
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/291822057

Implementation and Testing of Variable-Time-Delays-Robust

Telemanipulation Through Master State Prediction

Thesis · September 1999

DOI: 10.13140/RG.2.1.3887.2081

CITATIONS

0
READS

153

1 author:

Some of the authors of this publication are also working on these related projects:

Horizon scanning - Future of UGVs View project

RautoR: Railway Autonomy and Reliability View project

Kyriakos M. Deliparaschos

Cyprus University of Technology

70 PUBLICATIONS 595 CITATIONS

SEE PROFILE

All content following this page was uploaded by Kyriakos M. Deliparaschos on 25 January 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/291822057_Implementation_and_Testing_of_Variable-Time-Delays-Robust_Telemanipulation_Through_Master_State_Prediction?enrichId=rgreq-c890240ecd0f6c2b8fecc80a1e63b46b-XXX&enrichSource=Y292ZXJQYWdlOzI5MTgyMjA1NztBUzozMjE4MjI0ODUwOTAzMDVAMTQ1MzczOTg2NzcwNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/291822057_Implementation_and_Testing_of_Variable-Time-Delays-Robust_Telemanipulation_Through_Master_State_Prediction?enrichId=rgreq-c890240ecd0f6c2b8fecc80a1e63b46b-XXX&enrichSource=Y292ZXJQYWdlOzI5MTgyMjA1NztBUzozMjE4MjI0ODUwOTAzMDVAMTQ1MzczOTg2NzcwNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Horizon-scanning-Future-of-UGVs?enrichId=rgreq-c890240ecd0f6c2b8fecc80a1e63b46b-XXX&enrichSource=Y292ZXJQYWdlOzI5MTgyMjA1NztBUzozMjE4MjI0ODUwOTAzMDVAMTQ1MzczOTg2NzcwNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/RautoR-Railway-Autonomy-and-Reliability?enrichId=rgreq-c890240ecd0f6c2b8fecc80a1e63b46b-XXX&enrichSource=Y292ZXJQYWdlOzI5MTgyMjA1NztBUzozMjE4MjI0ODUwOTAzMDVAMTQ1MzczOTg2NzcwNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c890240ecd0f6c2b8fecc80a1e63b46b-XXX&enrichSource=Y292ZXJQYWdlOzI5MTgyMjA1NztBUzozMjE4MjI0ODUwOTAzMDVAMTQ1MzczOTg2NzcwNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kyriakos-Deliparaschos?enrichId=rgreq-c890240ecd0f6c2b8fecc80a1e63b46b-XXX&enrichSource=Y292ZXJQYWdlOzI5MTgyMjA1NztBUzozMjE4MjI0ODUwOTAzMDVAMTQ1MzczOTg2NzcwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kyriakos-Deliparaschos?enrichId=rgreq-c890240ecd0f6c2b8fecc80a1e63b46b-XXX&enrichSource=Y292ZXJQYWdlOzI5MTgyMjA1NztBUzozMjE4MjI0ODUwOTAzMDVAMTQ1MzczOTg2NzcwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Cyprus-University-of-Technology?enrichId=rgreq-c890240ecd0f6c2b8fecc80a1e63b46b-XXX&enrichSource=Y292ZXJQYWdlOzI5MTgyMjA1NztBUzozMjE4MjI0ODUwOTAzMDVAMTQ1MzczOTg2NzcwNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kyriakos-Deliparaschos?enrichId=rgreq-c890240ecd0f6c2b8fecc80a1e63b46b-XXX&enrichSource=Y292ZXJQYWdlOzI5MTgyMjA1NztBUzozMjE4MjI0ODUwOTAzMDVAMTQ1MzczOTg2NzcwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kyriakos-Deliparaschos?enrichId=rgreq-c890240ecd0f6c2b8fecc80a1e63b46b-XXX&enrichSource=Y292ZXJQYWdlOzI5MTgyMjA1NztBUzozMjE4MjI0ODUwOTAzMDVAMTQ1MzczOTg2NzcwNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

IMPLEMENTATION AND TESTING OF VARIABLE-TIME-DELAYS-ROBUST

TELEMANIPULATION THROUGH MASTER STATE PREDICTION

PROJECT REPORT

S C H O O L O F E N G I N E E R I N G A N D M A N U F A C T U R E

M S C . M E C H A T R O N I C S

 S T U D E N T : K Y R I A K O S D E L I P A R A S C H O S

 S U P E R V IS O R S : P R O F S . G . T Z A F E S T A S

 P R O F P . R . M O O R E

DE MONTFORT
UNIVERSITY

LEICESTER
98/99

 MSc Mechatronics Project Report

K.Deliparaschos Page i

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my first supervisor Professor S. G. Tzafestas of

Intelligent, Robotics & Automation Lab., Dept. of Electrical & Computer Eng., National

Technical University of Athens (NTUA), for supplying me with this Μaster’s thesis and for

his kind guidance. I would like to thank, Ph.D. candidate, P. A. Prokopiou, of Intelligent,

Robotics & Automation Lab., Dept. of Electrical & Computer Engineering, (NTUA), for his

continued help and support to my questions and queries.

I would also like to acknowledge my appreciation to my second supervisor, Professor

P. R. Moore of Mechanical & Manufacturing Eng. Dept. at De Montfort University,

Gateway, Leicester, for his help. Moreover the attention and guidance of my course

leader, Mr H. Pancholi of Mechanical & Manufacturing Eng. Dept. at De Montfort

University, Gateway, Leicester, is sincerely appreciated.

Finally, I’m grateful to my parents, Michael and Catherine, my grandmother,

Anastasia Kalliontzi, and my girlfriend, Helen Karligiotou, for their love and

encouragement during the preparation of this Μaster’s thesis.

 MSc Mechatronics Project Report

K.Deliparaschos Page ii

ABSTRACT

This project is based on the implementation and testing of variable-time-delays-robust

telemanipulation through master state prediction by using high level languages (C++) and

Matlab software package.

Time delay compensation in teleoperation can be achieved by predicting the human arm position

and force (effectively the master state). The method is based on the prediction of the master state

(position xm and force fm) only, which can be much more simple and accurate than predicting the

slave and the remote environment, and incorporates this in a stable force-feedback scheme.

The telemanipulation method was split into its fundamental elements and implemented as a

number of functions. Furthermore two different methods (interpolation, curve fitting theories)

for implementing the predictor model were developed and tested.

Finally the telemanipulation method was simulated (using sinusoidal inputs as the neural

input) several times and the results produced, were evaluated. Due to time limitations and

programming difficulties, the programming of the force feedback joystick (role of master

robot) was not included.

 MSc Mechatronics Project Report

K.Deliparaschos Page iii

CONTENTS

ACKNOWLEDGEMENTS ... I

ABSTRACT .. II

CONTENTS .. III

LIST OF FIGURES ... VI

LIST OF TABLES .. VIII

INTRODUCTION ... 1

1.1 BRIEF INTRODUCTION TO TELEOPERATION .. 1
1.2 EARLY HISTORY AND APPLICATIONS ... 6
1.3 SCOPE OF THE PROJECT ... 11

CONTROL OF TELEOPERATION SYSTEMS ... 12

2.1 INTRODUCTION ... 12
2.2 CLASSIFICATION OF CONTROL ARCHITECTURES .. 12

2.2.1 Position to Position Loop .. 13
2.2.2 Position – Force Loop ... 13
2.2.3 Position – Force Loop ... 15
2.2.4 Force - Force Loop .. 15

2.3 MASTER-SLAVE SYSTEM REPRESENTATION BY TWO-TERMINAL-PAIR NETWORK 15
2.4 EVALUATION OF STABILITY BASED ON PASSIVITY OF THE SYSTEM .. 17
2.5 PERFORMANCE EVALUATION OF TELEOPERATOR SYSTEMS ... 18
2.6 HUMAN REACTION AND MODELLING ... 19
2.7 ENVIRONMENT MODELLING ... 21
2.8 THE YOKOKOHJI AND YOSHIKAWA CONTROL LAW ... 22
2.9 OTHER CONTROL ARCHITECTURES .. 26
2.10 TRANSMISSION TIME-DELAYS .. 26

2.10.1 Scattering Theory .. 27
2.10.2 The Wave Variable or Energy Approach ... 28

2.11 SEMIAUTONOMOUS CONTROL .. 28

TIME-DELAYS-ROBUST TELEMANIPULATION THROUGH MASTER STATE PREDICTION 30

3.1 INTRODUCTION ... 30
3.2 THE CONCEPT OF PREDICTING THE MASTER STATE ... 32
3.3 MODEL-BASED PREDICTION ... 34
3.4 TRAJECTORY EXTRAPOLATING PREDICTION .. 37
3.5 THE ENHANCED YOKOKOHJI AND YOSHIKAWA SCHEME ... 38

 MSc Mechatronics Project Report

K.Deliparaschos Page iv

IMPLEMENTATION OF PROPOSED METHOD ... 41

4.1 INTRODUCTION ... 41
4.2 PROGRAM EXPLANATION ... 41
4.3 INTERPOLATION ... 42

4.3.1 Interpolation Theory .. 42
4.3.2 Interpolation Function ... 45
4.3.3 Pseudo Code for Function, lagrance_poly() ... 46

4.4 POLYNOMIAL LEAST SQUARES CURVE FITTING ... 46
4.4.1 Polynomial Least Squares Curve Fitting Theory ... 46
4.4.2 Polynomial Least Squares Curve Fitting Function.. 48
4.4.3 Pseudo Code for Function, poly_leastsqr() ... 50

4.5 TRIANGULAR FACTORISATION ... 50
4.5.1 Triangular Factorisation Theory ... 50
4.5.2 Triangular Factorisation with Pivoting Function ... 52
4.5.3 Pseudo Code for Function, Triangular_factorisation() ... 52

4.6 MASTER SECTION ... 54
4.6.1 Master Theory.. 54
4.6.2 Neural Input Routine ... 54
4.6.3 Read Data Files Routine .. 54
4.6.4 Master Algorithm ... 55
4.6.5 Write Data Files Routine ... 56
4.6.6 Pseudo Code for Function, Master() ... 57

4.7 SLAVE SECTION .. 58
4.7.1 Slave Theory .. 58
4.7.2 Read Data Files Routine .. 58
4.7.3 Predictor Model ... 58
4.7.4 Slave Algorithm ... 59
4.7.5 Write Data Files Routine ... 59
4.7.6 Pseudo Code for Function, Slave() .. 59

4.8 SIMULATION LOGFILE SECTION .. 61
4.8.1 Logfile Creation Function ... 61
4.8.2 Pseudo Code for Function, logfile_create() .. 61

4.9 SIMULATION ELAPSED TIME SECTION .. 62
4.9.1 Elapsed Time Start and Finish Functions .. 62
4.9.2 Pseudo Code for Function, elapsed_time_start() .. 62
4.9.3 Pseudo Code for Function, elapsed_time_finish() ... 62

4.10 PROGRAM VARIABLE INITIALISATION SECTION ... 63
4.10.1 Initialisation Function ... 63
4.10.2 Pseudo Code for Function, Init() ... 63

4.11 INCLUDE FILES AND DECLARATION OF GLOBAL VARIABLES ... 63
4.12 SIMULATION SCRIPT FILE SECTION .. 65
4.13 MAIN SECTION ... 66

4.13.1 Main Function ... 66
4.13.2 Pseudo Code for Function, main() .. 66

SOURCE CODE .. 67

5.1 INTRODUCTION ... 67
5.2 SOURCE CODE OF MAIN PROGRAM .. 68
5.3 SOURCE CODE OF SCRIPT.H INCLUDE FILE ... 81
5.4 SOURCE CODE OF INTERPOLATION FUNCTION .. 82

SIMULATION RESULTS .. 83

6.1 INTRODUCTION ... 83
6.2 SIMULATION RESULTS AND EVALUATION .. 84

CONCLUSION .. 93

RECOMMENDATIONS FOR FURTHER WORK... 96

REFERENCES .. 98

 MSc Mechatronics Project Report

K.Deliparaschos Page v

APPENDIX A MODIFIED STARK MODEL FOR THE HUMAN ARM - STATE

EQUATIONS 101

APPENDIX B GANTT CHART .. 102

 MSc Mechatronics Project Report

K.Deliparaschos Page vi

LIST OF FIGURES

FIG. 1.1: BLOCK DIAGRAM OF TELEOPERATOR SYSTEM

FIG. 1.2: CONCEPT OF TELEROBOTICS

FIG. 1.3: E1, THE FIRST (1954) ELECTRIC MASTER-SLAVE TELEOPERATOR

FIG 1.4: HANDYMAN, THE FIRST (1958) ELECTROHYDRAULIC MASTER-SLAVE TELEOPERATOR

FIG. 1.5: AN EARLY WHEELCHAIR ARM-AID OPERATED BY THE HANDICAPPED PERSON’S TONGUE

FIG 2.1: POSITION – POSITION LOOP

FIG 2.2: POSITION – FORCE LOOP

FIG. 2.3: TWO-TERMINAL-PAIR NETWORK

FIG. 2.4: CONNECTION OF POWER SOURCE AND LOAD TO A TWO-TERMINAL-PAIR NETWORK

FIG. 2.5: HUMAN REACTION

FIG. 2.6: LOCAL DEFORMATION OF OBJECT SURFACE DUE TO ROBOT ACTION

FIG. 2.7: IDEAL STATE OF MASTER-SLAVE SYSTEM

FIG. 2.8: INTERVENING IMPEDANCE MODEL

FIG. 2.9: CATEGORIES OF SEMIAUTONOMOUS CONTROL

FIG. 3.1: TELEOPERATION THROUGH TIME DELAY AND PREDICTOR

FIG. 3.2: TELEOPERATION THROUGH TIME DELAY AND PREDICTOR, BUT SETUP FOR NEUROPREDICTIVE TELEOPERATION

FIG. 3.3: (A) TRADITIONAL, AND (B) PROPOSED SCHEME

FIG. 3.4: THE ENHANCED YOKOKOHJI AND YOSHIKAWA TELEMANIPULATION SCHEME

FIG. 4.1: LINEAR INTERPOLATION [31]

FIG. 4.2: REGRESSION LINE AND ERROR ASSOCIATED WITH POINT (XI, YI) [31]

FIG 6.1: MASTER AND SLAVE POSITION GRAPH

 MSc Mechatronics Project Report

K.Deliparaschos Page vii

FIG 6.2: PREDICTED MASTER POSITION AND SLAVE POSITION GRAPH

FIG 6.3: PREDICTED MASTER FORCE GRAPH

FIG 6.4: MASTER ACTUATOR DRIVING FORCE GRAPH

FIG 6.5: SLAVE ACTUATOR DRIVING FORCE GRAPH

FIG 6.6: MASTER AND SLAVE POSITION GRAPH

FIG 6.7: PREDICTED MASTER POSITION AND SLAVE POSITION GRAPH

FIG 6.8: PREDICTED MASTER FORCE GRAPH

FIG 6.9: MASTER AND SLAVE ACTUATOR DRIVING FORCE GRAPH

FIG 6.10: MASTER AND SLAVE POSITION GRAPH

FIG 6.11: PREDICTED MASTER POSITION AND SLAVE POSITION GRAPH

FIG 6.12: PREDICTED MASTER FORCE GRAPH

FIG 6.13: MASTER AND SLAVE ACTUATOR DRIVING FORCE GRAPH

 MSc Mechatronics Project Report

K.Deliparaschos Page viii

LIST OF TABLES

TABLE 2.1: RESPONSE STAGES

TABLE 2.2: HUMAN SENSES

TABLE 4.1: GLOBAL VARIABLE DECLARATIONS

TABLE 4.2: SCRIPT FILE PARAMETERS

TABLE 6.1: SIMULATION PARAMETERS

 MSc Mechatronics Project Report

K.Deliparaschos Page 1

Chapter

1
INTRODUCTION

1.1 Brief Introduction to Teleoperation

The 20th century has shown a massive technology increase in development, at a point

that our civilization can be characterized as technical. The use of machines has already

replaced human activity in most repeated and heavy works. The limited physical

abilities of the human body have been increased through the use of machines, and

allow tasks beyond the human will. On the other side, human’s ability to think and

decide has not been sufficiently understood, to allow intelligent systems to take over

tasks that require important initiative and complex data processing. Recently the

development of computers and more specifically of techniques of artificial intelligence

has resulted in a concentration of science at this field of interest.

One of the human’s inventions that hope to fully replace its inventor is no other than

 MSc Mechatronics Project Report

K.Deliparaschos Page 2

the robot1. Programmed industrial robots are already used, for performing repeated

tasks, such as welding, assembling and product spraying. The use of artificial

intelligent in this type of robots is expected to allow them to be used in more complex

duties, as to perform tasks in natural or unstructured environments. In the meantime,

technology has not reached this point of maturity, but even when it does, several and

serious problems will still require the cooperation between man and machine, or the

continuous supervision for the correct function of the machines from qualified staff.

In the above category of machines belong tasks with unpredictable outcomes, such as

discovering of the ocean bed or outer space or even more dangerous, like processing of

nuclear radioactive material, mines, fires or handling gun systems for military

operations. It is obvious that these kinds of tasks cannot be left completely under the

machine’s judgement, and even though human presence is necessary, it is impossible

due to human biological limitations. Biological limitations include danger of death due

to chemical toxic environments or generally due to inappropriate natural

environments, as well as inadequacy of human senses and neural forces.

From the above, rises the need of a mechanical arrangement, which will execute the

operator’s orders and return the state of the current worksite back to him, while the

operator is located in a safe or distant place. The machine acts in this way as an

operator’s representative. The robotic arrangement described above is known as

telerobotic system.

A good staring point for realising telerobotic systems is the concept of teleoperation.

1 The word robot is derived from the Slav word robota, meaning obligatory work or servitude.

 MSc Mechatronics Project Report

K.Deliparaschos Page 3

According to an expert in this field, T. B. Sheridan [26], teleoperation is the extension

of a person’s sensing and manipulation capability to a remote location. A teleoperator

includes at the minimum, artificial sensors, arms and hands, a vehicle for carrying

these, and communication channels to and from the human operator. The term

teleoperation refers most commonly to direct and continuous human control of the

teleoperator, but can also be used generally to encompass telerobotics as well.

A teleoperator system can be represented by the block diagram of Fig 1.1 and consists

of five subsystems: the human operator, the master, the communication block, the

slave and the environment. The slave is usually located in the worksite and is usually a

classic industrial arm. The master is located in the same place with the human

operator. Through the master, the human operator gives an order to the system and

feels back the response of his actions. The master arm could very well be a force

feedback joystick for example. The system roughly works as follows. The operator

commands a force Fh through the master, communication block, and slave, to the

environment. The master responds by changing the state of Xm (position and velocity),

which is transmitted through the communication block to the slave. The slave also

complies with environment force Fes. Both Xs and Fes are transmitted back to the

master. Finally a new force Fem is produced towards the master in order to reconstruct

the slave’s state.

h um a n

o pe ra to r
m a s ter c om un n ic atio n e nv iron m e nts la v e

F
h

F
em

X
m

F
es

X
s

X
ds

F
es

X
s

Fig. 1.1: Block diagram of teleoperator system

A teleoperator system must be able to reconstruct the touch feeling with the current

object back to the master, who is away from the object. This way, the concept of

 MSc Mechatronics Project Report

K.Deliparaschos Page 4

telepresence is achieved. Telepresence is the ideal of sensing sufficient information

about the teleoperator and task environment, and communicating this to the human

operator in a sufficiently natural way, that the operator feels physically present at the

remote site [26]. A perfect system should have such a design, so the human cannot

realise its existence, but have the illusion that his touching the object with its own

hands and seeing it as well. For example if the object is chattering then the human

operator must feel exactly the same movement on his hands through the master (e.g.

force feedback joystick). An ideal response according to the concept of teleoperation is

only achieved, if the position and force on the master arm are equivalent to those on

the slave arm for every time interval.

