n]  - coefficient matrix   */ 

/*  B[n]  - right-hand side vector   */ 

/*  a[n]  - system solutions   */ 

/*  x_value  - x value     */ 

/*         */ 

/* Returns:        */ 

/*  fx  - predicted y for a given x value */ 

/*         */ 

/* Local Variables       */ 

/*  SUM   - Adder     */ 

/*  temp   - stores intermediate results  */ 

/*  i,j,z,l   - loop counters    */ 

/*  DET   - Determinant of [A]   */ 

/*  Row[]   - Field with row-number   */ 

/*  y[]          - See description above    */ 

/*  fx    - predicted y value  */ 

/*-----------------------------------------------------------------------------------------------*/ 

 

double Triangular_Factorization(double A[][MAXSIZE],double B[],int n_poly,double x_value,double 

a[]) 

{ 

 int i, ii, z, j, l;    //Loop counters 

 int Row[MAXSIZE];   //Field with row-number 

 int temp;     //Stores intermidiate values 

 double y[MAXSIZE];   //See description above   

 double SUM;    //Adder 

 double DET = 1.0;   //Determinant of [A] 

 double fx; 

  

 // Initialize the pointer vector 

 for (l = 1; l<= n_poly; l++) Row[l-1] = l - 1; 
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 //Start LU factorization 

 for (z = 1; z <= n_poly - 1; z++) 

 { 

 

 //Find pivot element   

 for (i = z + 1; i <= n_poly; i++) 

 { 

  if ( fabs(A[Row[i-1]][z-1]) > fabs(A[Row[z-1]][z-1]) ) 

  { 

  //Switch the index for the p-1 th pivot row if necessary  

   temp        = Row[z-1]; 

   Row[z-1] = Row[i-1]; 

   Row[i-1] = temp; 

   DET      = - DET;  

  } 

 } //End of simulated row interchange 

 

  if (A[Row[z-1]][z-1] == 0) 

  { 

  printf("The matrix is singular !\n"); 

  printf("Cannot use algorithm to solve the system of equations [A]{x}={B}\n"); 

  } 

 

 //Multiply the diagonal elements 

 DET = DET * A[Row[z-1]][z-1]; 

 

 //Form multiplier 

 for (i = z + 1; i <= n_poly; i++) 

 { 

  A[Row[i-1]][z-1]= A[Row[i-1]][z-1] / A[Row[z-1]][z-1]; 

  

 //Eliminate X_(p-1) 

 

  for (j = z + 1; j <= n_poly + 1; j++) 

  { 

   A[Row[i-1]][j-1] -= A[Row[i-1]][z-1] * A[Row[z-1]][j-1]; 

  } 

 } 

 

 } //End of  L*U  factorization routine 

 

 DET = DET * A[Row[n_poly-1]][n_poly-1]; 

 

 //Start of forward substitution 

 y[0] = B[Row[0]];  

 for ( i = 2; i <= n_poly; i++) 

 { 

  SUM =0; 

  for ( j = 1; j <= i -1; j++) SUM += A[Row[i-1]][j-1] * y[j-1]; 

  y[i-1] = B[Row[i-1]] - SUM; 

 } 

 

 if( A[Row[n_poly-1]][n_poly-1] == 0) 

 { 

  printf("The matrix is singular !\n"); 

  printf("Cannot use algorithm to solve the system of equations [A]{x}={B}\n"); 

 } 

  

 //Start of back substitution 

 a[n_poly-1] = y[n_poly-1] / A[Row[n_poly-1]][n_poly-1]; 
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 for (i = n_poly - 1; i >= 1; i--) 

 { 

  SUM = 0; 

  for (j = i + 1; j <= n_poly; j++) 

  { 

   SUM += A[Row[i-1]][j-1] * a[j-1];    

  } 

 

 a[i-1] = ( y[i-1] - SUM) / A[Row[i-1]][i-1]; 

 

 } //End of back substitution 

   

 fx = 0; 

 for (ii=0; ii<=n_poly;ii++) 

  fx += a[ii]*pow(x_value,ii); 

     

 //fx=fx1[0]+fx1[1]+fx1[2]; 

 return(fx); 

} 

 

/*------------------------------------------------------------------------------------*/ 

