
JMLR: Workshop and Conference Proceedings 25:65–79, 2012 Asian Conference on Machine Learning

A Coupled Indian Buffet Process Model for Collaborative
Filtering

Sotirios P. Chatzis soteri0s@me.com

Department of Electrical Engineering, Computer Engineering and Informatics

Cyprus University of Technology

Editor: Steven C.H. Hoi and Wray Buntine

Abstract

The dramatic rates new digital content becomes available has brought collaborative filtering
systems in the epicenter of computer science research in the last decade. In this paper,
we propose a novel methodology for rating prediction utilizing concepts from the field of
Bayesian nonparametrics. The basic concept that underlies our approach is that each user
rates a presented item based on the latent genres of the item and the latent interests of
the user. Each item may belong to more than one genre, and each user may belong to
more than one latent interest class. The number of existing latent genres and interests are
not known beforehand, but should be inferred in a data-driven fashion. We devise a novel
hierarchical factor analysis model to formulate our approach under these assumptions. We
impose suitable priors over the allocation of items into genres, and users into interests;
specifically, we utilize a novel scheme which comprises two coupled Indian buffet process
priors that allow the number of latent classes (genres/interests) to be automatically inferred.
We experiment on a large set of real ratings data, and show that our approach outperforms
four common baselines, including two very competitive state-of-the-art approaches.
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1. Introduction

Modern online systems are characterized by a continuous explosion in the availability of
content. Ratings-based collaborative filtering (CF) systems, which use past ratings to make
predictions, provide a more accurate approach to discovering items of interest (Chen et al.,
2009). This thriving subfield of machine learning became popular in the late 1990s with the
spread of online services that use recommender systems, such as Amazon, Yahoo! Music,
and Netflix. In such systems, each user is associated with a profile which comprises votes or
ratings for items in the system derived from the user. Such profiles can be obtained either
explicitly from user-provided ratings, or be compiled implicitly by tracking user’s behavior.
Based on the profile of each user, suitable models are trained that allow for the collaborative
filtering system to predict the user ratings for any item available in the system, possibly by
also exploiting information from other system users.

In this work, we introduce a novel statistical model for collaborative filtering, based
on concepts from the field of Bayesian nonparametrics. Specifically, the formulation of
our model is based on the notion that there is a set of latent (unobservable) interests
that a modeled user may cluster into, and a set of latent genres that each available item
may cluster into. Ratings are considered to be obtained by averaging the joint biases for
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the interest/genre combinations corresponding to the considered user and item, and the
respective user and item biases. One key-element of our approach is our assumption that
one given user may simultaneously belong to more than one latent interest classes, and,
similar, one available item may simultaneously belong to more than one latent genres.
Consider for example the case of movie rating: one user may be interested in both “martial
arts” and “science”; similar, a movie may belong to both the “action” and “science fiction”
genres. To reflect this assumption in the formulation of our method, we postulate a novel
two-level hierarchical factor analysis model to represent the rating function of the users.

A second key-element of our approach that differentiates it from existing approaches is
that we impose a novel coupled Indian Buffet Process (IBP) prior over the latent variables
of our model that assign items to genres and users to interest classes. The IBP prior is
a nonparametric prior for latent feature models in which observations are influenced by a
combination of hidden features, exactly as assumed by the proposed model: observed ratings
are influenced by a weighted combination of the latent user interests and item genres, where
the weights are the biases pertaining to each interest/genre combination. The advantage of
the proposed IBP construction consists in that it provides a principled prior in situations
where the number of latent features is unknown, as in the case of our model. Therefore, our
postulated ratings model is a nonparametric Bayesian hierarchical factor analysis model,
obtained by imposition of a novel IBP-based prior over the model latent variables. This
construction allows for making no assumptions regarding the number of existing latent
genres or interests but, instead, inferring them from the data.

The remainder of this paper is organized as follows: In Section 2, we briefly review the
IBP prior. In Section 3, we introduce our proposed model and derive its inference algorithms
using a truncated variational Bayesian algorithm. In Section 4, we experimentally evaluate
our approach using a large data set of movie ratings. We compare the performance of our
approach to four appropriate baselines, and discuss the results of these experiments. As
we show, our approach outperforms the considered state-of-the-art alternatives, while also
offering exceptional computational efficiency in terms of real-time performance. Finally, in
Section 5 we summarize our results, and conclude this paper.