The concept of teleoperation is playing a major role in telerobotics. Telerobotics is a

form of teleoperation in which a human operator acts as a supervisor, intermittently

communicating to a computer information about goals, constraints, plans,

contingencies, assumptions, suggestions and orders relative to a limited task, getting

back information about accomplishments, difficulties, concerns, and as requested, raw

sensory data-while the subordinate telerobot executes the task based on information

received from the human operator plus its own artificial intelligence [26]. The concept

of telerobotics is illustrated in Fig. 1.2. The human operator provides largely symbolic

commands (concatenations of typed symbols or specialized key presses) to the

computer. However, some fraction of these commands still must be analogical (hand-

control movements isomorphic to the space-time-force continuum of the physical task)

in order to point to objects or otherwise demonstrate to the computer relationships that

are difficult for the operator to put into symbols [26].

 MSc Mechatronics Project Report

K.Deliparaschos Page 5

Fig. 1.2: Concept of telerobotics

Mostly synonymous with telerobotics is supervisory control, referring to the analogy

of a human supervisor directing and monitoring the activities of a human subordinate.

The term supervisory control is used commonly to refer to human supervision of any

semi-autonomous system (including an aircraft, a power plant, etc.), while telerobot

commonly refers to a device having arms for manipulating or processing discrete

objects in its environment.

Teleoperation represents one of the first domains of robotics and one of the most

challenging [2]. In teleoperation a human operator conducts a task in a remote

environment via master and slave manipulators. Providing contact force information to

the human operator can improve task performance. Although this information can be

obtained from visual displays, it is more useful when provided directly, by reflecting

the measured force to motors on the master. When this is done, the contact force is

said to be “reflected” to the human operator, and the teleoperator is said to be

controlled bilaterally [3], [4]. When teleoperation is performed over a great distance,

such as in undersea and outer space operations, a time delay is incurred in the

transmission of informing from one site to another [26].

 MSc Mechatronics Project Report

K.Deliparaschos Page 6

1.2 Early History and Applications

From well before the sixteenth century there were teleoperators in the form of fire-

tongs, animal prods and other simple arm extensions. Early in the nineteenth century

there were crude teleoperators for earth moving, construction and related tasks. By the

1940s prosthetic limb fitters had developed arm hooks activated by leather thongs tied

to other parts of the wearer’s body.

In about 1945 the first modern master-slave teleoperators were developed by Goertz at

Argonne National Laboratory near Chicago. These were mechanical pantograph

mechanisms by which radioactive materials in a “hot cell” could be manipulated by an

outside the cell. Electrical servomechanisms soon replaced the direct mechanical tape

and able linkages (Goertz and Thompson, 1954), and closed circuit television was

introduced, so that now the operator could be an arbitrary distance away. Figure 1.3

shows the first electric master-slave teleoperator, built by R. Geortz (shown) at

Argonne National Laboratory.

Fig. 1.3: E1, the first (1954) electric master-slave teleoperator

 MSc Mechatronics Project Report

K.Deliparaschos Page 7

By the mid 1950s technological developments in telepresence (they did not call it that

at the time) were being demonstrated. Among these were: force reflection

simultaneous in all six degrees-of-freedom (DOF); coordinated two-arm teleoperators;

and head-mounted displays, which drove the remote camera position and thereby

produced remarkable visual telepresence. Particularly impressive was Mosher’s (1964)

development of the General Electric Co. Handy-man, which had two electro hydraulic

arms with ten DOF in each arm (two DOF on each of two fingers). This is shown in

Figure 1.4.

Fig 1.4: Handyman, the first (1958) electrohydraulic master-slave teleoperator

Already in the late 1950`s there was interest in applying this new servomechanism

technology to human limb prostheses. Probably the first successful development was

that of A. Kobrinskii (1960) in Moscow, a lower arm prosthesis driven by minute

myoelectric signals picked up from the muscles in the stump or upper arm. This was

followed rapidly by similar developments in the U.S. and Europe (in the mid to late

1960s), including teleoperators attached to the wheel chairs of quadriplegics, which

could be commanded by the tongue or other remaining motor signals (shown in Fig.

1.5 overleaf). By that time remote touch sensing and display research was already

underway.

 MSc Mechatronics Project Report

K.Deliparaschos Page 8

Fig. 1.5: An early wheelchair arm-aid operated by the handicapped person’s tongue

From the early 1960s telemanipulators and video cameras were being attached to

submarines by the U.S., U.S.S.R., and French navies and used experimentally. For

example, the U.S. Navy’s CURV vehicle (Fig. 1.6) was used successfully in 1966 to

retrieve a nuclear bomb from the deep ocean bottom, accidentally dropped from an

airplane off Polomares, Spain. Offshore mineral extraction and cable-laying firms

soon became interested in this technology to replace human divers, especially as oil

and gas drilling operations got deeper.

By 1970 the western interest in teleoperation had turned to undersea, for there was

great economic demand for offshore oil. The French developed their ERIC vehicle, the

Americans the Hydro products RCV 150, both small-unmanned submarines with

remotely controlled video and manipulation capability-plus the necessary thrusters for

manoeuvring.

By 1970 industrial (manufacturing) robotics was coming into full development, for

Unimation, General Electric, and Cincinnati Milacron in the U.S., Hitachi, Fujitsu and

others in Japan, and many firms throughout both western and eastern Europe had

 MSc Mechatronics Project Report

K.Deliparaschos Page 9

begun using relatively simple assembly-line robots, mostly for spot welding and paint

spraying. By 1980 industrial robots had wrist-force sensing and primitive computer

vision, and push-button teach pendant control boxes were being used for relatively

simple programming from the shop floor. It became clear that human teleoperation for

working in space, undersea or other hazardous environments was to follow a different

course than was industrial robotics.

An example of a space teleoperator capability is the 20 m long remote manipulator

system (RMS) built by the Canadian firm SPAR and carried aboard the U.S. space

shuttle. It has six DOF and is controlled directly by a human operator viewing through

a window or over video and using two three-axis variable rate command joysticks, one

for three translations, one for three rotations.

As discussed previously the use of telerobotics has been used in undersea applications.

Figure 1.7 illustrates two subsea structures fitted with telerobotic systems. The

operator in the first one is located inside the craft and therefore he takes his own

decisions about the morphology of the ocean bed and the objects of which are to be

collected. The second one is operated remotely and was used for installing and

maintaining oceanographic base station on the ocean bed. Teleoperators in undersea

applications are usually referred as ROVs or remotely operated vehicles. ROVs are

commonly used in oil extraction industry. By the use of ROVs a dramatically

reduction in the cost of installation and supervision of subsea structures is achieved as

well as in the risk of human life. Not to mention of course that a diving hour costs near

10,000 dollars and risks taken by the divers are highly increased.

 MSc Mechatronics Project Report

K.Deliparaschos Page 10

One of the most interesting applications of telerobotics is telesurgery or more

specifically operating patients from a distance, when under certain conditions

their transfer in hospital is not feasible. The operation on a wounded soldier will

take place in a special mobile surgery while the doctor-teleoperator stays away.

In this way, fast medical attention is achieved without risking doctor’s life. The

arrangement plan discussed above, is described by R.M. Satava [5] as

telepresence surgery (Fig 1.8).

Other areas of telerobotics include offshore mineral extraction, maintenance of

underground installations - for example, Russians have constructed a robot for

teleinspection and repair of pipelines – smart warehousing, firefighting, policing

and military operations.

 MSc Mechatronics Project Report

K.Deliparaschos Page 11

1.3 Scope of the project

This project is based on the implementation and testing of variable-time-delays-robust

telemanipulation through master state prediction by using high level languages (C++) and

Matlab software package.

A general technique for time delay compensation in teleoperation applications is utilised by

predicting the human arm position and force (effectively the master state). The technique is based

on the prediction of the master state (position xm and force fm) only, which can be much more

simple and accurate than predicting the slave and environment dynamics.

The telemanipulation method can be split into its fundamental elements and implemented as a

number of functions. The first task is to implement some predictor model based on different

theories, and decide which one is suitable for the current application. After that the rest of the

functions should be developed.

Furthermore the implemented method should be compiled, to make sure that there are no

errors, and executed for a number of different parameters. The simulation results should be

represented as a number of graphs and evaluated.

 MSc Mechatronics Project Report

K.Deliparaschos Page 12

Chapter

2
CONTROL OF TELEOPERATION SYSTEMS

2.1 Introduction

In this chapter a brief presentation of the most important matters concerning the

control of teleoperator systems is attempted.

2.2 Classification of Control Architectures

The possible ways of control of a teleoperator system could be classified in four

categories depending on the feedback information [6]. Although there are different

variations of these basic control loops, all the existed arrangements could be fitted in

one of those. The control loops mentioned before are further analysed on next page.

 MSc Mechatronics Project Report

K.Deliparaschos Page 13

2.2.1 Position to Position Loop

Position is the fundamental variable in this case. Master and Slave positions appear on

the left side of the equations and describe the response of the system, ignoring the

reaction force. The control law equations are given by:

mtfeedbackmfeedbacksdfeedforwarmsmmaster
KKKKu)((1)

stfeedbacksfeedbackmdfeedforwarsmsslave
KKKKu)((2)

Figure 1.9 illustrates the above loop in terms of a block diagram.

HU M A N

K
m

1

J s+ B

1

s

K
s

ΔF
m

u
m

τ
m

Θ
m

Θ
s

τ
s

u
s

ΔΘ
s

+

-

+

+

+

+

+

F
hum an

F
task

1

J s+ B

1

s

I
h
B

h
K

h

θ
h

θ
t

I
t
B

t
K

t

TA S K

dΘm

d t

dΘs

d t

-

Fig 2.1: Position – position loop

2.2.2 Position – Force Loop

The transferred variables in this case are the master’s position and the force at slave’s

arm. In other words, force control is applied to the master, while position control is

applied to the slave. The control law equations that describe the above type of loop are

shown below:

mtfeedbackmfeedbacksdfeedforwarmsmmaster
KKKffKu

])[((3)

stfeedbacksfeedbackmdfeedforwarsmsslave
KKKKu)((4)

 MSc Mechatronics Project Report

K.Deliparaschos Page 14

The block diagram representation of the current loop is shown in Figure 2.2.

HU M A N

K
τm

1

J s+ B

1

s

K
s

ΔF
m

u
m

τ
m

Θ
m

Θ
s

τ
s

u
s

ΔΘ
s

+

-

+

-+

+

+

+

F
hum an

F
task

1

J s+ B

1

s

I
h
B

h
K

h

θ
h

θ
t

I
t
B

t
K

t

TA S K

dΘm

d t

dΘs

d t

K
δ

K
δ

F
m aster s ensed

F
slav e s ensed

+

-

-+

Fig 2.2: Position – force loop

It has to be mentioned that master’s force fm is not necessary required for the loop to

close, due to the fact that the operator’s hand reacts with the hand-held pendant and

balances the open loop force order. Block Kδ represents force sensors fitted on the

master control arm (e.g. force feedback joystick) and on the end-effector of the slave

robot.

An advantage of this specific loop is that direct measurement of the master force can

be achieved. As a result of that is that the slave force sent back to the master is free of

friction or non-modelled parameters. In the previously discussed case of position –

position loop (2.1.1), the reaction force sent to the master and felt by the operator was

generated indirectly, with as a result to include all of the unwanted data mentioned

above.

Another advantage of the current method is that the high frequency details of the force

are directly measured and sent to the master. Since the master is lighter and faster

 MSc Mechatronics Project Report

K.Deliparaschos Page 15

compared to the slave, is able of reconstructing the high frequency details while the

last rejects them due to different design. Finally the discussed control loop allows the

application of mechanical impedance control methods.

A great number of teleoperation methods use this type of control loop or variations

based to that.

2.2.3 Position – Force Loop

This control method is a reversed version of the method described above (2.1.2). The

method has several problems since it’s not possible for a robot controlled according to

force to become stable when it touches a hard object. On the other side, the contact

with soft objects is not causing any problems. On the master side, the force control is

stable, since the operator’s hand conforms to the external force.

2.2.4 Force - Force Loop

Not any system with force control on both sides had been implemented by the time of

publication of [6]. Bobgan and Kazerooni introduced the first system in 1991 and

capable conditions were established for system stability [7].

2.3 Master-Slave System Representation by Two-Terminal-

Pair Network

Two-terminal-pair network is usually used in the analysis of electrical circuits (shown

in Fig 2.3).

I
1

I
1

I
2

I
2

V
1

V
2

Fig. 2.3: Two-terminal-pair network

 MSc Mechatronics Project Report

K.Deliparaschos Page 16

Impedance matrix Z is defined from the relations (shown below) between current and

voltage of a two-terminal-pair network.

2121111
IzIzV (5)

2221212
IzIzV (6)

2221

1211

zz

zz
Z (7)

where I1 and I2 denote current at each terminal pair, and V1 and V2 denote voltage at

each terminal pair.

Lets consider a two-terminal-pair network, which is connected to a power source and a

load at each terminal pair as shown in Figure 2.4.

I
m

I
s

V
m

V
s

Z
L

V
op

Z
G

Z
in

Z
ou t

Fig. 2.4: Connection of power source and load to a two-terminal-pair network

Regarding the power source as an operator as an operator, the load as an object and the

two-terminal-pair network as a master-slave system, the whole system can be replaced

by the electric circuit of Fig. 2.4. The correspondence between a master-slave system

and the circuit representation in Fig. 2.4 is given as:

 velocity of the master arm
mx current Im

 velocity of the master arm
sx current Is

 operator’s force
op voltage Vop

 force at the master side
mf voltage Vm

 force at the master side
sf voltage Vs

 MSc Mechatronics Project Report

K.Deliparaschos Page 17

Representation of master-slave system by a two-terminal-pair network is not a new

idea. However, Razu [8], [9] has shown the framework where the operator and object

are considered as a power source and load connected to the network. The concept of

the two-terminal-pair network is well used to design electric filters. The master-

slave can also be considered as assort of mechanical filter between the operator

and the object.

This circuit representation does not change the nature of the problem all, but it enables

us to formulate in compact forms [10], also the extraction of system equations

becomes an easy task and could be solved by using one of many circuit analysis,

computer packages available.

2.4 Evaluation of Stability based on Passivity of the System

The characteristic approach is applicable only when the dynamics of the operator and

object can be represented by linear systems. Strictly speaking, however, the operator

dynamics and some of the object dynamics may be non-linear. For this reason, the

passivity of the system is used by many researchers, in order to study the stability of

the system [10].

Passivity of the system can be a sufficient condition of stability only when then system

interacts with passive environments. In the case of master-slave systems, assuming

that the operator and the environment are passive systems, then the sufficient condition

of stability is that the master-slave system itself must be passive [10]. However, the

operator is not passive because he/she has muscles as the power source and therefore

is not going to turn the system unstable.

 MSc Mechatronics Project Report

K.Deliparaschos Page 18

2.5 Performance Evaluation of Teleoperator Systems

Performance testing and the relative problem of comparing teleoperator systems is

quite complex due to the fact that the systems are composite in nature plus that human

factor is present. Moreover, the system should take under consideration several tasks

for execution, such as the movement in free space, in liquid or when comes in contact

with an object.

A mathematical algorithm for performance evaluation is proposed by Yokokohji and

Yoshikawa and presented below [10]. Initially, the ideal response is set, in which the slave

and master position and force are identical at any instant of time, or in other words the

perfect achieved form of teleoperation. Then a quantitative index of manoeuvrability2 is

proposed based on the concept of ideal responses previously discussed.

Let Gmp(s), Gsp(s), Gmf(s), and Gsf(s) be transfer function of the master-slave system

from the operator’s force to the master side displacement, slave side displacement,

master side force, and slave side force respectively. Then the two following indexes

are defined:

d
Tj

jGjGJ spmpp

1

1
|)()(|

max

0

 (8)

d
Tj

jGjGJ sfmff

1

1
|)()(|

max

0

 (9)

where ωmax is the maximum frequency of the manipulation bandwidth of human

operators, T(Tωmax >1) is time constant of first-order-lag.

2 A high-performance master-slave system means that it can provide high manoeuvrability.

 MSc Mechatronics Project Report

K.Deliparaschos Page 19

When index Jp is zero then the displacement is identical on both sides (master-slave).

When index Jf is zero then the force is identical on both sides. For a non-ideal

situation, the system becomes better as both Jp and Jf get closer to zero.

2.6 Human Reaction and Modelling

In [6] is discussed the nature of human senses that being used by master-slave systems.

An analysis of the frequency response of the human body is performed and the

bandwidth of stimulations that the operator can perceive is defined. Finally is

concluded that human have an uneven number of input (stimulation perception) to

output (action) abilities. Figure 2.5 illustrates in terms of a block diagram the human

input/output abilities.

INFO R M A TIO N FE ED B A CK DE V ICE S

 V ISU AL

(50 H z)

K IN ES -

T H E SIA

(20 H z?)

A U D IT O R Y

(20-20 k H z)

P R O PR IO -

C E PT IO N

(30 H z?)

T AC T ILE

(320 H z)

O T H E R S

LIM BS

 (2-5 H z)

H A N D S

A N D

F IN G E R S

(5-10 H z)

V OI C E

(8 b its

pe r

s ec ond)

CO N TRO L IN PU T DE V ICE S

R

E

M

O

T

E

S

Y

S

T

E

M

A

N

D

T

A

S

K

S E NS O RY DA TA P RO CE S S IN G

(a s ap prop ria te o r m a da lity m a x = 1,0 00 ,0 0 0,00 0 b its /s ec)

L O N G TE R M M E M O RY

(to tal b its u nk n ow n)

S HO RT T ER M M E M O R Y

(7 -/+ 2 Ch un k s)

P RO CE S S ING

NE U RA L

CO N NE CT IO N

DE L A YS

A DA P TIV E

L EA D S A N D LA G S

M O TIV A TIO N A L FA CT O R S

NE U RO M U SC UL A R CO N TRO L

2 00 m s
HU M A N

O P ER A TO R

Fig. 2.5: Human Reaction

 MSc Mechatronics Project Report

K.Deliparaschos Page 20

According to figure 2.5 a bandwidth of about 320 Hz is required for transmission of

stimulations, while about 10 Hz is required for hands movement.

In the next table (Table 2.1), the reaction time of a human to a number of stimulations

and the different stages that intervenes before the end of reaction is analysed [11].

Response Stages Typical Delay (msec)

Sensor 1 - 380

Transmission delay to brain 70 - 300

Natural transmission to muscle 10 - 20

Reaction of muscle 30 - 70

Total 113 - 528

Table 2.1: Response stages

Generally “fast” humans need in ideal situations, about 200 msec.

Reaction time is also closely related to human senses and therefore affected by them as

shown in table 2.2.

Senses Time (msec)

Hearing 150

Vision 200

Scent 300

Pain up to 700

Table 2.2: Human senses

Human modelling can be achieved with several methods depending on the required

degree of precision. For example when master-slave systems are compared in analogy

with electric circuits (for analysis purposes), the operator is represented as the current.

 MSc Mechatronics Project Report

K.Deliparaschos Page 21

It very common to model the operator as a simple spring-damper-mass system given

by the following equation:

mopmopmopmop xcxbxmf (10)

where mop, bop and cop denotes mass, viscous coefficient, and stiffness of the operator

respectively, whereas τop means force generated by the operator’s muscles and fm

denotes the force that the operator applies to the master arm. The displacement of the

operator is represented by xm because it is assumed that the operator is firmly grasping

the master arm and he/she never releases it during the operation [10].

The procedure of decision-making by the operator (estimating τop) is a difficult task

that requires the use of artificial intelligence knowledge.

2.7 Environment Modelling

When the robot touches an object, a force Fe is applied to the robot, given by:

eee xZF (10)

where vector
ex represents the local deformation of object surface due to robot action

(Fig. 2.6), and is equal to:

0

e

e

xx
x (11)

The above simple model is used, since a precise model of contact would be very

difficult to describe due to natural phenomena that appear. The error that occurs by

using this simple model is corrected by the controller. Equation 10, describes the

contact with an unbend surface, elastically conformed to the external pressure, without

friction. A flat surface selection is a good approximation for the area near to the

contact point, for regular curved surfaces.

 MSc Mechatronics Project Report

K.Deliparaschos Page 22

Assuming an unbend surface, allows to omit local conformation results due to contact.

Based on these considerations, matrix Ze can be represented as:

nnkK (12)

where k>0 is the stiffness coefficient and n is a unity vector vertically directed on the

surface area and hence defines the orientation of last.

x
d

E nv iron m e nt

x
x

e

Ro b ot

e nd -e ffe c to r

Fig. 2.6: Local deformation of object surface due to robot action

2.8 The Yokokohji and Yoshikawa Control Law

The Yokokohji and Yoshikawa [10] control law is a very important law that realizes

teleoperation. The architecture used is a classical one, developed through a well-

defined general framework of teleoperation, and adopting the widely accepted design

specifications of system transparency and passivity [12].