/* Function: main()      */ 

/*        */ 

/* Purpose:       */ 

/*        */ 

/* Main body of simulation     */ 

/*        */ 

/* Returns:       */ 

/* void       */ 

/*------------------------------------------------------------------------------------*/ 

 

void main(void) 

{ 

  

//___________Start Simulation___________ 

  

 init(); //initialise variables 

 

 elapsed_time_start(); //start system clock 

 

   

 for (n=1;n<=k;n++) 

 { 

   

  master(); //master model 

     

  slave();  //slave model 

 } 

  

 elapsed_time_finish(); //stop system clock 

  

 logfile_create(); //create logfile 

} 
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5.3 Source Code of Script.h Include File 

//_____________simulation parameters_____________ 

 

//define timing parameters 

#define Tt  20 //time delay (msec) 

#define Ts  0.001 //sampling frequency (sec) 

#define fi  2 //frequency of sinusoidal i/p (Hz) 

#define k  100 //no. of samples 

 

//define human arm parameters 

#define mo  1.75 //mass (kgr) 

#define bo  0.4 //damping coefficient (N/m^2) 

#define ko  5 //spring constant (N/m) 

 

//define master parameters 

#define mm  6 //mass (kgr) 

#define bm  0.1 //damping coefficient (N/m^2) 

#define km  0 //spring constant (N/m) 

 

//define slave parameters 

#define ms  (mm+mo) //mass (kgr) 

#define bs  (bm+bo)  //damping coefficient (N/m^2) 

#define ks  (km+ko)  //spring constant (N/m) 

 

//define control parameters 

#define kmf  0  //spring constant (N/m) 

#define ksf  0  //spring constant (N/m) 

#define k1  8  //spring constant (N/m)   

#define k2  70  //spring constant (N/m) 

 

//define pi 

#define pi  3.1415926535 //pi 

 

//define parameters for curve-fitting 

#define n_start 5  //estimation starting point 

#define MAXSIZE 5 //degree of polynomial 

#define MAXPOINTS 100 //max number of data points for prediction   

 

       

//define info for master data accumulation 

#define path_master "C:\\simulation\\master\\"  //master data file path 

#define file_name_master "data"    //master datafile filename 

#define extension_master ".dat"    //master datafile extension 

 

//define info for slave data accumulation 

#define path_slave  "C:\\simulation\\slave\\" //slave data file path 

#define file_name_slave  "data"   //slave datafile filename 

#define extension_slave  ".dat"   //slave datafile extension 

 

//define filename for master & slave log file 

#define log_file "C:\\simulation\\master.log"  //Logfile path, name, and extension 
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5.4 Source Code of Interpolation Function 

/*-----------------------------------------------------------------------------------------------*/ 

/* Function: lagrange_poly()      */ 

/*         */ 

/* Purpose:        */   

/*         */ 

/* Performs interpolation using an nth order Lagrange interpolating polynomial. */ 

/* It determines a polynomial that passes through a set of n+1 data points, */ 

/* (x0,f(x0)),...(xn,f(xn)) and then computes the value of the dependent   */ 

/* variable at a given x value.      */  

/*         */ 

/* x[] - array containing values of independent variables x  */ 

/* y[] - array containing values of dependent variable f(x)  */ 

/* n - number of data points     */ 

/* x_value - x-value for interpolation     */ 

/*         */ 

/* Returns:        */ 

/* fx  - value of dependent variable f(x) at x=x_value   */ 

/*-----------------------------------------------------------------------------------------------*/   

 

double lagrange_poly(double x[],double f[],int n,double x_value) 

{ 

 int i,j;   // loop counters 

 double fx=0.0;  // dependent variable at x_value 

 double li=1.0;       

 

 for (i=0;i<n;++i) 

 { 

  li=1.0; 

 

  for (j=0;j<n;++j) 

   if (j !=i) 

    li *=( (x_value - x[j])/(x[i] - x[j]) ); 

 fx +=li * f[i]; 

 } 

return(fx); 

}
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Chapter 

6 
SIMULATION RESULTS 

6.1 Introduction 

This chapter presents the simulation results obtained for the proposed method, 

discussed previously. All simulations were performed for the 1 DOF case and assumed 

predefined neural input (sinusoidal input). The source code was developed, compiled 

and executed, using Microsoft Visual C++ 6.0 ( Microsoft Corporation, 1994-98). 

