
 
 

ABSTRACT 

 

The rapid down-scaling of silicon technology has made massive on-chip transistor 

integration densities possible. Consequently, parallel-processing chips have emerged as the 

new digital design paradigm in ultra high-performance computing. Unfortunately, buses and 

dedicated interconnect wiring, which present severe restrictions in their ability to scale with 

system size, cannot meet the inter-tile communication requirements in current parallel on-chip 

systems such as Chip Multi-Processors (CMPs), imposing severe limitations in the 

performance efficiency and scalability of the entire parallel system. In addition, long wires 

give rise to numerous design restrictions which must be resolved, such as routing contention 

and challenges in synchronizing the various components on-chip. Network-on-Chip (NoC) 

architectures, a scalable and modular fabric, have been proposed as an alternative way to solve 

the above problems, replacing buses and “spaghetti” wiring, by using a packet-based on-chip 

network. Hence, communication among numerous Processing Elements (PEs) which reside on 

a single chip now takes the form of exchanging messages over the NoC, which function like 

off-chip interconnects found in supercomputers. 

 However, a single link failure in an NoC topology, which can occur due to various 

damaging physical effects such as electro-migration, can prevent the communication 

process. This effect may eventually render the entire CMP chip useless if the routed packets 

are stalled indefinitely in their routers. In this Thesis, a routing algorithm capable of handling 

large numbers of link failures that can occur either at manufacture-time (statically) or at run-

time (dynamically), named Pythia1, is presented. As opposed to marking the entire CMP as 

faulty, whenever some links fail, Pythia routes packets around the faulty link(s) until a new 

healthy link is available. This process can lead in-flight packets towards their destinations, 

                                                      
1 Due to the fact that the proposed algorithm is aware of the status of the next-hop routers, concerning their 

faulty link distributions, it is named Pythia after the Greek priestess at the Temple of Apollo at Delphi. 

 



 
 

maintaining network connectivity, and guaranteeing packet delivery, albeit at a slower rate 

which degrades gracefully. 

 Pythia is an adaptive and localized fault-tolerant routing algorithm, oblivious to the 

global state of the network. It uses distributed graph tables, which are held by each NoC 

router, in order to determine the best choice in routing a packet under the presence of faulty 

links. Every router has a graph table, which contains only the statuses of a its own links and 

of those nodes it leads to. Given this information, routing is made possible by manipulating 

either the coordinates of a packet’s destination or destination distance, and the next 

available router’s number of faulty links, for each link available from the current router to the 

next ones. Graph tables that hold all the statuses of all links residing at the next nodes found 

in the vicinity of the route, gives the foreknowledge of a possible deadlocked route a the 

next-hop router(s); hence deadlocked parts of a topology are avoided. In case a deadlocked 

situation cannot be avoided a-priori, as its existence is not yet known, a deadlock-resolution 

mechanism resolves such a detrimental scenario. Moreover, Pythia introduces a new type of 

header flit, which holds information that helps in livelock-avoidance as well.   

 Pythia was simulated under uniform random and transpose synthetic traffic patterns, 

with a range of virtual channel per port counts using wormhole flow-control, in order to 

determine its performance and behavior, utilizing two faulty link spatial placement scenarios: 

(1) random, and (2) hotspot faulty link distributions. When compared against ARIADNE, an 

existing state-of-the-art fault-tolerant routing algorithm, Pythia demonstrated up to 237.5% 

and 166.67% improvement in throughput with a random faulty link placement, while it 

showed up to 165.0% and 66.7% increase in throughput with a hotspot faulty link placement, 

under uniform random and transpose traffic pattern usages, respectively. In addition, the 

proposed routing algorithm was simulated under a lightly-loaded network to determine its 

basic routing delay under “no stress” conditions, while further experiments exhibit its 

superior throughput attainment just before network saturation.  

 

 