Usually master-slave systems consist of arms with multiple DOF. However for

problem simplicity a one DOF system is considered.

The dynamics of master and slave arms is given by the following equations:

mmmmmm xbxmf (13)

ssssss xbxmf (14)

 MSc Mechatronics Project Report

K.Deliparaschos Page 23

where xm and xs denote the displacements of the master and slave arms, and mm, bm, ms,

bs represent mass and viscous coefficient of the master and slave arms respectively. In

addition, fm denotes the force that the operator applies to the master arm, and fs denote

the force that the slave arm applies to the object. Finally, τm and τs represent actuator-

driving forces of master and slave arms respectively.

The dynamics of the object interacting with the slave arm, is modelled by the

following linear system:

swswsws xcxbxmf (15)

where mw, bw, and cw represent mass, viscous coefficient, and stiffness of the object

respectively. It is assumed that the slave arm is contacting the object, in such a way

that it may not depart from the object. Moreover is assumed that the dynamics of the

operator can be approximately represented as a simple spring-damper-mass system,

described by the following equation:

mopmopmopmop xcxbxmf (16)

where mop, bop and cop denotes mass, viscous coefficient, and stiffness of the operator

respectively. In addition τop represents the force generated by the operator’s muscles

and fm denotes the force that the operator applies to the master arm. The displacement

of the operator is represented by xm because it is assumed that the operator is firmly

grasping the master arm and he/she never releases it during the operation. Figure 2.6

[10] shows the model of one DOF teleoperation system:

Fig. 2.6: Teleoperation system

 MSc Mechatronics Project Report

K.Deliparaschos Page 24

Assuming that the force is identical on both sides, and the displacement difference

between master and slave is zero at any time, the following control schemes for τm and

τs can be considered:

msmmsmfmmmmsmmsmsmm fffkxbxxkxxkxm 21 (17)

mssmssfsssmssmsmsss fffkxbxxkxxkxm 21 (18)

where 2smms xxx and 2smms fff

The above control laws (Eqs. 17, 18) assume that all the information (position,

velocity, acceleration, and force) are known and time delay due to data transmission

between the master and slave sites is negligible. It is also assumed that the scales of

position and force are identical between the master and slave sites.

If the above considerations are obeyed then the system remains stable and achieves the

ideal state of master-slave system. In other words the system is equivalent to a

weightless rigid bar connecting the operator with the object (Fig. 2.7).

Fig. 2.7: Ideal state of master-slave system

However, the above state is very critical because only a small error of the inertia

parameter may change the massless bar into a bar with negative mass.

In order to avoid that, the control law is modified in such a way, that the dynamics of

master-slave system are not cancelled, but the operator feels as if he was operating the

object through a virtual bar of given mechanical impedance. This mechanical

 MSc Mechatronics Project Report

K.Deliparaschos Page 25

impedance is mentioned by the authors as intervening impedance, and illustrated in

Fig. 2.8, below.

Fig. 2.8: Intervening impedance model

The state of Fig. 2.8 can be described by the following equation by setting xm=xs=x :

xcxbxmff sm
 (19)

where m , b and c are the mass, coefficient of viscous fiction, and stiffness of the

intervening impedance respectively. Since xm and xs may not coincide all the time,

Eq. 19 can be rewritten as:

msmsmssm xcxbxmff (20)

The position error e converges asymptotically into zero according to the following equation:

2
21

sm ff
ekeke

 (21)

where λ>0 is a positive constant. Finally the control law (Eqs. 17, 18) become:

msmmsmfmmmmsmmsmsmm fffkxbxxkxxkxm 21

 msmmsmsms

mf
fmxcxbxm

k

22

1

 (22)

mssmssfsssmssmsmsss fffkxbxxkxxkxm 21

 mssmsmsms

sf
fmxcxbxm

k

22

1

 (23)

Depending on the availability of parameters and by adjusting them appropriately, the

ideal response could be achieved.

 MSc Mechatronics Project Report

K.Deliparaschos Page 26

2.9 Other Control Architectures

B. Hannaford [13] introduced the bilateral impedance control method. According to

this method, a local control loop on master tries to regenerate the intervening

impedance that exist on the other side (operator), respectively a local control loop on

slave tries to regenerate the intervening impedance that exist on the environment. So,

this control scheme returns back except the master-slave position, the predicted

intervening impedance as well. Therefore, it cannot be enlisted to any of the

categories discussed in 2.2.

K. Funaya and N. Takanasi [14] introduced an interesting control method, for

adjusting the stiffness of a teleoperation system, according to availability of object

positions.

A. Strassberg, A. Goldberg, A. Mills proposed a variation of the force-position loop

described in section 2.2.2. The transmit information are the master speed and the slave

force. However, the master is controlled in a special way; the force error is converted

to speed information and the master is controlled according to speed. The slave is

controlled according to speed as well.

2.10 Transmission Time-Delays

In many teleoperation applications the master and generally the control station is

located away from the slave. Therefore, every master control order is transmitted

delayed by a certain amount of time to slave. It has being proved, that this delay

worsens the quality of teleoperation and may lead the system to instability. A typical

delay of 20 msec appears, when the master-slave arms are near to each other. Delays

 MSc Mechatronics Project Report

K.Deliparaschos Page 27

of 60-200 msec appear when the master and slave are connected through a computer

network. Over 500 msec to a number of seconds, delays are introduced, when the

transmission is via a satellite link. An example of such a delay could be the assembly

of a satellite station in orbit from earth.

Two main approaches that can be followed to produce a passive (stable)

communication law between master and slave, and overcome the instability and

functionality problems caused by time delays are discussed below.

2.10.1 Scattering Theory

The first approach developed by Anderson and Spong (1998) using scattering theory

(Johnson, 1950). A scattering operator, S, can be defined for a two port network by the

relationship between force and velocity:

 vfSVF (23)

where S is a matrix in the frequency domain. Any communication law can be tested

for stability using a theorem stating that a two-port network (section 2.3) is passive if

only if the norm of its scattering operator is less than or equal to one.

Noting that an analogue electrical transmission line delays signals and is inherently

passive, Anderson and Spong manipulated the transmission line equations to obtain

the control laws for passive behaviour of the communications block:

)()()()(TtFtFTtxtx mdsmsd (24)

)()()()(TtxtxTtFtF sdmsmd (25)

where T is the communication time delay. These communications laws are passive

(stable) for all time delays, assuming the human operator, master, slave, and

 MSc Mechatronics Project Report

K.Deliparaschos Page 28

environment can be all represented as passive systems. Furthermore under steady state

conditions, the forces and velocities of master and slave are identical [16].

2.10.2 The Wave Variable or Energy Approach

The second approach developed by Niemeyer and Slotine (1990), uses an energy-

based formulation. The total power flow into the teleoperator network is given by:

2211 FxFxP (26)

The power flows can also be formulated with wave variables. Wave variables are

motivated by the physical concept of waves with an input and output wave at each port

of a network. In this manner, the total power flow can be written as:

2222

2

1

2

1

2

1

2

1
ssmm vuvuP (27)

Where u and v are the input wave variables. Equating equations (26) and (27) leads to

asset of transformation equations between power variables and wave variables.

2.11 Semiautonomous Control

Even if the operator can execute a task by himself, it’s a waste of human resources and

time to have to execute repeatable tasks, which they could very well executed by the

system, itself. However, a repeated task might tire out the operator and hence reduce

his performance. A good solution to these problems is to use semiautonomous control

on the slave side. Semiautonomous control is used, because there is no point using a

teleoperation system, if the task is fully defined in a structured environment. The

operator must be present, first of all to direct the system and finally to intervene in

autonomous control when something unpredicted happens. The concept of

semiautonomous control is closely related to supervisory control, introduced by Ferrell

and Sheridan on 1967.

 MSc Mechatronics Project Report

K.Deliparaschos Page 29

Semiautonomous control is split into two categories:

 Serial type, where manual and autonomous control are alternated serially.

This is shown in Fig. 2.9-b. Traditional supervisory control (section 1.1) is

included among this scheme.

 Parallel type, where manual and autonomous control are acting together.

Two sub-categories can be distinguished according to this type.

 The combined case, where the control inputs are combined together

(Fig. 2.9-c). This is necessary when autonomous control alters the

operator’s order or when the operator wants to alter the results

caused by autonomous control.

 The shared case, where the current task is shared between the

operator and autonomous control (Fig. 2.9-d) An example, could be

the transfer of a glass full of water, where the orientation of the

glass is autonomously controlled and the position and speed by the

operator.

opera tor

disp la y disp la y

comp uter

sensor effector

task

opera tor

disp la y disp la y

comp uter

sensor effector

task

opera tor

disp la y disp la y

comp uter

sensor effector

task

opera tor

disp la y disp la y

comp uter

sensor effector

task

(a) ma nua l con tro l (b) seria l type (c) p arallel type

 -com bin ed case-

(d) pa ra llel typ e

 -sh ared case-

Fig. 2.9: Categories of Semiautonomous Control

 MSc Mechatronics Project Report

K.Deliparaschos Page 30

Chapter

3
TIME-DELAYS-ROBUST TELEMANIPULATION THROUGH

MASTER STATE PREDICTION

3.1 Introduction

Although in the telerobotics community significant effort has been concentrated on the

compensation of time delays (t.d.s) in the communication channel between master and

slave, simple and reliable solutions are still being sought. Three main groups of

techniques robusti-fying against t.d.s have appeared up to date (two of them discussed

in sections 2.10.1 and 2.10.2). The first is based on the use of predictive displays for

the slave and the remote environment [17]. The future slave state is calculated, so that

the operator effectively interacts with an adaptable model of the remote site. Models

have to be both dynamically and visually correct, thus requiring complicated graphics

data and image processing. The second group entails the use of wave variables to form

a passive communications channel [18-20]. These provide stability but alter the force

 MSc Mechatronics Project Report

K.Deliparaschos Page 31

fed back. A final solution is to use supervisory control [17], leading to a non-

continuous form of teleoperation, i.e. changing the basic specification of manipulating

as close to physical as possible. Recently, significant interest was focused on variable

t.d.s, arising for example through the Internet [21-25].

The method proposed in this chapter, uses a prediction of the master state (position xm

and force fm) only, which can be much more simple and accurate than predicting the

slave and the remote environment, and incorporates this in a stable force-feedback

scheme. It will also be shown that this scheme cancels the computational burden of

visually representing the slave future state, needed in predictive displays: the slave-

side cameras’ image is sufficient for optical feedback, since it turns out to be

synchronized with the master. This is to the best of the authors’ knowledge an

unexplored approach. Two early efforts cited in [17], which predict the control input

along with the rest of the system state in non-telemanipulation tasks, were judged there

to be inadequate for telemanipulation.

Two predictor implementations have been explored. The first, called trajectory

extrapolating prediction, simply predicts the values of the macroscopic measurable

variables xm and fm. Simulations were carried out either, as is usual in the literature,

ignoring the human arm dynamics and considering predefined shapes of force input,

or, more realistically, also including the human dynamics, represented by the Stark

model of the human arm, as modified in previous work [21] of the authors. The Stark

model and its modifications are given in Appendix A. The second implementation is

built around a model-based predictor, also employing the Stark model, and the

prediction of the neural input to it. Relevant results are reported in [21], [22]. The

 MSc Mechatronics Project Report

K.Deliparaschos Page 32

proposed method was applied to the "enhanced Yokokohji and Yoshikawa scheme"

[22], a modification of [10] accommodating the master state predictor.

The chapter is organized as follows. The proposed concept is introduced in Section

3.2. Model-based predictors are discussed in Section 3.3, and trajectory extrapolating

ones in Section 3.4. Section 3.5 outlines the control scheme used [1].

3.2 The Concept of Predicting the Master State

The basic feature of the present design is the incorporation of a predictor for the

master state rather than the slave and environment one. This offers significant

advantages over previous solutions. The key idea is to command the slave robot to

follow the predicted command, so that it is "ahead in time" from the master. After the

two transmissions of signals through the communications channel (shown in Fig. 3.1),

the reflected slave position / force has the same time index as the local master

variables. According to Fig. 3.1, exp(-sTt/2) denotes delay due to transmission through

the communication channel and exp(+sTt) denotes prediction. The other blocks are

free of delay. "Hat" ^ denotes estimate. Xss is only used to illustrate the signals’

timing. Setup for predictors does not require neural input measurement or estimation

(e.g. trajectory extrapolation).

exp (+ sT t)

X m*exp (+ sT t /2)

exp (-sT t /2)

X m *exp (-sT t /2)

Slave&
Environment

X s=
X ss*exp (+ sT t /2)

X m

exp (-sT t /2)

M aster &
H uman A rm

X s*exp (-sT t /2)=
X ss

Fig. 3.1: Teleoperation through time delay and predictor

 MSc Mechatronics Project Report

K.Deliparaschos Page 33

This way the "feel" of teleoperation is natural, since the variables are simultaneous,

and are not altered by the algorithm, as in existing approaches [18], [20]. This is

exactly what happens when a human manipulates by his own hands, i.e. the scheme is

transparent. With a prediction horizon of Tt sec, t.d.s up to Tt /2 can be compensated

for. If the t.d. is smaller than Tt /2 or the t.d. is not equal in the two directions, then an

additional artificial delay (buffering) has to be introduced. This would be the case if

the computational delays were taken into account. They would probably not be

matched in the two robots, since incorporating simpler hardware at the slave can be

advantageous in space, underwater and other on-field applications. Thus variable t.d.s,

arising for example through the Internet, can also be accommodated, provided the

exact t.d. is calculated as in [24]. Even for small t.d.s, this prediction can be helpful in

providing us time for control error corrections and compliance.

A significant advantage offered by predicting the master state, is that only the plain

camera image transmitted back to the operator is needed. No special analysis, such as

object recognition to form a world model and make an accurate prediction or use of

complicated graphics to overlap the predicted slave position on the camera image,

demanded by conventional predictive display systems, is needed. This simplification

occurs because the slave leads in time the master in the real world, not as a computer

model. In other schemes is the opposite, i.e. the master leads in time the slave.

The performance is clearly affected by the prediction accuracy. When the error is

significant, the reaction fed back from the slave corresponds to the falsely predicted

operator movement rather than the actual one, so that the human will form a wrong

impression for the results of his actions and the remote site, and instability may arise.

The prediction fidelity depends on the complexity of the predictor and the profile of

 MSc Mechatronics Project Report

K.Deliparaschos Page 34

the master movements. The latter are determined by the human physiology and the task

to be performed, and can be smoother and thus more predictable by operator training.

This chapter investigates the trade-off between predictor complexity and final accuracy,

i.e. the feasible t.d. compensation capabilities for various predictor implementations.

The predictors considered can be cast in two groups: model-based and trajectory

extrapolating predictors and are analytically discussed in sections 3.3 and 3.4.

3.3 Model-Based Prediction

Model-based predictors employ a model of the system that generates the master state,

thus producing an accurate prediction, provided that this model and a prediction of its

input are known. If the macroscopic variables xm and fm are considered as input, and

due to the control feedback, the human arm, the two robots and the remote

environment should be included in this model. Identifying an online-adapting neural

network-based “holistic” model of this type was considered in earlier work, but has

not so far resulted in robust performance. A non-adaptive model suffers from robot

and environment parameter uncertainties and is anyhow quite complex. Despite the

apparent similarities, this approach differs from predictive displays, since the master

state is also predicted, the slave leads the way and no visual representation is needed.

A simplification tried in the simulations, consisted in considering the slave state as

steady during the prediction horizon (only within the predictor, of course). Thus

effectively the slave and remote environment are not taken into account. This led to

slight degradation of the prediction fidelity, which was not destabilizing.

 MSc Mechatronics Project Report

K.Deliparaschos Page 35

Luckily, well-established physiological evidence reveals that the brain, rather than

controlling the movement on-line, “programs” the arm with an action plan of a

complete movement, which is then executed largely in open loop, regulated only by

local reflex loops [27]. Therefore, by measuring the neural input (NI- its measurement

termed electroneurograph - ENG) to the arm muscles and predicting it before a new

"program" is "downloaded", a reliable reproduction of the intended master state can be

obtained without fear of sudden change of the input. In [22] a control scheme assuring

that this intended movement is realized by the actual master state, is designed (shown

in Figs. 3.2, 3.3). Fig. 3.2 is the same as Fig 3.1, but setup for Neuropredictive

Teleoperation. is the HNI (Hypothetical Neuropredictive Input). In Fig. 3.3, the

traditional and proposed schemes are shown, where, B: Brain, P: Muscle command

program buffer, V: Screen and optical pathway, A: Arm, M: Master, eM: Arm Model

and Predictor, S: Slave, E: Environment. Dashed lines should be ignored, unless HNI

is estimated through an inverse arm model or when the arm model is tuned online. The

dotted connection is open most of the time.

Human Arm

Model

exp(+sTt)

 *exp(+sTt/2) Xm*exp(+sTt/2)

exp(-sTt/2)

 *exp(-sTt/2)

Slave&

Environment

Xs=

Xss*exp(+sTt/2) Xm

exp(-sTt/2)
Master &

Human Arm

Xs*exp(-sTt/2)=

Xss

Fig. 3.2: Teleoperation through time delay and predictor, but setup for Neuropredictive Teleoperation

A

B

eM

M

V

S EP
A

eM

M

V

S E

B

P

Fig. 3.3: (a) Traditional, and (b) proposed scheme

 MSc Mechatronics Project Report

K.Deliparaschos Page 36

There, the control loop traditionally closed around the master and slave is broken, so

that the system reduces to open loop, for the interval during which the arm moves

autonomously from the brain, i.e. most of the time (since the forward path from the

brain to the slave passes through the predictor rather than the physical arm and

master). By the combination of measuring and predicting the NI, the human arm is

reduced to a sensory feedback platform for the brain, and a source of correcting the

model and the prediction. This scheme was named "Neuropredictive Teleoperation"

(NPT). Since invasive techniques would be required to measure the ENG, the

electromyograph (EMG) and relevant models can be employed instead. A multitude of

human arm models can be found in bioengineering literature [21].

The ENG / EMG are not used in the models as measured, but are rectified and further

processed [28], [21], [29]. To emphasize this, the term "hypothetical neural input"

(HNI) will be used. The HNI has a simple form and some well studied characteristics:

it is a three pulses’ sequence, modeled by varying the amplitude or the period. It is a

square or triangular waveform, either continuous or "spiky" modulated by a square or

triangular function, whereas the rectified EMG is (roughly) sinusoidal [21]. Such a

signal is indeed easily predictable. Depending on the model, this is accomplished

either by simulation ("running the model forward") or by modifying it to a predictive

formulation (i.e. by analytical calculations).

A central problem is specifying a horizon Tt for reliable prediction. A clear upper limit

is posed by the frequency with which the brain changes its "program", i.e. its

predefined sequence of pulses. Such an upper limit is estimated at about 1 sec,

whereas a safe limit is 500 msec [30]. Within this limit a predictable set of three pulses

 MSc Mechatronics Project Report

K.Deliparaschos Page 37

can be expected. To achieve this, good estimation of the duration of each pulse or

robust control laws, with fast errors correction, are required. Given the margin of 500

msec, such control tactics are feasible. To be safer, we can resort to short term

predictions of HNI / EMG and "invest" on the activation time of the muscle as a

response to HNI. Since this is modeled as a 1st order linear system with typical time

constant 50 msec [30], its step response to the squared input used in [30] will have

settled after around 200 msec. So, after measuring the ENG, one can predict the

muscle response after approx. 200 msec.

Considering typical values, t.d. is not considered for many ground applications, for

example telesurgery with dedicated communication lines or Internet link (which

introduces delays with a mean as small as 0.1 sec [23]), underwater ones for depth of

400m (delay of 1/850 sec/m [17]), or even single-link earth-to-orbit ones(delay of 0.4

sec,6 sec for multiple link [17]). Employment of hints about the intended movement or

a combination with existing techniques could increase these limits. Intermediate

systems, employing hints about the dynamics rather than an accurate model, are also

under development by the authors [22].