2. The Indian Buffet Process

In many unsupervised learning problems it is necessary to derive a set of latent variables
given a set of observations. A characteristic example is collaborative filtering: considering
that users are associated with possibly multiple latent interests, and items are associated
with possibly multiple latent genres, we may wish to identify these sets of latent classes and
determine which users/items belong to which latent classes. Unfortunately, most traditional
machine learning approaches require the number of latent classes (features) as an input. In
such cases, usually one has to resort to application of a model selection technique to come
up with a trade-off between model complexity and model fit.

A solution to this problem is offered in the context of Bayesian nonparametrics. Non-
parametric Bayesian approaches treat the number of latent features as a random quantity to
be determined as part of the posterior inference procedure. The most common nonparamet-
ric prior for latent feature models is the Indian Buffet Process (Griffiths and Ghahramani,
2005). The IBP is a prior on infinite binary matrices that allows us to simultaneously infer
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which features influence a set of observations and how many features there are. The form
of the prior ensures that only a finite number of features will be present in any finite set of
observations, but more features may appear as more observations are received.

Let us consider a set of N objects that may be assigned to a total of K features. Let
Z = [znk]

N,K
n,k=1 be a N ×K matrix of assignment variables, with znk = 1 if the nth object is

assigned to the kth feature (multiple znk’s may be equal to 1 for a given object n), znk = 0
otherwise. The IBP imposes a prior over [Z], a canonical form of Z that is invariant to
the ordering of the features (Griffiths and Ghahramani, 2005). The imposed prior takes the
form

p([Z]) =
αK∏

h∈{0,1}N\{0}N Kh!
exp{−αHN}

×
K∏
k=1

(N −mk)!(mk − 1)!

N !

(1)

Here, mk is the number of objects assigned to the kth feature, i.e. with znk = 1, α is the
innovation hyperparameter of the IBP prior which regulates the number of effective model
features K, HN is the Nth harmonic number, and Kh is the number of occurrences of the
non-zero binary vector h among the columns in Z.

Apart from MCMC, mean-field variational Bayesian inference methods, which approx-
imate the true posterior via a simpler distribution, provide a deterministic alternative to
sampling-based inference for the IBP (Jordan et al., 1998; Chatzis et al., 2008). Variational
Bayesian inference for the IBP is based on an alternative formulation of p(Z), namely the
stick-breaking construction of the IBP (Teh et al., 2007): It has been shown that the prior
(1) obtained by the IBP can be equivalently expressed under the following hierarchical
Bayesian construction

znk ∼ Bernoulli(πk) (2)

πk =
k∏
i=1

vi (3)

vk ∼ Beta(α, 1) (4)

In other words, under the stick-breaking construction, an equivalent hierarchical expression
for the prior p(Z) is obtained by introduction of the Beta-distributed stick variables vk.

3. Proposed Approach

Before we introduce our model, let us first formally define the problem we are aiming to
address: Let us consider a recommender system the registered users of which comprise a set
N = {nu}Uu=1. Let us also consider that the items registered with the system comprise the
set C = {cm}Mm=1. Each user is allowed by the system to provide a rating for each item; the
rating variable r is assumed to take values in the discrete set {1, . . . , R} of possible ratings.
Each user may provide ratings for one or more of the items registered with the system.
In essence, at any time point, the considered recommender system has available a training
ratings data set D = {(rd, ud,md)}Dd=1 comprising D tuples of users with indexes ud ∈
{1, . . . , U}, items with indexes md ∈ {1, . . . ,M}, and associated ratings rd ∈ {1, . . . , R}.
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Typically, users provide ratings only for a minuscule fraction of the items registered with
a real-life recommender system. Based on this observation, what we aim to achieve is to
postulate a suitable statistical model that allows for predicting the rating r each user would
assign to each item registered with the system, given the few ratings in the training data set
D . To effect this goal, we additionally make the assumption that each user may have one
or more interests which comprise latent variables of the sought model of unknown number,
while each item may belong to one or more genres which also comprise latent variables of
the sought model of unknown number. The ratings users assign to the available items are
considered functions of the latent classes (interests/genres) of the users and the available
items.