The simulation results obtained for different simulation parameters (script file) from 

the executable code were manipulated using Matlab 5.2 ( The MathWorks Inc, 1984-

98), to get the simulation graphs. 
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6.2 Simulation Results and Evaluation 

Out of the two, predictor models discussed in sections 4.3 and 4.4 the second one (polynomial 

least squares curve fitting predictor model), turned out to give the most correct results. The 

inability of the first method is concentrated on the fact that the accuracy of the approximation 

is likely to be better if x lies between xi and xi+1 (interpolation) rather than beyond either of 

them (extrapolation), which is the actual case anyway. On the other hand the advantage is the 

reduced code complexity (less processing power) compared to the second method. 

 

The simulations parameters chosen for the simulation of the proposed method are 

summarised in the next table, where the parameter of interest is the time delay Tt that 

is set to 20 msec.  

Parameters defined in script file 

Timing Parameters Definition of π (pi) 

Tt 20 msec pi (π) 3.1415926535 

Ts 0.001 sec Curve Fitting Parameters (predictor) 

fi 2 Hz n_start 5 

k 1000 MAXSIZE 5 

Human arm parameters MAXPOINTS 100 

mo 1.75 kgr Parameters for Master data files 

bo 0.4 N/m2 path_master C:\simulation\master\ 

ko 5 N/m file_name_master data 

Master parameters extension_master .dat 

mm 6 kgr Parameters for Slave data files 

bm 0.1 N/m2 path_slave C:\simulation\slave\ 

km 0 N/m file_name_slave data 

Slave parameters extension_slave .dat 

ms mm+mo (kgr) Logfile Parameters 

bs bm+bo (N/m2) log_file C:\simulation\results.log 

ks km+ko (N/m) 

Control Parameters Parameters defined in source code 

kmf 0  (N/m) Curve Fitting Parameters (predictor) 

ksf 0  (N/m) no. of data points (np) 50 

k1 14 (N/m) Degree of polynomial 

(num_poly) 

2 

k2 140 (N/m) 

Table 6.1: Simulation Parameters 

A small sample of the produced logfile containing the simulation results is shown on 