3.4 Trajectory Extrapolating Prediction

The disadvantage of the model-based techniques is that identifying a model and

measuring its input is not an easy task, while the complexity of the calculations

involved is quite high. Another option is to ignore the internal system dynamics and

just interpolate xm and fm with a simple, say polynomial, function. The prediction is

then made by extrapolating this coarse model up to the desired horizon. The decision

to test this idea was reinforced by observing that the profiles of position and force

trajectories reported in the literature are rather simple. An advantage of this technique

 MSc Mechatronics Project Report

K.Deliparaschos Page 38

is that it can be directly applied to existing schemes without any modification of the

control laws or their underlying assumptions. In contrast to NPT, there is no need to

consider the human physiology, since only measurable macroscopic variables are

required. In addition, it is computationally non-demanding. However, by separately

predicting xm and fm their values will not necessarily be compatible to each other, in

the way dictated by the nonlinear human dynamics.

Several interpolating families of functions were considered. While the simplest were

polynomial functions of low order, exponential ones, and (as in [29]) a 1st order

Taylor extrapolator, cubic splines gave the double tolerance to delays. Neural

Networks were considered but not tested, since they would either require off-line

training to form an initial curve, or comprise of just a few neurons, leading to a

performance not better than the other methods. Finally, heuristic modifications did not

result in any significant improvement.

3.5 The Enhanced Yokokohji and Yoshikawa Scheme

As mentioned in the Introduction, a conservative improvement of the Yokokohji and

Yoshikawa teleoperator architecture [10] was also developed [22].

The Yokokohji and Yoshikawa architecture is a classic one, developed through a well-

defined general framework of teleoperation, and following the widely accepted design

specifications of aiming at transparency and passivity of the system. In [22] it is

robustified against time delays, by being augmented with the predictor outlined above.

The general system set-up is actually the same as in [11], except that the goal is now

modified to achieving xm(t) = xs(t-Tp/2) (Ideal response I), or fm(t) = fs(t-Tp/2) (Ideal

response II), or both simultaneously (Ideal response III).

 MSc Mechatronics Project Report

K.Deliparaschos Page 39

The enhanced scheme “pushes” the master and slave state to the mean values:

 2/2)T-(tx+(t)x=(t)x psmms
 (28)

f (t) =m s f (t) + f (t - T / 2)
m s p

2 (29)

These differ from [11], as the slave states are now delayed. A more important

difference is that while the master is directed to (t)x ms
 , (t)f ms

 , the slave is pushed to

/2)T+(tx pms
 , /2)T+(tf pms

 ,i.e. it leads the master arm along the desired trajectory.

The dynamics of master and slave arm are given by the equations:

mmmmmm xbxmf+(t) (30)

ssssss xbxmf (31)

where is actuator driving force and mm, ms, bm, bs are constant parameters.

By applying the control law (Fig. 3.4):

 m m ms 1 ms m 2 ms m m m mf ms m ms(t) m x (t) k (x (t) x (t)) + k (x (t) x (t)) b x (t) k f (t) - f (t) f (t) (32)

s s s sf s m s p m s p
(t) b x (t) k f (t) - f (t + T / 2) f (t + T / 2) +

 (t))x/2)T+(tx(k+(t))x/2)T+(tx(k/2)T+(txm spms2spms1pmss (33)

where kmf, ksf, k1, k2 are constant control parameters, it can be shown that

f (t - T / 2) = f (t)
s p m

 and e (t) + k e (t) + k e (t) = 01 2 , where e (t) x (t) - x (t - T / 2)
m s p , i.e.

force tracking is perfect and position error is minimized through the 2nd order error

equation above. So, the ideal performance is achieved, despite of the time delay.

As in [11], the above control law can turn the system unstable if the dynamic

parameters’ estimation is erroneous. It can be enhanced by applying the intervening

impedance, concept of Yokokohji and Yoshikawa: the force tracking is relaxed, by

imposing, through a modified control law:

 MSc Mechatronics Project Report

K.Deliparaschos Page 40

f (t) - f (t - T) mx (t) + bx (t) + cx (t)m s t ms ms ms2 (34)

 e (t) + e (t) + e (t) = f (t) + f (t - T)m s t 2 2 (35)

where is a constant parameter. This way, the operator feels as if manipulating

through a virtual rod, an intervening impedance, whose (constant) parameters are

denoted by above "hat" symbols.

In [22] it is shown that the combination of the teleoperator and the predictor is passive

under perfect prediction. It is also shown that it can be passive under non-perfect

prediction, depending on the prediction error bounds and the control parameters.

If, in the control laws above, we use on the master side x (t), f (t)m m instead of

 x (t), f (t)m m , we obtain a succession of blocks in an open-loop connection. Thus,

through the design process following the classic thinking, the mechanical part reduced

to an open-loop system. This was due to the use of NI and a perfect predictor, and

indicates that the master-slave-master loop becomes an obsolete specification. Under

non perfect prediction or if online adaptation of the model is needed, the enhanced

scheme of this subsection remains closed loop.

1
m s + b m m

1
s

 x m x m
f m

1
m s + b s s

1
s

 x s x s

f s

e
- sT / 2

0 .5 x ms

k s + k
1 2

e + sT / 2

b s

-
+ +

+

+

0 .5
 f ms

e + sT / 2

-

e
- sT / 2

+
k sf

-

+

 s
+ -

+ +
m s

+
+

+

+

 m

-
+ k m f

-
-

b m
+

+ +
m m

k s + k
1 2

-

+

+
+

s 2

s 2

Fig. 3.4: The enhanced Yokokohji and Yoshikawa telemanipulation scheme

 MSc Mechatronics Project Report

K.Deliparaschos Page 41

Chapter

4
IMPLEMENTATION OF PROPOSED METHOD

4.1 Introduction

In this chapter the design work followed for the implementation of the variable-time-

delays-robust telemanipulation through master state prediction (described in chapter 3)

is presented. The program was developed and debugged using Microsoft Visual C++

6.0 part of Microsoft Visual Studio 6.0. Great attention was paid to the explanation of

functions used during the program and the theory involved behind them. Two different

functions for predicting the master state were investigated and developed, according to

interpolation using Lagrance polynomial, and polynomial least squares curve fitting

theories.

4.2 Program Explanation

The program accepts a script file, where the user is called to enter the desired

simulation parameters. The two main functions of the program are the master and

 MSc Mechatronics Project Report

K.Deliparaschos Page 42

slave. When the simulation is over a log file is created containing all the results (at

each sample) that occurred during the execution of the algorithm.

In order to simulate a random delay line between master and slave, the master

information (at every sample), are first written in the hard disk, and then red from the

slave and vice versa, adding this way the resulted write-read time of hard disk (hard

disk access time). The delay feature is neutral in the current program (master and slave

are executed under the same counter) and was only developed for future expansion of

the program, where master and slave would be using independent execution counters.

4.3 Interpolation

4.3.1 Interpolation Theory

In this section the problem of obtaining a function for the case when the data points

are precisely known will be addressed. In the case of interpolation, the curve has to

pass through every data point. The resulting polynomial is called an interpolating

polynomial, and the process of obtaining intermediate points between precise known

points is called interpolation. The most common use of interpolation is to obtain

intermediate values from tabulated data.

As a first approximation the data points can be connected by a series of straight lines.

Figure 4.1 on next page, shows one such a segment connecting xi and xi+1.

 MSc Mechatronics Project Report

K.Deliparaschos Page 43

f(x
i
)

f(x)

f(x
i+1

)

f(x)

xxx
i

x
i+1

Fig. 4.1: Linear Interpolation [31]

The equation of the straight line of 1st degree interpolating function can be written as:

f(x) = a0+a1x (36)

Considering the straight line segment between the points xi and xi+1, the

coefficients a0 and a1 can be obtained by noting that the function f(x) must pass

through the points xi and xi+1:

f(xi+1) = a0+a1xi+1 (36)

Solving the above simultaneous equations the following values for a0 and a1:

ii

iiii

xx

xfxxfx
a

1

11

0

)()(
 (37)

ii

ii

xx

xfxf
a

1

1

0

)()(
 (38)

Substituting for a0 and a1 in Eq. (36) and rearranging:

)()()(

11

1

i

ii

i

i

ii

i
xxf

xx

xx
xf

xx

xx
xf

 (39)

Equation (39) can be used for estimating the value of f(x) corresponding to a given

value of x. The particular form of the equation is called the Lagrance 1st order

interpolating polynomial.

 MSc Mechatronics Project Report

K.Deliparaschos Page 44

The accuracy of the approximation can be improved by presenting some curvature in

the function connecting the points (x0,f(x0)),…,(xn,f(xn)). This can be done by

approximating f(x) with a 2nd degree interpolating function:

f(x) = a0+a1x+a2x
2 (40)

Similarly as above, the equation for a 3rd order degree polynomial is:

f(x) = a0+a1x+a2x
2+ a3x

3 (41)

The coefficients a0, a1, a3 are determined by requiring that f(x) pass through the points

(x0,f(x0)), (x1,f(x1)), (x2, f(x2)), and (x3, f(x3)), which yields the following equation:

)(
))()((

))()((
)(

))()((

))()((
)(1

312101

320

0

302010

321
xf

xxxxxx

xxxxxx
xf

xxxxxx

xxxxxx
xf

)(
))()((

))()((
)(

))()((

))()((
3

231303

310

2

321202

210
xf

xxxxxx

xxxxxx
xf

xxxxxx

xxxxxx

 (42)

The Lagrance interpolating polynomial of degree n can be written as:

f(x)=L0(x)f(x0)+L1f(x1)+L2f(x2)+…+Lnf(xn) (43)

or more simply as:

n

i

ixfxLxf

0

1)()()((44)

The functions Li(x) are defined as:

)1110

1210

)...()()...()((

))()...()()((
)(

niiiiiii

nn

i
xxxxxxxxxx

xxxxxxxxxx
xL

 (45)

or more simply as:

n

ij

j ji

i

i
xx

xx
xL

0

)((46)

where the Greek capital letter Π represents a repeated product. Replacing Li(x) from

Eq. (46) in Eq. (44), the Lagrance interpolation function can be written as:

 MSc Mechatronics Project Report

K.Deliparaschos Page 45

)()(

0

0

0

i

n

i

n

j

j ji

j
xf

xx

xx
xf

 (47)

The functions Li(x) have the following properties:

Li(x)=1, at x=xi

Li(x)=0, at xxi

Thus the product Li(x)f(xi) is equal to f(xi) at x=xi and is zero for all other values of xi.

This means that the polynomial passes exactly trough each of the n+1 points [31].

4.3.2 Interpolation Function

Function lagrance_poly() performs interpolation using an nth order Lagrance

interpolating polynomial. It determines a polynomial that passes through a set of n+1

data points, (x0, f(x0)), and computes the value of the dependent variable for a given x

value. The function accepts as input parameters:

 x[] array containing values of independent variable xi

 y[] array containing values of independent variable f(xi)

 n number of data points

 x_value x_value for interpolation

and returns:

 fx value of dependent variable f(x) at x=x_value

The code for lagrance_poly() is very simple and consists of two nested for loops. The

inner loop computes Li(x), while the outer loop computes the sum of Li(x)f(xi). The

function returns a value of type double in the variable fx, which is the interpolated

value of f(x) at the given value of x [31].

 MSc Mechatronics Project Report

K.Deliparaschos Page 46

4.3.3 Pseudo Code for Function, lagrance_poly()

The pseudo code for the function is shown below.

Declare fx as double

Declare x, f as double arrays of size defined in variable MAXSIZE

Declare n as integer

Declare x_value as double

Declare loop counters i, j as integers

Declare fx, as double and set to 0.0

Declare li, as double and set to 1.0

Start incremental counter for i=0 to i< n

Set li equal to 1.0

Start incremental counter for j=0 to i< n

If j is not equal to i then

Compute li

Compute sum of li*f[i] and store in variable fx

Return variable fx

4.4 Polynomial Least Squares Curve Fitting

4.4.1 Polynomial Least Squares Curve Fitting Theory

In this section the problem of developing a curve that follows the general trend of the

data and passes as close as possible but not necessarily through every data point, is

presented.

The most widely used technique for fitting a line through a series of observed data

points is the least squares method. This method is based on minimizing the sum of the

squares of the difference between the observed data points and the values given by the

approximating line. The method is illustrated graphically in Fig. 4.2.

y

xx
i

(x
i
,y

i
)y

i

δ
i

Observed va lue

Regression line

y=a
0
+a

1
x

iy

Fig. 4.2: Regression line and error associated with point (xi, yi) [31]

 MSc Mechatronics Project Report

K.Deliparaschos Page 47

The predicted values are given by:

ii xaay 10

 (48)

The vertical deviating δi of the ith point from the regression line is:

δi=yi- iy

= yi- (ixaa 10) (49)

where δi is the difference between the observed value yi and the ordinate
iy

 of the

fitting straight line at xi. The sum of the squares of deviations is:

n

i

n

i

iii xaayS

1 1

2

10

2
)]([(50)

The values of a0 and a1 are chosen so as to minimise S. S can be minimised by taking

the partial derivatives of S with respect to a0 and a1 and setting the resulting equation

to zero:

0)]([2

1

10

0

n

i

ii xaay
a

S
 (51)

0)()]([2

1

10

0

i

n

i

ii xxaay
a

S
 (52)

Replacing

n

i

a

1

0
with na0 and

n

i

ixa

1

1
with

n

i

ixa

1

1
and rearranging gives the following

two simultaneous equations:

n

i

n

i

ii yxana

1 1

10
 (53)

n

i

ii

n

i

n

i

ii yxxaxa

11 1

2

10
 (54)

Solving the above simultaneous equations, the solutions of a0 and a1 can be obtained.

The method presented above can easily be extended to higher-order polynomials.

An N degree regression polynomial has the form:

xaxaxaay Ni ...
2

210 (55)

 MSc Mechatronics Project Report

K.Deliparaschos Page 48

the sum of squares of the deviations is given by:

n

i

N

iNiii xaxaxaayS

1

2

210)...((56)

By setting the partial derivatives,
0a

S

,

1a

S

, …,

2a

S

equal to zero, the following

system of n+1 linear simultaneous equations in the unknown coefficients a0, a1, …, aN

are obtained.

 i

N

iNii yxaxaxana ...
2

210

ii

N

iNiii yxxaxaxaxa
13

2

2

10 ... (57)

i

N

i

N

iN

N

i

N

i

N

i yxxaxaxaxa
22

2

1

10 ...

All the summations are from i=1 to i=n. Equation (57) can be written in a matrix form:

i

N

i

ii

ii

i

N

N

i

N

i

N

i

N

i

N

i

N

iiiii

N

iiiii

N

iiii

yx

yx

yx

y

a

a

a

a

xxxxx

xxxxx

xxxxx

xxxxn

..

...

......

...

...

...

2

2

1

0

3321

25432

1432

32

 (58)

When the summations that appear in the coefficient matrix and the right-hand vector have

been evaluated, the equations can be solved using a method for solving simultaneous

equations [31].

4.4.2 Polynomial Least Squares Curve Fitting Function

Function poly_leastsqr() determines the best-fit polynomial of the form y= a0 + a1x + a2x
2

+...+ aN xN-1 and computes the coefficients a0, a1, aN of the best-fit polynomial of

degree N-1 for a set of observations (x1, y1), (x2, y2), ...,(xm, yn). The computations are

performed by function, poly_leastsqr(). The function first assembles the square

coefficient matrix and the right-hand vector given in Eq. (58) in the previous section.

The coefficient matrix is saved in the two-dimensional array c[][], and the right-hand

 MSc Mechatronics Project Report

K.Deliparaschos Page 49

vector is saved in the one-dimensional array a[]. The function then calls the triangular

factorisation with pivoting elimination routine to solve the system of equations and

obtain the coefficients of the best-fit polynomial. The same function also calculates the

value of y (predicted value) for a given x_value. The elimination function is discussed

in the next section. The function expects six arguments, described next:

 x[] array containing observed values of xi

 y[] array containing observed values of yi

 num_points number of data points, n

 num_poly degree of polynomial, which is equal to N-1

 x_value x value of polynomial

and returns:

 a[] coefficients of best-fit polynomial, a0, a1, …,an

The function creates two local arrays, a one-dimensional array s[] and a two-

dimensional array c[][]. The array s[] is used to store various sums that used to create

the coefficient matrix. The elements of the array s[] are obtained from:

n

i

k

ixks

1

][(59)

On the other hand the elements of the coefficient matrix c[][] are obtained from the

array s[], knowing that the relation between them is, c[i][j]=s[i+j].

The right-hand vector is saved in the array a[], the elements of which are obtained from:

n

i

k

ii xyka

1

][(60)

The function first creates the arrays s[] and a[]. Next it creates the array c[][] by

placing the elements of s[] in their appropriate positions in c[] [31]. It then calls the

function Triangular_Factorization(), to solve the system of equations and returns the

value of y (fx, predicted value) based on x_value.

 MSc Mechatronics Project Report

K.Deliparaschos Page 50

4.4.3 Pseudo Code for Function, poly_leastsqr()

The pseudo code for the function is shown below.

Declare x, y as double arrays of size defined in variable MAXPOINTS

Declare a as double arrays of size defined in variable MAXSIZE

Declare c as 2x2 double array of size defined in variable MAXSIZE

Declare s as double array of size twice the one defined in variable MAXSIZE

Declare loop counters i, j as integers

Declare predicted value fx as double

Compute sums routine

Set s[0] equal to number of data points, num_points

Start incremental counter for i=1, to i<= to twice num_points

Set s[i] equal to 0.0

Start incremental counter for j= 0, to j<num_points

Create coefficient matrix routine

Start incremental counter for i=0, to i<= to degree of polynomial, num_poly

Start incremental counter for j=0, to i<= to num_poly

Set the relation between the elements of c[][] and s[], c[i][j]=s[i+j]

Create right-hand side vector routine

Set a[0] equal to 0.0

Start incremental counter for j=0 to j<num_points

Compute sums of y[j] and store in a[0]

Start incremental counter for i=0 to i<=num_poly

Set a[i] to 0.0

Start incremental counter for j=0 to j<num_points

Compute the product of y[j] with x[j] in power of I, add to previous result and store in a[i]

Call Triangular_factorisation() elimination faction, with input parameters,

c[], a[], num_poly+1, x_value, a[]

4.5 Triangular Factorisation

4.5.1 Triangular Factorisation Theory

A system of linear simultaneous equations is usually represented by the form:

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

...

......

......

......

...

...

2211

2212121

11212111

 (61)

 MSc Mechatronics Project Report

K.Deliparaschos Page 51

In the above form, aij are known coefficients, bi are known constants, and xi are the

unknowns for which the equations are to be solved. The unknown xi’s are raised only

to the 1st power and do not multiply each other. Therefore, each equation is linear.

The system of equations above can be represented in a matrix form as:

nnnnnn

n

n

b

b

b

x

x

x

aaa

aaa

aaa

.

.

.

.

............

.......

.......

............

............

2

1

2

1

21

22221

11111

 (62)

or simply using vectors as:

Ax=B (63)

Where A represents the square array of coefficients aij and is known as the coefficient

matrix, x represents the n component matrix of unknowns xi, and B is the column

matrix of the right-hand side constants bi.

Assuming that the matrix A can be written as a product of three matrices, as:

PA=LU (64)

Where L is the lower triangular matrix (has elements only on the diagonal and below),

U is the upper triangular matrix (has elements only on the diagonal and above), and P

is the permutation matrix.

Decomposition can be used to solve the linear set:

Ax=(LU)x=L(Ux)=PB (65)

By first solving for the vector y such that:

Ly=PB (66)

and then solving:

 MSc Mechatronics Project Report

K.Deliparaschos Page 52

Ux=y (67)

Equation (66) can be solved by forward substitution as follows:

Niya
a

y

a
y

i

j

jiji

ii

i ,...,3,2
1

1

1

11

1

1

 (68)

while Eq.(67) can be solved by backsubstitution as follows:

1,...,2,1
1

1

NNixby
b

y

b

y
x

N

ij

jiji

ii

i

NN

N

N

 (69)

4.5.2 Triangular Factorisation with Pivoting Function

Function Triangular_factorisation() (PA=LU Factorisation with Pivoting), solves

the linear system Ax = B by performing the following steps:

 Computes PB and forms the equivalent linear system LUx=PB

 Solves the lower-triangular system Ly=PB for y.