the next page: 
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n              xm                                   fm                                           xs                                           fs             fmss                                        xmss                                   exm                                      efm                                        tm                                              ts 
1              1.2217                             1.25660398829935e-002       1.2217                                   0.             6.28301994149675e-003       1.2217                                 1.2217                                  0.                                          -6.28301994149673e-003         6.28301994149675e-003 
2              1.22170000104717         2.51300954426194e-002       1.22170000081071               0.             6.28301994149675e-003       1.22170000040536              0.                                         0.                                          -7.0013347686364e-003           9.38050612686121e-003 
3              1.22170000511578         3.76901826688578e-002       1.22170000283176               0.             6.28301994149675e-003       1.22170000141588              0.                                         0.                                          -6.23629127476689e-003         1.08629193428731e-002 
4              1.22170001442664         5.02443181783347e-002       1.22170000625434               0.             6.28301994149675e-003       1.22170000312717              0.                                         0.                                          -5.44063688072722e-003         1.15265898229252e-002 
5              1.22170003120463         6.27905195275211e-002       1.22170001116401               0.             6.28301994149675e-003       1.221700005582                  0.                                         0.                                          -5.03782416363797e-003         1.17755446803803e-002 
6              1.22170005760778         7.53268055257838e-002       1.22170001759278               0.             0.100166300797943              1.22170033033391              0.                                         0.                                          -5.08368305060154e-003          2.63284917695262 
7              1.22170009571768         8.78511965482387e-002       1.22170036374361               0.             0.106350191773565              1.22170060185095              0.                                         0.                                           1.0234149234221                    -0.313886299007522 
8              1.22170031903797         0.100361714848356              1.22170066937065               0.             0.112519488464629              1.22170160705558              0.                                         0.                                           0.387505282082731                 5.87567259425628 
9              1.2217006236657           0.11285638487027                1.22170173312928               0.             0.118673259746619              1.22170310546083              0.                                         0.                                           2.49426884701135                   3.99015817686722 
10            1.22170136280923         0.125333233560741              1.2217033116784                 0.             0.124810576332715              1.22170581257354              0.                                         0.                                           2.82139971032713                   9.61824516985173 
11            1.22170259306259         0.137790290680725              1.22170613118957               0.             0.130930510900992              1.22171007926925              1.2217                                 1.25660398829935e-002     -13.4579753840853                  12.3804117698859 
12            1.2217016032646           0.150225589116496              1.22171054799132               0.             0.137032138221345              1.22171067852083              1.2217                                 1.25660398829935e-002      3.243034029134                      -28.6975140387838 
13            1.22170117902638         0.162637165190277              1.22171126160308               0.             0.143114535282165              1.2217090530632                1.2217                                 1.25660398829935e-002      1.63635820050466                  -17.354210313144 
14            1.22170105462779         0.175023058970325              1.22170973591586               0.             0.149176781416726              1.22170684657858              1.2217                                 1.25660398829935e-002      0.821127688382978                -4.43154670445873 
15            1.22170109625639         0.187381314580432              1.22170763851459               0.             0.155217958429291              1.22170494652933              1.2217                                 1.25660398829935e-002      0.406858436104846                  2.54753526166637 
16            1.22170123692426         0.199709980508776              1.22170586996286               0.             0.161237150720905              1.22170366917838              1.22170064307504             0.200332601595885             0.195684007966689                  5.03717215056746 
17            1.22170144348879         0.212007109916088              1.22170475148293               0.             0.167233445414826              1.22170303570957              1.2217008399583               0.212700383547131             1.11628237452721                    5.20752286591133 
18            1.22170187143145         0.224270760943081              1.22170430501359               0.             0.173205932481647              1.22170310244161              1.22170254474051             0.225038976929258             0.424828335929748                  5 .6539169116442 
19            1.22170240755017         0.236498997017094              1.22170458811072               0.             0.179153704864032              1.22170379703706              1.22170447779239             0.237346519493238             2.50260465396359                    5.08902581828697 
20            1.22170340017722         0.248689887157897              1.22170552783808               0.             0.185075858601074              1.22170526902486              1.22170831346867             0.249621152665429             2.81422236721124                    6.26780597190277 
21            1.2217049032731           0.260841506282615              1.22170727625397               0.             0.190971492952258              1.22170769508266              1.22171402734892             0.261861021801985             5.17982736695721                    7.6598667521193 
22            1.22170731312208         0.272951935509723              1.22171001292697               0.             0.196839710520996              1.22171143051299              1.22171080905033             0.274064276442691             7.46154670252021                    10.4557483622839 
23            1.221711012014             0.285019262462058              1.22171409855223               0.             0.202679617377748              1.22171697674737              1.22170684452331             0.286229070564329            -7.50985782553217                    14.400052769841 
24            1.22171350670452         0.297041581568804              1.22172004198522               0.             0.208490323182675              1.22172340569685              1.22170395724129             0.298353562833452            -10.6492120842338                    7.10883230118904 