 Solves the upper-triangular system Ux=y for x.

Then it performs forward and back substitution according to equations (68), (69) in

order to find the solutions to system of equations. Finally the solution matrix (a0,…

,an) is used to determine the predicted value y (fx) according to x (x_value).

4.5.3 Pseudo Code for Function, Triangular_factorisation()

Declare loop counters i, ii, z, j, l as integers

Declare field with row number, Row, as double array of size defined in variable MAXSIZE

Declare temporary variable for storing intermediate values, temp, as integer

Declare y as double array of size defined in variable MAXSIZE

Declare adder variable, SUM, as double

Declare determinant of [A], DET, as variable and set equal to 1.0

Declare predicted value fx as double

Initialise pointer vector routine

Start incremental counter for l=1 to l<=degree of polynomial, num_poly

Set Row[l-1]=l-1

 MSc Mechatronics Project Report

K.Deliparaschos Page 53

Start LU factorisation routine

Start incremental counter for z=1 to z<=n_poly-1

Start pivot element routine

Start incremental counter for i=z+1 to i<=n_poly

If absolute value of A[Row[i-1]][z-1] greater than absolute value of A[Row[z-1]][z-1]

Switch the index for the p-1 pivot row if necessary

Set temp=Row[z-1]

Set Row[z-1]=Row[i-1]

Set Row[i-1]=temp

Set DET=-DET

Simulated row interchange ends here

If A[Row[z-1][z-1] equal to 0 then

Prompt “The matrix is singular! Cannot use algorithm to solve the system of equations Ax=B”

Multiply the diagonal elements routine

Set DET=DET*A[Row[z-1][z-1]

Form multiplier routine

Start incremental counter for i=z+1 to i<=n_poly

Set A[Row[i-1]][z-1]=A[Row[i-1]][z-1]/A[Row[z-1]][z-1]

Eliminate p-1, routine

Start incremental counter for j=z+1 to j<=n_poly

Set A[Row[i-1]][j-1]-=A[Row[i-1]][z-1]*A[Row[z-1]][j-1]

LU factorisation routine ends here

Set DET=DET*A[Row[n_poly-1][n_poly-1]

Start forward substitution routine

Set y[0] equal to B[Row[0]]

Start incremental counter for i=2 to i<=n_poly

Set SUM equal to 0

Start incremental counter for j=1 to j<I-1

Compute product of A[Row[I-1]][j-1] and y[j-1] add to previous value and store in SUM

Set y[i-1] equal to B[Row[i-1]]-SUM

If A[Row[n_poly-]][[n_poly] equal to 0 then

Prompt “The matrix is singular! Cannot use algorithm to solve the system of equations Ax=B”

Forward substitution routine ends here

Start back substitution routine

Set a[n_poly-1] equal to y[n_poly-1]/A[Row[n_poly-1]][n_poly-1]

Start decrement counter for i=n_poly-1 to i>=1

Set SUM equal to 0

Start incremental counter for j=i+1 to j<=n_poly

Compute product of A[Row[i-1]][j-1] and a[j-1] add to the previous value and store in SUM

Set a[i-1] equal to (y[i-1]-sum)/A[Row[i-1]][i-1]

Back substitution routine ends here

Compute predicted value fx, routine

Start incremental counter for ii=0 to ii<=n_poly

Set fx equal to 0.0

Compute product of a[ii] and x_value to the power of ii, add to previous value and store in SUM

Return value of fx

 MSc Mechatronics Project Report

K.Deliparaschos Page 54

4.6 Master Section

4.6.1 Master Theory

The theory behind the master was analytically discussed in chapter 3, where the

proposed method was presented. The master function consists of four main routines

namely as follows:

 Neural input routine

 Read data files routine

 Master algorithm

 Create data files routine

A detailed description of above routines is presented in the next sections.

4.6.2 Neural Input Routine

The neural input routine generates the neural input that drives the master. For

simplicity reasons, neural input was selected to be a sine wave of constant frequency

and unity amplitude [sin(2πft)]. The time duration of the sine wave was defined as the

product of number of samples by the sampling frequency [t=nTs].

4.6.3 Read Data Files Routine

The purpose of read data file routine is to read the slave force and position as well as

the sample number for every sample till the simulation is over, and pass the data to the

master algorithm. The data files read by the routine are of the form datan.dat, where n

is the sample number. The functions strcpy and strcat included in string.h include file

are used in order to build the above data file form, by coping a string to a specified

data location (strcpy) and adding more strings to it (strcat). Function _itoa included in

stdlib.h include file was used to convert the current sample number (integer) to a

 MSc Mechatronics Project Report

K.Deliparaschos Page 55

character string, in order to attach it to the data file form. Since it is not possible to

save double numbers (limit to float numbers) in a data file, the numbers before written

into the data file are converted and stored as strings. Then when read back, are

converted back from string to double, without loss of information. This is achieved by

using the function _itof (converts a string to double) included in stdlib.h.

4.6.4 Master Algorithm

The master-slave force and position data are computed for two cases. The first case is

while the number of samples (n) is less or equal to half of the given time delay (Tt/2

expressed in msec). The computations are based on Eqs. (28), (29) for Tt=0 (or Tp).

The second case arises when the number of samples is greater to Tt/2. Again the

computation of master-slave force and position is based on Eqs. (28), (29) for the

given Tt. To make things more clear, in the first case Tt is set to zero since there is not

prediction (prediction model is discussed in slave section) of slave force and position

(fs, xs) previous values, thought in the second case where n>Tt the prediction has

started, therefore previous values of (fs, xs) can be obtained.

In order to obtain master-slave velocity and acceleration from master-slave position, a

differentiation method needs to be applied. An easy and simplified method to

differentiate arises from the definition of differentiation and can be expressed as:

sT

xx
x

0
 and

sT

xx
x

0

 (70)

where Ts needs to be small enough to reduce errors.

Euler method for solving a differential equation is applied in order to find master

position, velocity, and acceleration. Equation (30) is solved for x and becomes:

 MSc Mechatronics Project Report

K.Deliparaschos Page 56

m

mmmm

m
m

xbf
x

000

 (71)

Then according to equation (70), x , x can be found as well:

msmm xTxx
0

 (72)

msmm xTxx
0

 (73)

Finally from the control law equation for master actuator driving force, Eq. (32), τm

can be obtained.

4.6.5 Write Data Files Routine

The structure of write data files routine is more or less the same as of the read data

files routine described in section 4.6.3. The specific routine is used for storing the

master force and position as well as the sample number in the data file. The main

difference is that function _gcvt (stdlib.h include file) is used for converting double

number to string. Since the function requires the number of decimal points to be

converted, double numbers considered having 15 decimal points (16 is the maximum

for double by definition). Therefore the truncation error is negligible.

 MSc Mechatronics Project Report

K.Deliparaschos Page 57

4.6.6 Pseudo Code for Function, Master()

Define time duration = no. of samples * sampling frequency

Neural input (master force) simulation

Define rad=2* π(pi4)*frequency(fi3)*time

Master force, fm=sin(rad)

If number of samples, n>1

Start read data files routine

Convert n+1 (integer) to character, no2

Copy path for slave data files4 to filename2

Add slave filename for data files to filename2

Add current no. sample to filename2

Add slave extension for data files to filename2

Open filename2 (slave data file) for reading only

Read slave force information stored in data file, buffer_fs

Read slave position information stored in data file, buffer_xs

Read current sample number stored in data file, n

Convert string to double, buffer_fs to fs[n]

Convert string to double, buffer_xs to xs[n]

Close file

If no. of sample, n<=delay, Tt4

Start master algorithm routine

Master-slave position calculation, xms[n]=(xm[n]+xs[n])/2

Master-slave force calculation, fms[n]=(fm[n]+fs[n])/2

If n>Tt/2

Master-slave position calculation, xms[n]=(xm[n]+xs[n-Tt/2])/2

Master-slave force calculation, fms[n]=(fm[n]+fs[n-Tt/2])/2

Perform classic differentiation to find xxm (master velocity), xxxm (master acceleration)

xxms[n]=(xms[n]-xms[n-1])/Ts

xxxms[n]=(xxms[n]-xxms[n-1])/Ts

Control law equation for master actuator driving force calculation, Eq. (32)

tm[n]=mm4(xxxms[n]+k14*(xxms[n]-xxm[n])+k24(xms[n]-xm[n]))+

+bm4*xxm[n]-kmf4(fms[n]-fm[n])-fms[n]

Euler method for finding xxxm, xxm, xm

xxxm[n+1]=(tm[n]+fm[n]-(bm*xxm[n]))/mm

xxm[n+1]=xxm[n]+(Ts4*xxxm[n+1])

xm[n+1]=xm[n]+(Ts*xxm[n+1])

Start create data files routine

Convert n (integer) to character, no1

Copy path for master data files4 to filename1

Add master filename for data files to filename1

Add current no. sample to filename1

Add slave extension for data files to filename1

Open filename1 (master data file) for writing only

4 User defined in script.h include file

 MSc Mechatronics Project Report

K.Deliparaschos Page 58

Convert double to string, fm[n] to buffer_fm

Convert double to string, xm[n] to buffer_xm

Write master force information in data file, buffer_fm

Write master position information in data file, buffer_xm

Write master sample number in data file, n

4.7 Slave Section

4.7.1 Slave Theory

The theory behind the slave was analytically discussed in chapter 3, where the

proposed method was presented. The slave function consists of four main routines

namely as follows:

 Read data files routine

 Predictor model

 Slave algorithm/Slave dynamics

 Create data files routine

A detailed description of above routines is presented in the next sections.

4.7.2 Read Data Files Routine

The routine is the same as the one described in section 4.6.3, with the only difference

that here it is used for reading the master force and position and pass the data to the

slave algorithm.

4.7.3 Predictor Model

In sections 4.3 and 4.4 the two predictor methods used were discussed. After a number

of tests it proved that the method belonging in section 4.4, gave the most correct

results.

The horizon of prediction (n_start) or after how many samples the prediction starts, is

user defined in script.h include file. If the no. of samples, n is less than n_start then the

 MSc Mechatronics Project Report

K.Deliparaschos Page 59

estimated master force and position for n+Tt/2 samples will be equal to master force

and position of the 1st sample, until the initial condition changes. If n is greater than

n_start then the prediction starts (with x_value=n+Tt/2) in order to get the estimated

master force and position data (efm[n+Tt/2], exm[n+Tt/2]) . Summarising,

 If n<=n_start then there is no prediction (xm[1], fm[1]).

 If n>n_start

 If n>(n_start+np) then perform prediction with data: xm[n-np]…xm[n]

 Else perform prediction with data: xm[1]…xm[n]

4.7.4 Slave Algorithm

The master-slave force and position are based on Eqs. (28), (29), but the estimated

master force and position data obtained from the predictor model are used instead. To

avoid confusion with master algorithm, the master-slave force and position are

renamed as xmss, fmss. The rest of algorithm follows exactly the same steps as in

master algorithm (section 4.6.4), with the only difference that Eq. (33) is used for

computing slave actuator driving force, τs. For simplicity reason slave force fs was set

to zero, assuming no collision of slave robot with any object.

4.7.5 Write Data Files Routine

The routine is exactly the same as the one described in section 4.6.5, with the only

difference that here it is used for writing the slave force and position, fs, xs to the data

file.

4.7.6 Pseudo Code for Function, Slave()

Start read data files routine

Convert n (integer) to character, no1

Copy path for master data files to filename1

Add master filename for data files to filename1

Add current no. sample to filename1

Add master extension for data files to filename1

 MSc Mechatronics Project Report

K.Deliparaschos Page 60

Open filename1 (master data file) for reading only

Read master force information stored in data file, buffer_fm

Read master position information stored in data file, buffer_xm

Read current sample number stored in data file, n

Convert string to double, buffer_fm to fm[n]

Convert string to double, buffer_xm to xm[n]

Close file

Start predictor model

Collect no. of samples for prediction function and save in st[n], st[n]=n

Collect current master position for prediction function and save in sx[n], sx[n]=xm[n]

Collect current master force for prediction function and save in sf[n], sf[n]=fm[n]

If n<=prediction horizon, n_start

Set predicted master position, exm[n+Tt/2]=xm[1]

Set predicted master force, efm[n+Tt/2]=fm[1]

If n>prediction horizon, n_start

Set x_value equal tp n+Tt/2

Call curve-fitting function for efm, fx1=poly_leastsqr(st,sf,np,2,x_value,a)

Save predicted value fx1 into efm[n+Tt/2]

Call curve-fitting function for exm, fx2=poly_leastsqr(st,sx,np,2,x_value,a)

Save predicted value fx2 into exm[n+Tt/2]

Start slave algorithm/slave dynamics

Master-slave position calculation, xmss[n]=(exm[n]+xs[n])/2

Master-slave force calculation, fmss[n]=(efm[n]+fs[n])/2

Perform classic differentiation to find xxs (slave velocity), xxxs (slave acceleration)

xxmss[n]=(xmss[n]-xmss[n-1])/Ts

xxxmss[n]=(xxmss[n]-xxmss[n-1])/Ts

Control law equation for slave actuator driving force calculation, Eq. (32)

ts[n]=bs5*xxs[n]-ksf5*(fs[n]-fmss[n])+fmss[n]+

+ms5*(xxxmss[n]+k15*(xxmss[n]-xxs[n]+k25*(xmss[n]-xs[n])

Euler method for finding xxxs, xxs, xs

xxxs[n+1]=(ts[n]+fs[n]-(bs*xxs[n]))/ms

xxs[n+1]=xxs[n]+(Ts*xxxs[n+1])

xs[n+1]=xs[n]+(Ts*xxs[n+1])

Start create data files routine

Convert n+1 (integer) to character, no2

Copy path for slave data files to filename2

Add slave filename for data files to filename2

Add current no. sample to filename2

Add slave extension for data files to filename2

Open filename2 (master data file) for writing only

Convert double to string, fs[n+1] to buffer_fs

Convert double to string, xs[n+1] to buffer_xs

Write slave force information in data file

Write slave position information in data file

Write slave sample number+1 in data file

5 User defined in script.h include file

 MSc Mechatronics Project Report

K.Deliparaschos Page 61

4.8 Simulation Logfile Section

4.8.1 Logfile Creation Function

After the simulation has finished a number of individual master and slave data files

have been created, containing the simulation values of master and slave force and

position during the simulation run. Function logfile_create reads those files one by one

(read data files routine for master and slave, sections 4.63, 4.7.2, with no conversion

from string to double), collects all data contained in them and saves them in a log file.

Other interesting simulation results, such as the master-slave force and position (fmss,

xmss), predicted master force and position (efm, exm), master and slave actuator

driving forces (τm, ts), remain in the computer memory after the simulation is over, and

can be saved in the log file as well. The simulation elapsed time is saved as well and

added at the bottom end of the logfile. If another simulation is run by the user, the new

results are simply added in the logfile without replacing the old ones. This way the

user can compare the old results with the new ones. The logfile structure was chosen

to be as described before, since it can be directly manipulated by Matlab without

modification, for further analysis of the results.

4.8.2 Pseudo Code for Function, logfile_create()

Open logfile. Perform a seek to the end of file. When new bytes are written to the file, they are always

appended to the end, even if the position is moved with the function.

Store heading description on first row of simulation data to be stored, “n”, “xm”, “fm”, “xs”, “fs”,

“fmss”, “xmss”, “exm”,”efm”,“tm”, “ts”

Run loop for n=1 to n<=no. of samples, k6

Start read master data files routine

Convert n (integer) to character, no1

Copy path for master data files to filename1

Add master filename for data files to filename1

Add current no. sample to filename1

6 User defined in script.h include file

 MSc Mechatronics Project Report

K.Deliparaschos Page 62

Add master extension for data files to filename1

Open filename1 (master data file) for reading only

Read master force information stored in data file, buffer_fm

Read master position information stored in data file, buffer_xm

Read current sample number stored in data file, n

Close file

Start read slave data files routine

Convert n+1 (integer) to character, no2

Copy path for slave data files to filename2

Add slave filename for data files to filename2

Add current no. sample to filename2

Add slave extension for data files to filename2

Open filename2 (slave data file) for reading only

Read slave force information stored in data file, buffer_fs

Read slave position information stored in data file, buffer_xs

Read current sample number stored in data file, n

Close file

Convert double to string, fmss[n] to buffer_ fmss

Convert double to string, xmss[n] to buffer_ xmss

Convert double to string, exm[n] to buffer_ exm

Convert double to string, efm[n] to buffer_ efm

Convert double to string, tm[n] to buffer_ tm

Convert double to string, ts[n] to buffer_ ts

Write in log file, all values of n, buffer_xm, buffer_fm, buffer_xs, buffer_fs, buffer_fmss, buffer_xmss,

buffer_efm, buffer_exm, buffer_tm, buffer_ts during the simulation

Write in logfile the simulation elapsed time, stored in variable duration

4.9 Simulation Elapsed Time Section

4.9.1 Elapsed Time Start and Finish Functions

Two functions were developed for measuring the duration of the simulation. The first

function starts the system clock and the second function stops the system clock and

estimates the elapsed time (duration). The functions are inserted before and after the

task to be measured. Both of the functions use the time.h include file.

4.9.2 Pseudo Code for Function, elapsed_time_start()

Start system clock, start=clock()

4.9.3 Pseudo Code for Function, elapsed_time_finish()

Stop system clock, finish=clock()

Estimate elapsed time, duration=(double)(finish-start)/CLOCKS_PER_SEC

Prompt “Simulation elapsed time:”

 MSc Mechatronics Project Report

K.Deliparaschos Page 63

4.10 Program Variable Initialisation Section

4.10.1 Initialisation Function

Function init() was developed to simply initialise the different variables used

throughout the program code. The values used were obtained from feedback

information based on similar simulation tests.

4.10.2 Pseudo Code for Function, Init()

Set master position at n=1, xm[1]=1.2217 rad or 7o

Set estimated master position at n=1, xm[1]=1.2217 rad or 7o

Set master velocity at n=1, xxm[1]=0.0

Set master acceleration at n=1, xxxm[1]=0.0

Set slave position at n=1, xm[1]=1.2217 rad or 7o

Set slave velocity at n=1, xxm[1]=0.0

Set slave acceleartion at n=1, xxm[1]=0.0

Set master-slave velocity at n=1, xxms[1]=0.0

Set master-slave acceleration at n=1, xxxms[1]=0.0

Set slave force at n=1, fs[1]=0.0assume no collision

Set master-slave position at n=0, xms[0]=(xm[1]+xs[1])/2

Set master-slave velocity at n=0, xxms[1]= xxms[0]

Set master-slave position at n=0, xmss[0]=(exm[1]+xs[1])/2

Set mster-slave velocity at n=1, xxmss[1]=0.0

Set master-slave velocity at n=0, xxmss[0]=xxmss[1]

Set master-slave acceleration at n=1, xxxmss[1]=0.0

4.11 Include Files and Declaration of Global Variables

The list of include files used in the program code are given below:

 stdio.h stdlib.h

 iostream.h, iomanip.h

 math.h

 string.h

 time.h

 script3.h

 MSc Mechatronics Project Report

K.Deliparaschos Page 64

Include file script3.h holds user-defined parameters for the program simulation. It is

further discussed in the next section.

All global variable definitions used, are described analytically in the table below.