25            1.2217142759917           0.309016994366408              1.22172690230345               0.             0.214270941307838              1.2217293152573                1.22170225454406             0.310435916858582            -7.16897235951779                   -3.90810316248081 
26            1.22171390194017         0.320943609798365              1.2217332579077                 0.             0.220020588958908              1.22173375041688              1.22170146839389             0.322474301441809            -2.66591917582492                   -11.4112421103847 
27            1.22171313706561         0.332819544513842              1.22173814068358               0.             0.22573838729638                1.22173644737036              1.2217013199362               0.334466890829653             0.592886690659986                 -13.4819165729659 
28            1.22171252648817         0.344642923165076              1.2217412835423                 0.             0.231423461556267              1.22173766310134              1.22170189986964             0.346411864963293             2.30998013224877                   -11.4595009478975 
29            1.22171235835808         0.356411878703519              1.22174294755297               0.             0.237074941170263              1.22173790418562              1.22170300596339             0.358307409728063             3.35350675279702                   -7.47546462034292 
30            1.22171280855057         0.368124552674659              1.22174364688021               0.             0.242691959885362              1.22173774075646              1.22170501021164             0.370151717202149             3.65834371959958                   -2.99195469867749 
31            1.2217139298136           0.379779095511501              1.22174396010366               0.             0.248273655882896              1.22173768436074              1.22170811391135             0.381942985904515             4.27304572144311                    1.03102658698558 
32            1.22171582652875         0.391373666826626              1.22174440634259               0.             0.253819171897018              1.2217381704681                1.221712848099                 0.393679421041992             5.12846702991212                    4.45600092270145 
33            1.22171864318573         0.402906435702815              1.22174542752059               0.             0.259327655332554              1.22173957455318              1.2217198549425               0.405359234755496             6.65689866187923                    7.40936052317358 
34            1.22172263642995         0.41437558098217                1.22174740467923               0.             0.264798258382273              1.22174225757392              1.22172676940849             0.416980646365351             8.9772147026412                      10.2485396702106 
35            1.22172819487267         0.425779291553698              1.22175070410252               0.             0.270230138143503              1.22174661754456              1.22173172821114             0.428541882615676             7.28805329071509                    13.3788769687533 
36            1.2217350388615           0.437115766639303              1.22175572961965               0.             0.275622456734114              1.22175291836777              1.22173424292607             0.440041177917817             2.10336279112183                    15.4550632063625 
37            1.22174230614937         0.448383216078154              1.22176274901426               0.             0.280974381407839              1.2217611023353                1.22173475405713             0.45147677459276              -3.47395190985824                    15.0034220534712 
38            1.22174906905466         0.459579860609366              1.22177170388143               0.             0.286285084668905              1.22177076224006              1.22173404266038             0.462846923112534            -7.11732470123264                    11.804750934088 
39            1.2217547222231           0.470703932152974              1.22178218136454               0.             0.291553744385991              1.22178126670046              1.22173286081826             0.474149882340525            -8.17303135493974                    6.84403332910028 
40            1.22175909157608         0.481753674089125              1.22179354127276               0.             0.29677954390546                1.22179194227266              1.22173183463271             0.485383919770724            -7.14656441240936                    1.55259054591318 
. 
. 
. 
. 
990          1.28264439650246        -0.125333233917082              1.2847091925695                 0.            -5.81451320623497               1.28846099115747              1.29079223232534             -11.2682700612161              1.61211409205276                    0.823736655707004 
991          1.28275476046321        -0.112856385227148              1.28482311115595               0.            -5.8326868506526                 1.28858937582951              1.29093363760004             -11.3041234342152              1.60207584981786                    0.823777951908909 
992          1.28286537078782        -0.100361715205715              1.28493712868674               0.            -5.85088519086204               1.28871788224786              1.29107518742303             -11.3400261987979              1.59188048216363                    0.823819434965417 
993          1.28297622785537        -8.78511969060232e-002       1.28505124516084               0.            -5.86910822686329               1.28884651041201              1.29121688179431             -11.3759783549643              1.58152956862831                    0.823861137182606 
994          1.28308733202171        -7.5326805883937e-002         1.28516546057725               0.            -5.88735595865634               1.28897526032146              1.29135872071388             -11.4119799027143              1.57102478052578                    0.823903047234199 
995          1.28319868361931        -6.27905198859847e-002       1.285279774935                   0.            -5.90562838624119               1.28910413197572              1.29150070418175             -11.4480308420478              1.56036775095                          0.823945176475453 
996          1.28331028295725        -5.02443185370538e-002       1.28539418823313               0.            -5.92392550961786               1.28923312537432              1.29164283219791             -11.484131172965                1.54956019338601                    0.823987440295348 
997          1.28342213032118        -3.76901830277758e-002       1.28550870047072               0.            -5.94224732878633               1.2893622405168                1.29178510476235             -11.5202808954658              1.53860375144405                    0.824029961731878 
998          1.28353422597325        -2.51300958016796e-002       1.28562331164687               0.            -5.96059384374661               1.2894914774027                1.29192752187509             -11.5564800095503              1.52750020258744                    0.82407264569008 
999          1.28364657015208        -1.25660402421374e-002       1.28573802176071               0.            -5.97896505449869               1.2896208360316                1.29207008353613             -11.5927285152183              1.51625130785997                    0.824115548893853 
1000        1.28375916307271        -3.59172737341915e-010       1.28585283081138               0.            -5.99736096104259               8.17168554541762e-043     1.29221278974545             -11.6290264124699              1.50485880213354                    0.824158581490778 
 
Simulation elapsed time: 6.669 sec
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The logfile containing the simulations results was uploaded in Matlab in order to 

obtain the simulation graphs of interest. The next few lines below point the commands 

required by Matlab’s editor in order to plot a graph, for example master-slave 

positions, xm, xs: 

 load logfile with simulation results, load c:\simulation\results.log 

 specify name of 1st variable to be plot, and number of column, xm=results(:,2); 

 specify name of 2nd variable to be plot, and number of column, xs=results(:,4); 

 plot xm and xs and mark last with red colour, plot(xm);hold on;plot(xs,’r’);hold off; 

The plot graph of xm, xs is shown in figure 6.1 below. 

 

Fig 6.1: Master and slave position graph 

In the graph above it is shown that the slave robot follows as closely as possible the 

master robot. The small variations of the slave are due to small prediction 

inaccuracies, which can be improved if the prediction horizon (n_start) is increased 

appropriately. Ideally the slave should lead the master. 

The second graph (Fig. 6.2) shows the predicted master position, exm with the slave 

position, xs. 

slave position, xs 

master position, xm 
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Fig 6.2: Predicted master position and slave position graph 

It can be observed from the graph that, the predicted master position, exm drops to 

zero after the first sample (which has been set to 1.2217) for Tt/2-1 msec. This is 

absolutely normal since the prediction is always n+Tt/2 ahead. As it can be seen xs 

follows as close as possible exm. The next graph (Fig. 6.3) shows the predicted master 

force, efm. 

 

Fig 6.3: Predicted master force graph 

slave position, xs 

predicted master position, exm 

xs 
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The following graphs (Fig. 6.4, Fig 6.5) illustrate the master actuator driving force, tm, 

and slave actuator driving force, tm respectively. 

 

Fig 6.4: Master actuator driving force graph 

 

Fig 6.5: Slave actuator driving force graph 
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Another simulation of the proposed method, with increased time delay, Tt of 50 msec 

was performed. The rest of parameters, except the prediction starting point (prediction 

horizon), n_start that was increased to 20, and degree of polynomial for the predictor 

model, which was set to 3, kept the same as in table 6.1. The same procedure followed 

for the first simulation was carried out here again. The graph of master and slave 

position occurred from the simulation is shown below. It can be observed from the 

graph that the slave leads the master. 

 

Fig 6.6: Master and slave position graph 

The following graph illustrates the predicted master position, exm and slave position, xs. 

 

Fig 6.7: Predicted Master position and slave position graph 
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The next graph (Fig. 6.3) shows the predicted master force, efm. 

 

Fig 6.8: Predicted master force graph 

The following graph (Fig. 6.7) illustrates the master actuator driving force, tm, and 

slave actuator driving force, tm respectively. 

 

Fig 6.9: Master and slave actuator driving force graph 
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The final simulation was performed for a time delay, Tt of 100 msec and neural input 

frequency, fi of 1 Hz. Moreover the prediction horizon, n_start was increased to 60. All 

other parameters remained the same according to table 6.1. The graph, showing the master 

and slave position is shown below. 

 

Fig 6.10: Master and slave position graph 

Similarly, the graph of predicted master position and slave position is shown next. 

 

Fig 6.11: Predicted Master position and slave position graph 

 



  MSc Mechatronics Project Report 

K.Deliparaschos   Page 92  

The next graph (Fig. 6.11) shows the predicted master force, efm. 

 

Fig 6.12: Predicted master force graph 

The final graph of the simulation (Fig. 6.13) illustrates the master actuator driving 

force, tm, and slave actuator driving force, tm respectively 

 

Fig 6.13: Master and slave actuator driving force graph 

From the above simulations of the proposed method, it can be concluded that using 

sinusoidal inputs, good performance can be achieved for time delays up to 1/10 of the 

input frequency, fi. 
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Chapter 

7 
CONCLUSION 

The conceptual framework and simulation results on a general technique for time 

delay compensation in teleoperation, which is based on predicting the human arm 

position and force (effectively the master state) was presented. It was shown that the 

proposed method, tends to be significantly less complex and more intuitive than 

predicting the slave and environment dynamics. Simple polynomial predictors, 

employing no knowledge of the human arm dynamics, were shown to produce good 

performance for small time delays when the master force and position are smooth. On 

the other hand for real life force profiles, better performance could be achieved by 

employing a human arm model and predicting the neural input to it.     

 

Chapter 2 attempted a brief presentation of the most important matters concerning the 

control of teleoperator systems. Several methods were discussed and analysed. 
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Chapter 3 presents the proposed method of variable-time-delays-robust 

telemanipulation through master state prediction.  