Variable name Data Type Explanation

rad double Angle variable

Timing variables

t=0 double Time

n=0 integer Program counter

start clock_t Defined in time.h Start system clock

finish clock_t Stop system clock

duration double Simulation duration

Master variables

tm[k] k defined in script3.h double Master actuator driving force

xm[k] k defined in script3.h double Master position

xxm[k] k defined in script3.h double Master velocity

xxxm[k] k defined in script3.h double Master acceleration

fm[k] k defined in script3.h double Master force

Slave variables

ts[k] k defined in script3.h double Slave actuator driving force

xs[k] k defined in script3.h double Slave position

xxs[k] k defined in script3.h double Slave velocity

xxxs[k] k defined in script3.h double Slave acceleration

fs[k] k defined in script3.h double Slave force

Master-Slave variables

xms[k] k defined in script3.h double Master-slave position

xxms[k] k defined in script3.h double Master-slave velocity

xxxms[k] k defined in script3.h double Master-slave acceleration

fms[k] k defined in script3.h double Master-slave acceleration

Slave dynamics variables

xmss[k] k defined in script3.h double Master-slave position

xxmss[k] k defined in script3.h double Master-slave velocity

xxxmss[k] k defined in script3.h double Master-slave acceleration

fmss[k] k defined in script3.h double Master-slave force

Master data files variables

no1[10] char Data file number

filename1[80] char Filename of data file

buffer_fm[50] char Master force converted to string

buffer_xm[50] char Master force converted to string

Slave data files variables

no2[10] char Data file number

filename2[80] char Filename of data file

buffer_fs[50] char Slave force converted to string

buffer_xs[50] char Slave force converted to string

Log file Creation Variables

buffer_fmss[50] char Master-slave force converted to string

buffer_xmss[50] char Master-slave position converted to string

buffer_efm[50] char Estimated master force converted to string

buffer_exm[50] char Estimated master position converted to string

buffer_tm[50] char Estimated master actuator driving force conv. to string

buffer_ts[50] char Estimated slave actuator driving force conv. to string

 MSc Mechatronics Project Report

K.Deliparaschos Page 65

a[MAXSIZE] MAXSIZE

defined in

script3.h

double Polynomial coeffiecients

Curve-fitting variables

fx1 double Predicted value for master force

fx2 double Predicted value for master position

x_value double x value of polynomial

Curve-fitting external variables

st[k] k defined in script3.h double same as n

sf[k] k defined in script3.h double same as xf[n]

sx[k] k defined in script3.h double same as xm[n]

efm[2*k] k defined in script3.h double Predicted master force

exm[2*k] k defined in script3.h double Predicted master position

np=50 integer Number of data points for prediction

Table 4.1: Global variable declarations

4.12 Simulation Script File Section

A script file in the form of included file from the main program code was created in

order to hold the simulation parameters. The user can alter the simulation parameters

by simply editing the script file through any text editor. The following table, accounts

the availability of user defined simulation parameters, contained in the script file.

Variable name Explanation and Units

Timing Parameters

Tt Time delay (msec)

Ts Sampling frequency (sec)

fi Frequency of sinusoidal i/p signal (Hz)

k Number of samples

Human arm parameters

mo Mass (kgr)

bo Damping coefficient (N/m2)

ko Spring constant (N/m)

Master parameters

mm Mass (kgr)

bm Damping coefficient (N/m2)

km Spring constant (N/m)

Slave parameters

ms Mass (kgr)

bs Damping coefficient (N/m2)

ks Spring constant (N/m)

Control Parameters

kmf Spring constant (N/m)

ksf Spring constant (N/m)

k1 Spring constant (N/m)

k2 Spring constant (N/m)

Definition of π (pi)

pi π (pi)

 MSc Mechatronics Project Report

K.Deliparaschos Page 66

Curve Fitting Parameters (predictor)

n_start Prediction staring point (prediction horizon)

MAXSIZE Maximum degree of polynomial

MAXPOINTS Max number of data points for prediction

Parameters for Master data files

path_master Master data file path

file_name_master Master datafile filename

extension_master Master datafile extension

Parameters for Slave data files

path_slave Slave data file path

file_name_slave Slave datafile filename

extension_slave Slave datafile extension

Logfile Parameters

log_file Logfile path, name, and extension

Table 4.2: Script file parameters

4.13 Main Section

4.13.1 Main Function

The main function simply calls the functions described in the sections above. Initially

the function init() is called to initialise the program variables. Next, the function

elapsed_time_start() is called to measure the simulation time. An external counter

loop containing the master and slave functions is set for the simulation purposes. The

function elapsed_time_finish() is called after the simulation has finished to return the

simulation elapsed time. Finally, function logfile_create() is called to create a logfile

containing the simulation results.

4.13.2 Pseudo Code for Function, main()

Call function init() to initialise variables

Call function elapsed_time_start() to start the system clock

Start external counter loop for n=1 to n<=k (defined in script.h)

Call function master() for master model

Call function slave() for slave model

Call function elapsed_time_finish() to stop the system clock and return the simulation elapsed time

Call function logfile_create to save simulation results.

 MSc Mechatronics Project Report

K.Deliparaschos Page 67

Chapter

5
SOURCE CODE

5.1 Introduction

In this chapter the source code of the programs is presented. The source code was

developed and debugged using Microsoft Visual C++ 6.0 part of Microsoft Visual

Studio 6.0. Section 5.2 shows the source code of the main program, while the

following section shows the source code for the script file. Finally in section 5.3 the

source code for the interpolation function is given.

 MSc Mechatronics Project Report

K.Deliparaschos Page 68

5.2 Source Code of Main Program

#include <stdio.h>

#include <math.h>

#include <iostream.h>

#include <iomanip.h>

#include <fstream.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include "script.h" //Holds required simulation parameters

//_____________global variable declarations_____________

 //angle variable

 double rad; //angle variable

 //timing variables

 double t=0; //time or simulation duration

 int n=0; //master counter

 clock_t start, finish; //start & stop system clock

 double duration; //simulation duration

 //master variables

 double tm[k]; //master actuator driving force

 double xm[k]; //master position

 double xxm[k]; //master velocity

 double xxxm[k]; //master acceleration

 double fm[k]; //master force

 //slave variables

 double ts[k]; //slave actuator driving force

 double xs[k]; //slave potition

 double xxs[k]; //slave velocity

 double xxxs[k]; //slave acceleration

 double fs[k]; //slave force

 //master-slave variables

 double xms[k]; //master-slave position

 double xxms[k]; //master-slave velocity

 double xxxms[k]; //master-slave acceleration

 double fms[k]; //master-slave force

 //slave dynamics variables

 double xmss[k]; //master-slave position

 double xxmss[k]; //master-slave velocity

 double xxxmss[k]; //master-slave acceleration

 double fmss[k]; //master-slave force

 //variables for master data files

 char no1[10]; //data file number

 char filename1[80]; //filename of data file

 char buffer_fm[50]; //master force converted to string

 char buffer_xm[50]; //master position converted to string

 MSc Mechatronics Project Report

K.Deliparaschos Page 69

 //variables for slave data files

 char no2[10]; //data file number

 char filename2[80]; //filename of data file

 char buffer_fs[50]; //slave force converted to string

 char buffer_xs[50]; //slave position converted to string

 //variables for logfile_create function

 char buffer_fmss[50]; //master-slave force converted to string

 char buffer_xmss[50]; //master-slave position converted to string

 char buffer_efm[50]; //estimated master force converted to string

 char buffer_exm[50]; //estimated slave position converted to string

 char buffer_tm[50]; //estimated master actuator driving force conv. to string

 char buffer_ts[50]; //estimated slave actuator driving force conv. to string

 //variables for curve-fitting function

 double a[MAXSIZE]; //polynomial coefficients

 double fx1; //predicted value for master force

 double fx2; //predicted value for master position

 double x_value; //x value of polynomial

 //external variables for curve-fitting function

 double st[k]; //same as k

 double sx[k]; //same as xf[k]

 double sf[k]; //same as xm[k]

 double efm[2*k]; //estimated master force

 double exm[2*k]; //estimated mster position

 int np=50; //number of data points for prediction

void init(void);

void main(void);

void master(void);

void slave(void);

void logfile_create(void);

void elapsed_time_start(void);

void elapsed_time_finish(void);

double poly_leastsqr(double x[],double y[],int num_points,int num_poly,double x_value,double a[]);

double Triangular_Factorization(double A[][MAXSIZE],double B[],int n,double x_value,double a[]);

/*---*/

/* Function: init() */

/* */

/* Purpose: */

/* */

/* Initialises variables */

/* */

/* Returns: */

/* void */

/*--*/

void init(void)

{

 //initial values (n=1) both master-slave

 xm[1]=1.221700000000000;

 exm[1]=1.221700000000000;

 xxm[1]=0.000000000000000;

 xxxm[1]=0.000000000000000;

 MSc Mechatronics Project Report

K.Deliparaschos Page 70

 xs[1]=1.221700000000000;

 xxs[1]=0.000000000000000;

 xxxs[1]=0.000000000000000;

 xxms[1]=0.000000000000000;

 xxxms[1]=0.000000000000000;

 xms[0]=(xm[1]+xs[1])/2;

 xxms[0]=xxms[1];

 fs[1]=0.000000000000000;

 ts[0]=0.000000000000000;

 xmss[0]=(exm[1]+xs[1])/2;

 xxmss[1]=0.000000000000000;

 xxmss[0]=xxmss[1];

 xxxmss[1]=0.000000000000000;

}

/*---*/

/* Function: master() */

/* */

/* Purpose: */

/* */

/* Performs simulation of the master model. Reads the data file containing */

/* the values of xs and fs and calculates the values for xm and fm and saves */

/* them in a data file(for the slave function to read). */

/* */

/* Returns: */

/* void */

/*---*/

void master(void)

{

 //pointers

 t=n*Ts; //time duration = no. of samples * sampl. freq

 //neural input

 rad=(2*pi*fi*t); //rad definition

 fm[n]=sin(rad); //neural input signal

 if (n>1)

 {

 //Read data files routine

 _itoa(n+1,no2,10); //convert int to char

 strcpy(filename2,path_slave); //copy string to specified location

 strcat(filename2,file_name_slave); //add string to specified location

 strcat(filename2,no2); //add string to specified location

 strcat(filename2,extension_slave); //add string to specified location

 ifstream slave_data (filename2); //open file for reading

 slave_data >> buffer_fs; //read string from file

 slave_data >> buffer_xs; //read string from file

 slave_data >> n; //read integer from file

 fs[n]= atof(buffer_fs); //convert string to double

 xs[n]= atof(buffer_xs); //convert string to double

 slave_data.close(); //close file

 }

 MSc Mechatronics Project Report

K.Deliparaschos Page 71

 if (n<=Tt/2)

 {

 //master-slave position calculation

 xms[n]=(xm[n]+xs[n])/2;

 //master-slave force calculation

 fms[n]=(fm[n]+fs[n])/2;

 }

 if (n>Tt/2)

 {

 //master-slave position calculation

 xms[n]=(xm[n]+xs[n-Tt/2])/2;

 //master-slave force calculation

 fms[n]=(fm[n]+fs[n-Tt/2])/2;

 }

 //Perform classic Differentiation to find xxm, xxxm

 xxms[n]=(xms[n]-xms[n-1])/Ts;

 xxxms[n]=(xxms[n]-xxms[n-1])/Ts;

 //control law eq. for master actuator driving force calculation

 tm[n]=mm*(xxxms[n]+k1*(xxms[n]-xxm[n])+k2*(xms[n]-xm[n]))

 +bm*xxm[n]-kmf*(fms[n]-fm[n])-fms[n];

 //Euler method for finding xxxm,xxm,xm

 xxxm[n+1]=(tm[n]+fm[n]-(bm*xxm[n]))/mm;

 xxm[n+1]=xxm[n]+(Ts*xxxm[n+1]);

 xm[n+1]=xm[n]+(Ts*xxm[n+1]);

 //Create data files routine

 _itoa(n,no1,10); //convert int to char

 strcpy(filename1,path_master); //copy string to specified location

 strcat(filename1,file_name_master);//add string to specified location

 strcat(filename1,no1); //add string to specified location

 strcat(filename1,extension_master); //add string to specified location

 ofstream master_data (filename1); //open file for writing

 _gcvt(fm[n], 15, buffer_fm); //convert double to string

 _gcvt(xm[n], 15, buffer_xm); //convert double to string

 master_data << buffer_fm << endl; //write string to file

 master_data << buffer_xm << endl; //write string to file

 master_data << n << endl; //write integer to file

 master_data.close(); //close file

}

 MSc Mechatronics Project Report

K.Deliparaschos Page 72

/*---*/

/* Function: slave() */

/* */

/* Purpose: */

/* */

/* Performs simulation of the slave model. Reads the data file containing */

/* the values of xm and fm and calculates the values for xs and fs and saves */

/* them in a data file(for the master function to read). */

/* */

/* Returns: */

/* void */

/*---*/

void slave(void)

{

 fs[n]=0.000000000000000; //assume no collision

 //Read data files routine

 _itoa(n,no1,10); //convert int to char

 strcpy(filename1,path_master); //copy string to specified location

 strcat(filename1,file_name_master); //add string to specified location

 strcat(filename1,no1); //add string to specified location

 strcat(filename1,extension_master); //add string to specified location

 ifstream master_data (filename1); //open file for reading

 master_data >> buffer_fm; //read string from file

 master_data >> buffer_xm; //read string from file

 master_data >> n; //read string from file

 fm[n]=atof(buffer_fm); //convert string to double

 xm[n]=atof(buffer_xm); //convert string to double

 master_data.close(); //close file

//Predictor

 st[n]=n;

 sx[n]=xm[n];

 sf[n]=fm[n];

 if (n<=n_start)

 {

 exm[n+Tt/2]=xm[1];

 efm[n+Tt/2]=fm[1];

 }

 if (n>n_start)

 {

 if (n>(n_start+np))

 {

 x_value= (n+Tt/2);

 //Call curve-fitting function for efm

 fx1 =poly_leastsqr(st,sf,np,2,x_value,a);

 efm[n+Tt/2]=fx1;

 MSc Mechatronics Project Report

K.Deliparaschos Page 73

 //Call curve-fitting function for exm

 fx2 =poly_leastsqr(st,sx,np,2,x_value,a);

 exm[n+Tt/2]=fx2;

 }

 else

 {

 x_value= (n+Tt/2);

 //Call curve-fitting function for efm

 fx1 =poly_leastsqr(st,sf,n,2,x_value,a);

 efm[n+Tt/2]=fx1;

 //Call curve-fitting function for exm

 fx2 =poly_leastsqr(st,sx,n,2,x_value,a);

 exm[n+Tt/2]=fx2;

 }

 }

 //Slave Dynamics

 xmss[n]=(exm[n+Tt/2]+xs[n])/2;

 fmss[n]=(efm[n+Tt/2]+fs[n])/2;

 //Perform classic Differentiation to find xxmss, xxxmss

 xxmss[n]=(xmss[n]-xmss[n-1])/Ts;

 xxxmss[n]=(xxmss[n]-xxmss[n-1])/Ts;

 //control law eq. for slave actuator driving force calculation

 ts[n]=bs*xxs[n]-ksf*(fs[n]-fmss[n])+fmss[n]

 +ms*(xxxmss[n]+k1*(xxmss[n]

 -xxs[n])+k2*(xmss[n]-xs[n]));

 //Euler method for finding xxxs,xxs,xs

 xxxs[n+1]=(ts[n]-fs[n]-(bs*xxs[n]))/ms;

 //xxxs[n+1]=((ts[n]+ts[n-1])/2-fs[n]-(bs*xxs[n]))/ms;

 xxs[n+1]=xxs[n]+(Ts*xxxs[n+1]);

 xs[n+1]=xs[n]+(Ts*xxs[n+1]);

 if (n==1)

 {

 //Create data files routine

//for n

 _itoa(n,no2,10); //convert int to char

 strcpy(filename2,path_slave); //copy string to specified location

 strcat(filename2,file_name_slave); //add string to specified location

 strcat(filename2,no2); //add string to specified location

 strcat(filename2,extension_slave); //add string to specified location

 ofstream slave_data (filename2); //open file for writing

 _gcvt(fs[n], 16, buffer_fs); //convert double to string

 _gcvt(xs[n], 16, buffer_xs); //convert double to string

 slave_data << buffer_fs << endl; //write string to file

 slave_data << buffer_xs << endl; //write string to file

 slave_data << n << endl; //write string to file

 slave_data.close(); //close file

 }

 MSc Mechatronics Project Report

K.Deliparaschos Page 74

 //Create data files routine

 //for n+1

 _itoa((n+1),no2,10); //convert int to char

 strcpy(filename2,path_slave); //copy string to specified location

 strcat(filename2,file_name_slave); //add string to specified location

 strcat(filename2,no2); //add string to specified location

 strcat(filename2,extension_slave); //add string to specified location

 ofstream slave_data (filename2); //open file for writing

 _gcvt(fs[n+1], 15, buffer_fs); //convert double to string

 _gcvt(xs[n+1], 15, buffer_xs); //convert double to string

 slave_data << buffer_fs << endl; //write string to file

 slave_data << buffer_xs << endl; //write string to file

 slave_data << n+1 << endl; //write string to file

 slave_data.close(); //close file

}

/*---*/

/* Function: logfile_create() */

/* */

/* Purpose: */

/* */

/* The purpose of the function is to collect individual step data and to create */

/* a Log File containing all sinulation data for the master and slave models */

/* when simulation is over */

/* */

/* Returns: */

/* void */

/*---*/

void logfile_create(void)

{

 //Read data files routine

 /*The function performs a seek to the end of file.

 When new bytes are written to the file,

 they are always appended to the end,

 even if the position is moved with the function.*/

 ofstream logfile (log_file, ios::app); //open log file

 //create heading info. pointers

 logfile << "n" << setw(30) << "xm" << setw(35) << "fm" ;

 logfile << setw(45)<< "xs" << setw(45) << "fs";

 logfile << setw(25)<< "fmss" << setw(50) << "xmss";

 logfile << setw(40)<< "exm" << setw(35) << "efm";

 logfile << setw(35)<< "tm" << setw(40) << "ts" <<endl;

 for (n=1;n<=k;n++)

 {

 _itoa(n,no1,10); //convert int to char

 MSc Mechatronics Project Report

K.Deliparaschos Page 75

 //put path and filename together and

 //store final string in filename1

 strcpy(filename1,path_master); //copy string to specified location

 strcat(filename1,file_name_master); //add string to specified location

 strcat(filename1,no1); //add string to specified location

 strcat(filename1,extension_master); //add string to specified location

 ifstream master_data (filename1); //read master simulation files

 master_data >> buffer_fm; //read string from file and store in buffer_fm

 master_data >> buffer_xm; //read string from file and store in buffer_xm

 master_data >> n; //read integer from file

 master_data.close(); //close file

 _itoa(n,no2,10); //convert int to char

 //put path and filename together and

 //store final string in filename2

 strcpy(filename2,path_slave); //copy string to specified location

 strcat(filename2,file_name_slave); //add string to specified location

 strcat(filename2,no2); //add string to specified location

 strcat(filename2,extension_slave); //add string to specified location

 ifstream slave_data (filename2); //read slave simulation files

 slave_data >> buffer_fs; //read string from file and store in buffer_fs

 slave_data >> buffer_xs; //read string from file and store in buffer_xs

 slave_data.close(); //close file

 //write in log file, all values of n, xm, fm, xs, fs,

 //fmss, xmss, exm, efm, tm, ts during the simulation

 _gcvt(fmss[n], 15, buffer_fmss); //convert double to string

 _gcvt(xmss[n], 15, buffer_xmss); //convert double to string

 _gcvt(exm[n], 15, buffer_exm); //convert double to string

 _gcvt(efm[n], 15, buffer_efm); //convert double to string

 _gcvt(tm[n], 15, buffer_tm); //convert double to string

 _gcvt(ts[n], 15, buffer_ts); //convert double to string

 logfile << n << setw(30)<< buffer_xm << setw(30)

<< buffer_fm<< setw(30) << buffer_xs;

 logfile << setw(30) << buffer_fs << setw(30)<<buffer_fmss<<setw(30)

<<buffer_xmss<<setw(30)<<buffer_exm;

 logfile <<setw(30)<<buffer_efm<<setw(30)<<buffer_tm<<setw(30)

<<buffer_ts<< endl;

 }

//write in log file the duration

 logfile <<endl;

 logfile <<"Simulation elapsed time: "<<duration<<" sec"<<endl;

}

 MSc Mechatronics Project Report

K.Deliparaschos Page 76

/*--*/

/* Function: elapsed_time_start() */

/* */

/* Purpose: */

/* */

/* It activates (starts) the system clock */

/* */

/* Returns: */

/* void */

/*--*/

void elapsed_time_start(void)

{

 start=clock(); //start system clock

}

/*--*/

/* Function: elapsed_time_start() */

/* */

/* Purpose: */

/* */

/* It stops the system clock and estimates the elapsed time (duration) */

/* */

/* Returns: */

/* void */

/*--*/

void elapsed_time_finish(void)

{

 finish=clock(); //stop system clock

 duration=(double)(finish-start)/CLOCKS_PER_SEC; //compute duration

 cout<<"Simulation elapsed time: "<<duration<<" sec"<<endl; //display duration

}

 MSc Mechatronics Project Report

K.Deliparaschos Page 77

/*---*/

/* Function: Poly_lsrsqr() */

/* */

/* Determines the best-fit polynomial of the form */

/* y= a0 + a1*x + a2 * x * x +.....+ aN * x^(N-1) */

/* and computes the coefficients a0, a1, aN of the best-fit */

/* polynomial of degree N-1 for a set of observations (x1,y1), */

/* (x2,y2),...(xm,yn) */

/* */

/* Input Parameters: */

/* x[] - array containing observed values of x */

/* y[] - array containing observed values of y */

/* num_points - number of observations */

/* num_poly - degree of polynomial - 1 */

/* */

/* Output Parameters: */

/* a[] - coefficients of best-fit polynomial */

/* */

/* Returns: */

/* results - status of computation */

/* 0 - computation was successful */

/* 1 - coefficient matrix is singular */

/* */

/* Calls: */

/* Triangular_Factorization() - */

/* -for the solution of simultaneous equations [A]{x}={B} */

/*---*/

double poly_leastsqr(double x[],double y[],int num_points,

 int num_poly,double x_value,double a[])

{

 double c[MAXSIZE][MAXSIZE]; //coefficient matrix

 double s[2 * MAXSIZE]; //matrix containing sums of products

 double fx;

 int i,j; //loop counters

 // compute sums

 s[0] = num_points;

 for (i=1; i<= 2*num_poly;++i)

 {

 s[i]=0.0;

 for(j=1; j<= num_points; ++j)

 s[i] += pow(x[j],i);

 }

 // create coefficient matrix

 for (i=0; i<= num_poly;++i)

 for (j=0; j<= num_poly;++j)

 c[i][j]=s[i+j];

 //create right-hand side vector

 a[0]=0.0;

 for (j=1; j<= num_points;++j)

 a[0] +=y[j];

 for(i=1; i<= num_poly;++i)

 {

 a[i]=0.0;

 for(j=1; j<= num_points;++j)

 a[i] +=y[j]*pow(x[j],i);

 }

 MSc Mechatronics Project Report

K.Deliparaschos Page 78

 //estimate predicted value for a given x value

 fx=Triangular_Factorization(c,a,num_poly+1,x_value,a);

 return(fx);

}

/*---*/

/* Function: Triangular_Factorization() */

/* */

/* (PA = LU Factorization with Pivoting) */

/* Solves the linear system [A]x = [B] */

/* by performing the steps : */

/* */

/* 1. Find a permutation matrix P, lower-triangular matrix L, */

/* and upper-triangular matrix U that satisfy: */

/* PA = LU. */

/* */

/* 2. Computer PB and form the equivalent linear system */

/* LUx = PB. */

/* */

/* 3. Solve the lower-triangular system */

/* Ly = PB for y. */

/* */

/* 4. Solve the upper-triangular system */

/* Ux = y for x. */

/* */

/* Parameters: */

/* n - number of equations */

/* A[n][n] - coefficient matrix */

/* B[n] - right-hand side vector */

/* a[n] - system solutions */

/* x_value - x value */

/* */

/* Returns: */

/* fx - predicted y for a given x value */

/* */

/* Local Variables */

/* SUM - Adder */

/* temp - stores intermediate results */

/* i,j,z,l - loop counters */

/* DET - Determinant of [A] */

/* Row[] - Field with row-number */

/* y[] - See description above */

/* fx - predicted y value */

/*---*/

double Triangular_Factorization(double A[][MAXSIZE],double B[],int n_poly,double x_value,double

a[])

{

 int i, ii, z, j, l; //Loop counters

 int Row[MAXSIZE]; //Field with row-number

 int temp; //Stores intermidiate values

 double y[MAXSIZE]; //See description above

 double SUM; //Adder

 double DET = 1.0; //Determinant of [A]

 double fx;

 // Initialize the pointer vector

 for (l = 1; l<= n_poly; l++) Row[l-1] = l - 1;

 MSc Mechatronics Project Report

K.Deliparaschos Page 79

 //Start LU factorization

 for (z = 1; z <= n_poly - 1; z++)

 {

 //Find pivot element

 for (i = z + 1; i <= n_poly; i++)

 {

 if (fabs(A[Row[i-1]][z-1]) > fabs(A[Row[z-1]][z-1]))

 {

 //Switch the index for the p-1 th pivot row if necessary

 temp = Row[z-1];

 Row[z-1] = Row[i-1];

 Row[i-1] = temp;

 DET = - DET;

 }

 } //End of simulated row interchange

 if (A[Row[z-1]][z-1] == 0)

 {

 printf("The matrix is singular !\n");

 printf("Cannot use algorithm to solve the system of equations [A]{x}={B}\n");

 }

 //Multiply the diagonal elements

 DET = DET * A[Row[z-1]][z-1];

 //Form multiplier

 for (i = z + 1; i <= n_poly; i++)

 {

 A[Row[i-1]][z-1]= A[Row[i-1]][z-1] / A[Row[z-1]][z-1];

 //Eliminate X_(p-1)

 for (j = z + 1; j <= n_poly + 1; j++)

 {

 A[Row[i-1]][j-1] -= A[Row[i-1]][z-1] * A[Row[z-1]][j-1];

 }

 }

 } //End of L*U factorization routine

 DET = DET * A[Row[n_poly-1]][n_poly-1];

 //Start of forward substitution

 y[0] = B[Row[0]];

 for (i = 2; i <= n_poly; i++)

 {

 SUM =0;

 for (j = 1; j <= i -1; j++) SUM += A[Row[i-1]][j-1] * y[j-1];

 y[i-1] = B[Row[i-1]] - SUM;

 }

 if(A[Row[n_poly-1]][n_poly-1] == 0)

 {

 printf("The matrix is singular !\n");

 printf("Cannot use algorithm to solve the system of equations [A]{x}={B}\n");

 }

 //Start of back substitution

 a[n_poly-1] = y[n_poly-1] / A[Row[n_poly-1]][n_poly-1];

 MSc Mechatronics Project Report

K.Deliparaschos Page 80

 for (i = n_poly - 1; i >= 1; i--)

 {

 SUM = 0;

 for (j = i + 1; j <= n_poly; j++)

 {

 SUM += A[Row[i-1]][j-1] * a[j-1];

 }

 a[i-1] = (y[i-1] - SUM) / A[Row[i-1]][i-1];

 } //End of back substitution

 fx = 0;

 for (ii=0; ii<=n_poly;ii++)

 fx += a[ii]*pow(x_value,ii);

 //fx=fx1[0]+fx1[1]+fx1[2];

 return(fx);

}

/*--*/

/* Function: main() */

/* */

/* Purpose: */

/* */

/* Main body of simulation */

/* */

/* Returns: */

/* void */

/*--*/

void main(void)

{

//___________Start Simulation___________

 init(); //initialise variables

 elapsed_time_start(); //start system clock

 for (n=1;n<=k;n++)

 {

 master(); //master model

 slave(); //slave model

 }

 elapsed_time_finish(); //stop system clock

 logfile_create(); //create logfile

}

 MSc Mechatronics Project Report

K.Deliparaschos Page 81

5.3 Source Code of Script.h Include File

//_____________simulation parameters_____________

//define timing parameters

#define Tt 20 //time delay (msec)

#define Ts 0.001 //sampling frequency (sec)

#define fi 2 //frequency of sinusoidal i/p (Hz)

#define k 100 //no. of samples

//define human arm parameters

#define mo 1.75 //mass (kgr)

#define bo 0.4 //damping coefficient (N/m^2)

#define ko 5 //spring constant (N/m)

//define master parameters

#define mm 6 //mass (kgr)

#define bm 0.1 //damping coefficient (N/m^2)

#define km 0 //spring constant (N/m)

//define slave parameters

#define ms (mm+mo) //mass (kgr)

#define bs (bm+bo) //damping coefficient (N/m^2)

#define ks (km+ko) //spring constant (N/m)

//define control parameters

#define kmf 0 //spring constant (N/m)

#define ksf 0 //spring constant (N/m)

#define k1 8 //spring constant (N/m)

#define k2 70 //spring constant (N/m)

//define pi

#define pi 3.1415926535 //pi

//define parameters for curve-fitting

#define n_start 5 //estimation starting point

#define MAXSIZE 5 //degree of polynomial

#define MAXPOINTS 100 //max number of data points for prediction

//define info for master data accumulation

#define path_master "C:\\simulation\\master\\" //master data file path

#define file_name_master "data" //master datafile filename

#define extension_master ".dat" //master datafile extension

//define info for slave data accumulation

#define path_slave "C:\\simulation\\slave\\" //slave data file path

#define file_name_slave "data" //slave datafile filename

#define extension_slave ".dat" //slave datafile extension

//define filename for master & slave log file

#define log_file "C:\\simulation\\master.log" //Logfile path, name, and extension

 MSc Mechatronics Project Report

K.Deliparaschos Page 82

5.4 Source Code of Interpolation Function

/*---*/

/* Function: lagrange_poly() */

/* */

/* Purpose: */

/* */

/* Performs interpolation using an nth order Lagrange interpolating polynomial. */

/* It determines a polynomial that passes through a set of n+1 data points, */

/* (x0,f(x0)),...(xn,f(xn)) and then computes the value of the dependent */

/* variable at a given x value. */

/* */

/* x[] - array containing values of independent variables x */

/* y[] - array containing values of dependent variable f(x) */

/* n - number of data points */

/* x_value - x-value for interpolation */

/* */

/* Returns: */

/* fx - value of dependent variable f(x) at x=x_value */

/*---*/

double lagrange_poly(double x[],double f[],int n,double x_value)

{

 int i,j; // loop counters

 double fx=0.0; // dependent variable at x_value

 double li=1.0;

 for (i=0;i<n;++i)

 {

 li=1.0;

 for (j=0;j<n;++j)

 if (j !=i)

 li *=((x_value - x[j])/(x[i] - x[j]));

 fx +=li * f[i];

 }

return(fx);

}

 MSc Mechatronics Project Report

K.Deliparaschos Page 83

Chapter

6
SIMULATION RESULTS

6.1 Introduction

This chapter presents the simulation results obtained for the proposed method,

discussed previously. All simulations were performed for the 1 DOF case and assumed

predefined neural input (sinusoidal input). The source code was developed, compiled

and executed, using Microsoft Visual C++ 6.0 (Microsoft Corporation, 1994-98).

The simulation results obtained for different simulation parameters (script file) from

the executable code were manipulated using Matlab 5.2 (The MathWorks Inc, 1984-

98), to get the simulation graphs.

 MSc Mechatronics Project Report

K.Deliparaschos Page 84

6.2 Simulation Results and Evaluation

Out of the two, predictor models discussed in sections 4.3 and 4.4 the second one (polynomial

least squares curve fitting predictor model), turned out to give the most correct results. The

inability of the first method is concentrated on the fact that the accuracy of the approximation

is likely to be better if x lies between xi and xi+1 (interpolation) rather than beyond either of

them (extrapolation), which is the actual case anyway. On the other hand the advantage is the

reduced code complexity (less processing power) compared to the second method.

The simulations parameters chosen for the simulation of the proposed method are

summarised in the next table, where the parameter of interest is the time delay Tt that

is set to 20 msec.

Parameters defined in script file

Timing Parameters Definition of π (pi)

Tt 20 msec pi (π) 3.1415926535

Ts 0.001 sec Curve Fitting Parameters (predictor)

fi 2 Hz n_start 5

k 1000 MAXSIZE 5

Human arm parameters MAXPOINTS 100

mo 1.75 kgr Parameters for Master data files

bo 0.4 N/m2 path_master C:\simulation\master\

ko 5 N/m file_name_master data

Master parameters extension_master .dat

mm 6 kgr Parameters for Slave data files

bm 0.1 N/m2 path_slave C:\simulation\slave\

km 0 N/m file_name_slave data

Slave parameters extension_slave .dat

ms mm+mo (kgr) Logfile Parameters

bs bm+bo (N/m2) log_file C:\simulation\results.log

ks km+ko (N/m)

Control Parameters Parameters defined in source code

kmf 0 (N/m) Curve Fitting Parameters (predictor)

ksf 0 (N/m) no. of data points (np) 50

k1 14 (N/m) Degree of polynomial

(num_poly)

2

k2 140 (N/m)

Table 6.1: Simulation Parameters

A small sample of the produced logfile containing the simulation results is shown on

the next page:

 MSc Mechatronics Project Report

K.Deliparaschos Page 85

n xm fm xs fs fmss xmss exm efm tm ts
1 1.2217 1.25660398829935e-002 1.2217 0. 6.28301994149675e-003 1.2217 1.2217 0. -6.28301994149673e-003 6.28301994149675e-003
2 1.22170000104717 2.51300954426194e-002 1.22170000081071 0. 6.28301994149675e-003 1.22170000040536 0. 0. -7.0013347686364e-003 9.38050612686121e-003
3 1.22170000511578 3.76901826688578e-002 1.22170000283176 0. 6.28301994149675e-003 1.22170000141588 0. 0. -6.23629127476689e-003 1.08629193428731e-002
4 1.22170001442664 5.02443181783347e-002 1.22170000625434 0. 6.28301994149675e-003 1.22170000312717 0. 0. -5.44063688072722e-003 1.15265898229252e-002
5 1.22170003120463 6.27905195275211e-002 1.22170001116401 0. 6.28301994149675e-003 1.221700005582 0. 0. -5.03782416363797e-003 1.17755446803803e-002
6 1.22170005760778 7.53268055257838e-002 1.22170001759278 0. 0.100166300797943 1.22170033033391 0. 0. -5.08368305060154e-003 2.63284917695262
7 1.22170009571768 8.78511965482387e-002 1.22170036374361 0. 0.106350191773565 1.22170060185095 0. 0. 1.0234149234221 -0.313886299007522
8 1.22170031903797 0.100361714848356 1.22170066937065 0. 0.112519488464629 1.22170160705558 0. 0. 0.387505282082731 5.87567259425628
9 1.2217006236657 0.11285638487027 1.22170173312928 0. 0.118673259746619 1.22170310546083 0. 0. 2.49426884701135 3.99015817686722
10 1.22170136280923 0.125333233560741 1.2217033116784 0. 0.124810576332715 1.22170581257354 0. 0. 2.82139971032713 9.61824516985173
11 1.22170259306259 0.137790290680725 1.22170613118957 0. 0.130930510900992 1.22171007926925 1.2217 1.25660398829935e-002 -13.4579753840853 12.3804117698859
12 1.2217016032646 0.150225589116496 1.22171054799132 0. 0.137032138221345 1.22171067852083 1.2217 1.25660398829935e-002 3.243034029134 -28.6975140387838
13 1.22170117902638 0.162637165190277 1.22171126160308 0. 0.143114535282165 1.2217090530632 1.2217 1.25660398829935e-002 1.63635820050466 -17.354210313144
14 1.22170105462779 0.175023058970325 1.22170973591586 0. 0.149176781416726 1.22170684657858 1.2217 1.25660398829935e-002 0.821127688382978 -4.43154670445873
15 1.22170109625639 0.187381314580432 1.22170763851459 0. 0.155217958429291 1.22170494652933 1.2217 1.25660398829935e-002 0.406858436104846 2.54753526166637
16 1.22170123692426 0.199709980508776 1.22170586996286 0. 0.161237150720905 1.22170366917838 1.22170064307504 0.200332601595885 0.195684007966689 5.03717215056746
17 1.22170144348879 0.212007109916088 1.22170475148293 0. 0.167233445414826 1.22170303570957 1.2217008399583 0.212700383547131 1.11628237452721 5.20752286591133
18 1.22170187143145 0.224270760943081 1.22170430501359 0. 0.173205932481647 1.22170310244161 1.22170254474051 0.225038976929258 0.424828335929748 5 .6539169116442
19 1.22170240755017 0.236498997017094 1.22170458811072 0. 0.179153704864032 1.22170379703706 1.22170447779239 0.237346519493238 2.50260465396359 5.08902581828697
20 1.22170340017722 0.248689887157897 1.22170552783808 0. 0.185075858601074 1.22170526902486 1.22170831346867 0.249621152665429 2.81422236721124 6.26780597190277
21 1.2217049032731 0.260841506282615 1.22170727625397 0. 0.190971492952258 1.22170769508266 1.22171402734892 0.261861021801985 5.17982736695721 7.6598667521193
22 1.22170731312208 0.272951935509723 1.22171001292697 0. 0.196839710520996 1.22171143051299 1.22171080905033 0.274064276442691 7.46154670252021 10.4557483622839
23 1.221711012014 0.285019262462058 1.22171409855223 0. 0.202679617377748 1.22171697674737 1.22170684452331 0.286229070564329 -7.50985782553217 14.400052769841
24 1.22171350670452 0.297041581568804 1.22172004198522 0. 0.208490323182675 1.22172340569685 1.22170395724129 0.298353562833452 -10.6492120842338 7.10883230118904
25 1.2217142759917 0.309016994366408 1.22172690230345 0. 0.214270941307838 1.2217293152573 1.22170225454406 0.310435916858582 -7.16897235951779 -3.90810316248081
26 1.22171390194017 0.320943609798365 1.2217332579077 0. 0.220020588958908 1.22173375041688 1.22170146839389 0.322474301441809 -2.66591917582492 -11.4112421103847
27 1.22171313706561 0.332819544513842 1.22173814068358 0. 0.22573838729638 1.22173644737036 1.2217013199362 0.334466890829653 0.592886690659986 -13.4819165729659
28 1.22171252648817 0.344642923165076 1.2217412835423 0. 0.231423461556267 1.22173766310134 1.22170189986964 0.346411864963293 2.30998013224877 -11.4595009478975
29 1.22171235835808 0.356411878703519 1.22174294755297 0. 0.237074941170263 1.22173790418562 1.22170300596339 0.358307409728063 3.35350675279702 -7.47546462034292
30 1.22171280855057 0.368124552674659 1.22174364688021 0. 0.242691959885362 1.22173774075646 1.22170501021164 0.370151717202149 3.65834371959958 -2.99195469867749
31 1.2217139298136 0.379779095511501 1.22174396010366 0. 0.248273655882896 1.22173768436074 1.22170811391135 0.381942985904515 4.27304572144311 1.03102658698558
32 1.22171582652875 0.391373666826626 1.22174440634259 0. 0.253819171897018 1.2217381704681 1.221712848099 0.393679421041992 5.12846702991212 4.45600092270145
33 1.22171864318573 0.402906435702815 1.22174542752059 0. 0.259327655332554 1.22173957455318 1.2217198549425 0.405359234755496 6.65689866187923 7.40936052317358
34 1.22172263642995 0.41437558098217 1.22174740467923 0. 0.264798258382273 1.22174225757392 1.22172676940849 0.416980646365351 8.9772147026412 10.2485396702106
35 1.22172819487267 0.425779291553698 1.22175070410252 0. 0.270230138143503 1.22174661754456 1.22173172821114 0.428541882615676 7.28805329071509 13.3788769687533
36 1.2217350388615 0.437115766639303 1.22175572961965 0. 0.275622456734114 1.22175291836777 1.22173424292607 0.440041177917817 2.10336279112183 15.4550632063625
37 1.22174230614937 0.448383216078154 1.22176274901426 0. 0.280974381407839 1.2217611023353 1.22173475405713 0.45147677459276 -3.47395190985824 15.0034220534712
38 1.22174906905466 0.459579860609366 1.22177170388143 0. 0.286285084668905 1.22177076224006 1.22173404266038 0.462846923112534 -7.11732470123264 11.804750934088
39 1.2217547222231 0.470703932152974 1.22178218136454 0. 0.291553744385991 1.22178126670046 1.22173286081826 0.474149882340525 -8.17303135493974 6.84403332910028
40 1.22175909157608 0.481753674089125 1.22179354127276 0. 0.29677954390546 1.22179194227266 1.22173183463271 0.485383919770724 -7.14656441240936 1.55259054591318
.
.
.
.
990 1.28264439650246 -0.125333233917082 1.2847091925695 0. -5.81451320623497 1.28846099115747 1.29079223232534 -11.2682700612161 1.61211409205276 0.823736655707004
991 1.28275476046321 -0.112856385227148 1.28482311115595 0. -5.8326868506526 1.28858937582951 1.29093363760004 -11.3041234342152 1.60207584981786 0.823777951908909
992 1.28286537078782 -0.100361715205715 1.28493712868674 0. -5.85088519086204 1.28871788224786 1.29107518742303 -11.3400261987979 1.59188048216363 0.823819434965417
993 1.28297622785537 -8.78511969060232e-002 1.28505124516084 0. -5.86910822686329 1.28884651041201 1.29121688179431 -11.3759783549643 1.58152956862831 0.823861137182606
994 1.28308733202171 -7.5326805883937e-002 1.28516546057725 0. -5.88735595865634 1.28897526032146 1.29135872071388 -11.4119799027143 1.57102478052578 0.823903047234199
995 1.28319868361931 -6.27905198859847e-002 1.285279774935 0. -5.90562838624119 1.28910413197572 1.29150070418175 -11.4480308420478 1.56036775095 0.823945176475453
996 1.28331028295725 -5.02443185370538e-002 1.28539418823313 0. -5.92392550961786 1.28923312537432 1.29164283219791 -11.484131172965 1.54956019338601 0.823987440295348
997 1.28342213032118 -3.76901830277758e-002 1.28550870047072 0. -5.94224732878633 1.2893622405168 1.29178510476235 -11.5202808954658 1.53860375144405 0.824029961731878
998 1.28353422597325 -2.51300958016796e-002 1.28562331164687 0. -5.96059384374661 1.2894914774027 1.29192752187509 -11.5564800095503 1.52750020258744 0.82407264569008
999 1.28364657015208 -1.25660402421374e-002 1.28573802176071 0. -5.97896505449869 1.2896208360316 1.29207008353613 -11.5927285152183 1.51625130785997 0.824115548893853
1000 1.28375916307271 -3.59172737341915e-010 1.28585283081138 0. -5.99736096104259 8.17168554541762e-043 1.29221278974545 -11.6290264124699 1.50485880213354 0.824158581490778

Simulation elapsed time: 6.669 sec

 MSc Mechatronics Project Report

K.Deliparaschos Page 86

The logfile containing the simulations results was uploaded in Matlab in order to

obtain the simulation graphs of interest. The next few lines below point the commands

required by Matlab’s editor in order to plot a graph, for example master-slave

positions, xm, xs:

 load logfile with simulation results, load c:\simulation\results.log

 specify name of 1st variable to be plot, and number of column, xm=results(:,2);

 specify name of 2nd variable to be plot, and number of column, xs=results(:,4);

 plot xm and xs and mark last with red colour, plot(xm);hold on;plot(xs,’r’);hold off;

The plot graph of xm, xs is shown in figure 6.1 below.