 

Chapter 4 illustrated the methods carried out in order to implement the proposed 

method, previously described in chapter 3. Initially to predictor models were 

investigated and developed. A method for solving simultaneous equations was 

developed and presented as well. All the sections of the implemented method were 

presented in a methodical manner one by one. The Pseudo Code for all the developed 

was included on order to ease the explanations of the source code. Due to time 

limitations and programming difficulties (using Microsoft Direct X drivers) at the 

present time and after a common agreement, with the supervisor P. A. Prokopiou, it 

was decided to omit the programming of the force feedback joystick for the master 

robot. Instead it was decided to use simple sinusoidal inputs as neural inputs. 

 

Finally chapter 5 presented various simulation results. The aims set for chapter 5 were 

successfully completed, since the proposed method proved to function satisfactorily.  

 

Obviously in order to understand the concepts of teleoperation and delay elimination 

techniques took a great deal of time. Without any prior knowledge in this field, 

background reading was also essential. The correct results were not gained 

immediately and in many cases several attempts at understanding concepts required 

as necessary to achieve that. Regular meetings with the project supervisor were 

proven to be invaluable. Knowledge of the subject area was gained mostly by 

periodicals, books, and Internet resources. On the other hand previous knowledge in 

C++ programming and use of Matlab, helped a lot in implementing the proposed 
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method. Throughout the period of this project many software packages such as, 

Microsoft Visual C++ 6.0, Matlab 5.2, Microsoft office 2000, Visio 3.0, Adobe 

Photoshop 5.0 were used. 

 

As time is important in industry and deadlines need to be met, following the 

Gantt Chart (Appendix B) helped in achieving the completion of the required task 

within the available time. 

 

Having the opportunity to undertake a project of this nature has proven to be an 

invaluable source of knowledge. It has allowed discovering previously unfamiliar 

areas of expertise, which will be beneficial when considering future career 

opportunities. Also by allowing the student to use appropriate tools such as, 

Microsoft Visual C++ 6.0, Matlab 5.2, from previous areas of study enabled him to 

plan and undertake investigations both theoretical and practical. 
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Chapter 

8 
RECOMMENDATIONS FOR FURTHER WORK 

In future work the program code for the force feedback joystick could be 

implemented. Through the master (force feedback joystick), the human operator gives 

an order to the system (effectively to the slave robot) and feels back the response of 

his actions. For example if the slave robot hits a wall, then the master must feel on his 

hand the reaction force absorbed by the slave. Force feedback, also known as haptic 

feedback or force reflection, refers to the technique of emulating “feel” sensations to 

computer software by imparting real physical forces upon the user hand. These forces 

are imposed by actuators, usually motors, incorporated in the interface hardware. The 

interface hardware in this case is the joystick. Through the force feedback joystick the 

human operator can feel, rigid surfaces, viscous liquids, compliant springs, jarring 

vibrations, grating textures, heavy masses, and just about any other physical 

phenomenon that can be represented mathematically. 

 



  MSc Mechatronics Project Report 

K.Deliparaschos   Page 97  

The joystick could be very well programmed in C++ but it requires the use of Direct X 

5 or higher from Microsoft in order to make the programming easier. There is a 

number of available force feedback joysticks in the market from different 

manufacturers, like Logitech Inc., ThrustMaster, ACT Labs, Advanced Gravis, and 

Nuby manufacturing. 

 

Furthermore a graphic routine that will provide the human operator with visualization 

of the master position, slave position, predicted master position could be implemented. 

This could be simply achieved by creating a function to display three bars in a separate 

window that will accept as inputs, xm, xs, mx̂  (exm) and rotate according to the input 

values, in order to indicate the current position of each. 
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APPENDIX A MODIFIED STARK MODEL FOR THE 

HUMAN ARM - STATE EQUATIONS 
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L R    

where: subscripts l, r denote left, right muscle, ,v position and velocity of the arm, XL, XR internal 

model variables, Kp, Jp, Bp, passive parameters of the arm (muscles' load), Bh, T, k1, k2, Xlo, dXlo,  

Xro, dXro, thres_HTL, thres_HTR  const-ants, NL, NR the neural input, HTL, HTR activation levels, 

Fsl/Fsr the left/right muscle’s force, Fe an external force.  
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APPENDIX B GANTT CHART 
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