Fig 6.1: Master and slave position graph

In the graph above it is shown that the slave robot follows as closely as possible the

master robot. The small variations of the slave are due to small prediction

inaccuracies, which can be improved if the prediction horizon (n_start) is increased

appropriately. Ideally the slave should lead the master.

The second graph (Fig. 6.2) shows the predicted master position, exm with the slave

position, xs.

slave position, xs

master position, xm

 MSc Mechatronics Project Report

K.Deliparaschos Page 87

Fig 6.2: Predicted master position and slave position graph

It can be observed from the graph that, the predicted master position, exm drops to

zero after the first sample (which has been set to 1.2217) for Tt/2-1 msec. This is

absolutely normal since the prediction is always n+Tt/2 ahead. As it can be seen xs

follows as close as possible exm. The next graph (Fig. 6.3) shows the predicted master

force, efm.

Fig 6.3: Predicted master force graph

slave position, xs

predicted master position, exm

xs

 MSc Mechatronics Project Report

K.Deliparaschos Page 88

The following graphs (Fig. 6.4, Fig 6.5) illustrate the master actuator driving force, tm,

and slave actuator driving force, tm respectively.

Fig 6.4: Master actuator driving force graph

Fig 6.5: Slave actuator driving force graph

 MSc Mechatronics Project Report

K.Deliparaschos Page 89

Another simulation of the proposed method, with increased time delay, Tt of 50 msec

was performed. The rest of parameters, except the prediction starting point (prediction

horizon), n_start that was increased to 20, and degree of polynomial for the predictor

model, which was set to 3, kept the same as in table 6.1. The same procedure followed

for the first simulation was carried out here again. The graph of master and slave

position occurred from the simulation is shown below. It can be observed from the

graph that the slave leads the master.

Fig 6.6: Master and slave position graph

The following graph illustrates the predicted master position, exm and slave position, xs.

Fig 6.7: Predicted Master position and slave position graph

 MSc Mechatronics Project Report

K.Deliparaschos Page 90

The next graph (Fig. 6.3) shows the predicted master force, efm.

Fig 6.8: Predicted master force graph

The following graph (Fig. 6.7) illustrates the master actuator driving force, tm, and

slave actuator driving force, tm respectively.

Fig 6.9: Master and slave actuator driving force graph

 MSc Mechatronics Project Report

K.Deliparaschos Page 91

The final simulation was performed for a time delay, Tt of 100 msec and neural input

frequency, fi of 1 Hz. Moreover the prediction horizon, n_start was increased to 60. All

other parameters remained the same according to table 6.1. The graph, showing the master

and slave position is shown below.

Fig 6.10: Master and slave position graph

Similarly, the graph of predicted master position and slave position is shown next.

Fig 6.11: Predicted Master position and slave position graph

 MSc Mechatronics Project Report

K.Deliparaschos Page 92

The next graph (Fig. 6.11) shows the predicted master force, efm.

Fig 6.12: Predicted master force graph

The final graph of the simulation (Fig. 6.13) illustrates the master actuator driving

force, tm, and slave actuator driving force, tm respectively

Fig 6.13: Master and slave actuator driving force graph

From the above simulations of the proposed method, it can be concluded that using

sinusoidal inputs, good performance can be achieved for time delays up to 1/10 of the

input frequency, fi.

 MSc Mechatronics Project Report

K.Deliparaschos Page 93

Chapter

7
CONCLUSION

The conceptual framework and simulation results on a general technique for time

delay compensation in teleoperation, which is based on predicting the human arm

position and force (effectively the master state) was presented. It was shown that the

proposed method, tends to be significantly less complex and more intuitive than

predicting the slave and environment dynamics. Simple polynomial predictors,

employing no knowledge of the human arm dynamics, were shown to produce good

performance for small time delays when the master force and position are smooth. On

the other hand for real life force profiles, better performance could be achieved by

employing a human arm model and predicting the neural input to it.

Chapter 2 attempted a brief presentation of the most important matters concerning the

control of teleoperator systems. Several methods were discussed and analysed.

 MSc Mechatronics Project Report

K.Deliparaschos Page 94

Chapter 3 presents the proposed method of variable-time-delays-robust

telemanipulation through master state prediction.

Chapter 4 illustrated the methods carried out in order to implement the proposed

method, previously described in chapter 3. Initially to predictor models were

investigated and developed. A method for solving simultaneous equations was

developed and presented as well. All the sections of the implemented method were

presented in a methodical manner one by one. The Pseudo Code for all the developed

was included on order to ease the explanations of the source code. Due to time

limitations and programming difficulties (using Microsoft Direct X drivers) at the

present time and after a common agreement, with the supervisor P. A. Prokopiou, it

was decided to omit the programming of the force feedback joystick for the master

robot. Instead it was decided to use simple sinusoidal inputs as neural inputs.

Finally chapter 5 presented various simulation results. The aims set for chapter 5 were

successfully completed, since the proposed method proved to function satisfactorily.

Obviously in order to understand the concepts of teleoperation and delay elimination

techniques took a great deal of time. Without any prior knowledge in this field,

background reading was also essential. The correct results were not gained

immediately and in many cases several attempts at understanding concepts required

as necessary to achieve that. Regular meetings with the project supervisor were

proven to be invaluable. Knowledge of the subject area was gained mostly by

periodicals, books, and Internet resources. On the other hand previous knowledge in

C++ programming and use of Matlab, helped a lot in implementing the proposed

 MSc Mechatronics Project Report

K.Deliparaschos Page 95

method. Throughout the period of this project many software packages such as,

Microsoft Visual C++ 6.0, Matlab 5.2, Microsoft office 2000, Visio 3.0, Adobe

Photoshop 5.0 were used.

As time is important in industry and deadlines need to be met, following the

Gantt Chart (Appendix B) helped in achieving the completion of the required task

within the available time.

Having the opportunity to undertake a project of this nature has proven to be an

invaluable source of knowledge. It has allowed discovering previously unfamiliar

areas of expertise, which will be beneficial when considering future career

opportunities. Also by allowing the student to use appropriate tools such as,

Microsoft Visual C++ 6.0, Matlab 5.2, from previous areas of study enabled him to

plan and undertake investigations both theoretical and practical.

 MSc Mechatronics Project Report

K.Deliparaschos Page 96

Chapter

8
RECOMMENDATIONS FOR FURTHER WORK

In future work the program code for the force feedback joystick could be

implemented. Through the master (force feedback joystick), the human operator gives

an order to the system (effectively to the slave robot) and feels back the response of

his actions. For example if the slave robot hits a wall, then the master must feel on his

hand the reaction force absorbed by the slave. Force feedback, also known as haptic

feedback or force reflection, refers to the technique of emulating “feel” sensations to

computer software by imparting real physical forces upon the user hand. These forces

are imposed by actuators, usually motors, incorporated in the interface hardware. The

interface hardware in this case is the joystick. Through the force feedback joystick the

human operator can feel, rigid surfaces, viscous liquids, compliant springs, jarring

vibrations, grating textures, heavy masses, and just about any other physical

phenomenon that can be represented mathematically.

 MSc Mechatronics Project Report

K.Deliparaschos Page 97

The joystick could be very well programmed in C++ but it requires the use of Direct X

5 or higher from Microsoft in order to make the programming easier. There is a

number of available force feedback joysticks in the market from different

manufacturers, like Logitech Inc., ThrustMaster, ACT Labs, Advanced Gravis, and

Nuby manufacturing.

Furthermore a graphic routine that will provide the human operator with visualization

of the master position, slave position, predicted master position could be implemented.

This could be simply achieved by creating a function to display three bars in a separate

window that will accept as inputs, xm, xs, mx̂ (exm) and rotate according to the input

values, in order to indicate the current position of each.

 MSc Mechatronics Project Report

K.Deliparaschos Page 98

REFERENCES

[1] P. A. Prokopiou, A. G. Tzafestas, W. S. Harwin, “Towards Variable-Time-Delays-

Robust Telemanipulation Trough Master State Prediction”, submitted to AIM’99: 1999

IEEE/ASME Int. Conf. on Adv. Intel. Mechatr., Atlanta, U.S.A. Sept. 19-22, 1999.

[2] J. Vertut and P. Coiffet, “Robot Technology”, Volume 3A: Teleoperations and

Robotics: Evolution and Development. (Englewood Cliffs, NJ: Prentice-Hall, 1986).

[3] A. K. Bejczy and M. Handlykken, “Generalization of bilateral force reflecting cintrol

of manipulators”, in Proc. 4th Rom-An-Sy, Warsaw, Poland, 1981, pp. 242-255.

[4] J. Vertut, R. Fournier, B. Espiau, and G. Andre, “Advances in a computer

aided bilateral manipulator system”, in Proc. 1984 Nat. Topical Meet Robotics

and Remote Handling in Hostile Environ., 1984, pp. 367-372.

[5] R. M. Satava, “The Modern Medical Battlefield: Sequitur on Advanced Medical

Technology”, IEEE Robotics and Automation Magazine, Sept. 1994, pp. 21-25.

[6] T. L. Brooks, “Telerobotic Response Requirements”, IEEE International

Conference on System, Man and Cybernetics, pp 113-120.

[7] Y. Strassberg, A. A. Goldenberg, J. K. Mills, “A New Control Scheme for Bilateral

Teleoperating Systems: Lyapunov Stability Analysis”, Proceedings of the 1992 IEEE

International Conference on Robotics and Automation, Nice, France, pp 837-842.

[8] G. J. Raju, “Design Issues in 2-port Network Models of Bilateral Remote

Manipulation”, in Proc. IEEE International Conference on Robotics and

Automation, pp. 1316-1321, 1989.

[9] G. J. Raju, “An Experiment in Bilateral Manipulation with Adjustable Impedance”, in

Proc. Japan-USA Symposium on Flexible Automation, pp. 395-339, 1990.

[10] Y. Yokokohji, T. Yoshikawa, “Bilateral Control of Master-Slave Manipulators

for Ideal Kinesthetic Coupling: Formulation and Experiment”, IEEE

Transactions on Robotics and Automation, Vol. 10, No. 5, Oct. 1994.

 MSc Mechatronics Project Report

K.Deliparaschos Page 99

[11] P. A. Drakatos, N. P. Mattheos, ”Man-Machine System Design”, Accepted for Publication.

[12] P. A. Prokopiou, S. G. Tzafestas, W. S. Harwin, “A Novel Scheme for Human-

Friendly and Time-Delays-Robust Neuropredictive Teleoperation”, Accepted

for Publication.

[13] B. Hannaford, “A Design Framework for Teleoperators with Kinesthetic

Feedback”, IEEE Transactions on Robotics and Automation, Vol. 5, No. 4,

Aug. 1989, pp. 426-434.

[14] K. Funaya, N. Takanasi, “Predictive Bilateral Master-Slave Manipulation with

Statistical Environment Model”, Proceedings of the 1993 IEEE International

Conference on Robotics and Automation, Atlanta, Georgia, USA, Vol. III, pp. 755-760.

[15] Y. Strassberg, A. A. Goldenberg, J. K. Mills, “A New Control Scheme for

Bilateral Teleoperating Systems: Lyapunov Stability Analysis”, Proceedings of

the 1992 IEEE International Conference on Robotics and Automation, Nice,

France, pp 837-842.

[16] C. A. Lawn, B. Hannaford, “Performance testing of passive Communication and

Control in teleoperation with Time delay”, Proceedings of the 1993 IEEE International

Conference on Robotics and Automation, Atlanta, Georgia, USA, Vol. III..

[17] T. B. Sheridan, “Space Teleoperation Trough time Delay: Review and Programs”,

IEEE Transactions on Robotics and Automation, Vol. 9, No. 5, Oct.1993.

[18] G. Niemeyer, J.-J. E. Slotine, “Stable Adaptive Teleoperation”, IEEE Journal of

Oceanic Engineering, Vol. 16, No. 1, Jan. 1991.

[19] D. A. Lawrence, “Stability and Transparency in Bilateral Teleoperation”, IEEE

Transactions on Robotics and Automation, Vol. 9, No.1, pp. 152-162, Jan. 1991.

[20] R. J. Anderson, M. W. Spong, “Bilateral Control of Teleoperators with Time Delay”,

IEEE Transactions on Automatic Control, Vol. 34, No. 5, pp. 494-501, May 1989.

[21] P. A. Prokopiou, W. S. Harwin, S. G. Tzafestas, “Exploiting A Human Arm

Model for Fast, Intuitive, and Time-Delays-Robust Telemanipulation”, in S. G.

Tzafestas and G. Schmidt (Eds): Progress in System and Robot Analysis &

Control Design, Springer-Verlag, UK, 1999, pp. 255-266.

[22] P. A. Prokopiou, W. S. Harwin, S. G. Tzafestas, “Enhancement of a

Telemanipulator Design with a Human Arm Model”, in S. G. Tzafestas (Ed):

Advances in Manufacturing-Decision, Control and Information technology,

Springer-Verlag, U.K., 1999, pp. 445-456.

[23] G. Niemeyer, J.-J. E. Slotine, “Towards Force Reflecting teleoperation Through

the Internet”, Proceedings IEEE International Conference on Robotics and

Automation, Leuven, Belgium, pp. 1909-1915, May 1998.

 MSc Mechatronics Project Report

K.Deliparaschos Page 100

[24] A. Sano, H. Fujimoto, M. Tanaka, “Gain-Scheduled Compensation for Time

Delays of Bilateral teleoperation”, Proceedings IEEE International Conference

on Robotics and Automation, Leuven, Belgium, pp. 1916-1923, May 1998.

[25] K. Brady, T.-J. Tarn, “Internet Based Remote Teleoperation”, Proceedings IEEE

International Conference on Robotics and Automation, Leuven, Belgium, pp.

65-70, May 1998.

[26] T. B . Sheridan, “Telerobotics”, Automatica, Vol. 25, No. 4, pp. 487-507, 1989

[27] J. C. Houk, J. T. Buckingham and A. G. Barto, “Models of the Cerebellum and

Motor Learning”, Behavioral and Brain Sciences, Vol. 19, pp. 368-383, 1996

[28] M. K. Haugland and T. Sinkjaer, “Cutaneous Whole nerve recordings Used for

Correction of Footdrop in Hemiplegic Man”, IEEE Transactions on

rehabilitation Engineering, Vol. 3, No. 4, pp. 307-317, 1995.

[29] J. M. E. Van de vegte, P. Milgram and R. H. Kwong, “Teleoperator Control Models:

Effects of Time Delay and Imperfect System Knowledge”, IEEE Transactions on

Systems, Man and Cybernetics, Vol. 20, No. 6, pp1258-1272, 1990.

[30] W. H. Zangemeister, S. Lehman, L. W. Stark, “Simulation of Head Movement Trajectories:

Model and Fit to Main Sequence”, Biological Cybernetics, Vol. 41, pp. 19-32, 1981.

[31] K. B. Rojiani, “Programming in C with Numerical Methods for Engineers”, (Prentice Hall

Int. (UK), Ltd. 1996).

[32] C. H. Pappas, W. H. Murray, III, “Visual C++ Handbook”, (McGraw-Hill, Inc, 1994).

[33] G. C. Burdea, “Force and Touch Feedback for Virtual Reality”, (John Wiley & Sons, Inc., 1996).

[34] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, “Numerical Recipes in C”,

3rd Edition, (Cambridge University Press, 1988).

[35] L. B. Rosenberg, “A Force Feedback Programming Primer”, (Immersion Corporation, 1997).

[36] “MATLAB Reference Guide”, (The MathWorks, Inc., Oct. 1992).

 MSc Mechatronics Project Report

K.Deliparaschos Page 101

APPENDIX A MODIFIED STARK MODEL FOR THE

HUMAN ARM - STATE EQUATIONS

X

B (H TL Fsl)

0.25 * H TL Fsl
* v

H TL

k (H TL 1)
* (1) if H TL thres_ H TL

f () X
 if H TL thres_ H TL

 (A .1a)

X

B (H TR Fsr)

0.25 * H TR Fsr
* v

H TR

k (H TR 1)
* (1) if H TR thres_ H TR

f () X

L

h

2

xl L

L

R

h

2

xl R

R

L L

R R

 if H TR thres_ H TR

 (A .1b)

v J (B v K F F F) (A .2)

v (A .3)

 w ith:

p
1

p p e sl sr

B (H TL Fsl)

0.25*H TL Fsl

B (H TR Fsr)

0.25*

h h

,
. *(. * . *(

 L

dX lo)

Re e1 1
1 5 4 5

1

1 5
H TR Fsr

k (X) k (X)

X L X R

 (A .4a, b)

Fsl m ax(0, k1(e 1)), Fsr m ax(0, k1(e 1)), (A .5a, b)

 f f (A .6)

2 L 2 R

4 5

1

2
0 1

. *

() () . ()

dX ro)

loX

HTL
N - HTL

T
, HTR

N - HTR

T
 (A.7)

L R

where: subscripts l, r denote left, right muscle, ,v position and velocity of the arm, XL, XR internal

model variables, Kp, Jp, Bp, passive parameters of the arm (muscles' load), Bh, T, k1, k2, Xlo, dXlo,

Xro, dXro, thres_HTL, thres_HTR const-ants, NL, NR the neural input, HTL, HTR activation levels,

Fsl/Fsr the left/right muscle’s force, Fe an external force.

 MSc Mechatronics Project Report

K.Deliparaschos Page 102

APPENDIX B GANTT CHART

 MSc Mechatronics Project Report

K.Deliparaschos Page 103

Predicted Time: Actual Time:

No Activity Duration

Month April May June July August September

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 Project

Allocation

2 Understand

Concepts

3 Implementation

4 Simulation

5 Verification &

Testing

6 Possible

Corrections

7 Write Thesis

View publication stats

https://www.researchgate.net/publication/291822057