To address the considered problem, we postulate an intricate factor analysis model to
represent the rating function of the users of a recommender system. The postulated model
assumes that the rating function is the sum of the user and item bias, plus a hierarchical
two-level factor analysis term, with the latent factors expressing the assignment of the users
into interest classes and of the available items into genres, and the factor weights (loadings)
taken as the joint user/item biases of the model, which can be obtained through model
training.

Specifically, we postulate the following statistical model for the value of the rating
function r given a user nu ∈ N and item cm ∈ C :

r(u,m) = µ+ ρu + ηm +

∞∑
i=1

zui
(
wT
i xm

)
+ ε (5)

In the postulated model (5), µ is the mean rating for any user/item pair, which can be
initialized as the mean of the ratings in the training data set D , ρu is the bias of the uth
user, ηm is the bias of the mth item, xm = [xmg]

∞
g=1, the xmg are the latent variables of

genre assignment, with xmg = 1 if the mth item is assigned to the gth genre (multiple
genre assignments are possible for each item), xmg = 0 otherwise, the zui are the latent
variables of interest assignment, with zui = 1 is the uth user is assigned to the ith interest
(multiple interest assignments are possible for each user), zui = 0 otherwise, and the weights
wi = [wig]

∞
g=1 are the joint user/item biases that correspond to the combination of the ith

latent user interest with the mth latent item genre. The term ε in (5) stands for an additive
white noise term, with

ε ∼ N (0, σ2) (6)

Indeed, this selection for the prior of the noise variable ε might seem inappropriate, since
the observed ranking variables r(u,m) usually take on a set of discrete values. However,
the assumption of an additive white noise is not too unrealistic; in addition, it has the
major advantage of allowing for a tractable model inference procedure, with simple model
update expressions. As such, in the context of our work, we opt for such a simple noise
prior selection.

Note that in our model we assume a positive bias associated with “compatible”’ interests
and genres, but also a possibly negative bias for “conflicting” interests and genres. We also
note that, in the above definition (5) of the proposed model, we have considered an infinite
number of latent features (classes), i.e. latent interest classes and latent item genres. This
assumption reflects our unawareness of the exact number of existing latent features, and
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demands imposition of an appropriate prior distribution over the latent variables xm and
zu = [zui]

∞
i=1, so as to conduct Bayesian inference over the number of latent features.

Following the discussions of Section 2, to effect this kind of inference over the number
of latent features in the model, we need to seek an appropriate prior in the context of
Bayesian nonparametrics: we adopt the IBP prior, which, as previously discussed, is the
most common nonparametric prior for latent feature models. Specifically, formulation of
our model is effected by employing the stick-breaking construction of the IBP, which allows
for deriving a computationally efficient and scalable inference algorithm for our model under
the variational Bayesian paradigm. We postulate

zui ∼ Bernoulli(πi), i = 1, . . . ,∞ (7)

πi =
i∏

λ=1

vλ (8)

vλ ∼ Beta(α, 1) (9)

and
xmg ∼ Bernoulli($g), g = 1, . . . ,∞ (10)

$g =

g∏
λ=1

ṽλ (11)

ṽλ ∼ Beta(γ, 1) (12)

We coin the obtained model the Indian Buffet Process Hierarchical Factor Analysis (IBP-
HFA) model for collaborative filtering.

3.1. Variational Bayesian Inference

Our variational Bayesian inference formalism for the IBP-HFA model consists in derivation
of a family of variational posterior distributions q(.) which approximate the true posterior
distribution over the infinite sets v = [vλ]∞λ=1, ṽ = [ṽλ]∞λ=1, and W = [wi]

∞
i=1. Apparently,

under this infinite dimensional setting, Bayesian inference is not tractable. For this reason,
we employ a common strategy in the literature of Bayesian nonparametrics, formulated on
the basis of a truncated stick-breaking representation of the IBP (Doshi-Velez et al., 2009).
That is, we fix a value I letting the variational posterior over the vi have the property
q(vI+1 = 0) = 1, and, similar, we fix a value G letting the variational posterior over the ṽg
have the property q(ṽG+1 = 0) = 1. In other words, we set the πi and $g equal to zero for
i > I and g > G, respectively. Note that, under this setting, the treated IBP-HFA model
involves two full IBP priors; truncation is not imposed on the model itself, but only on the
variational distribution to allow for a tractable inference procedure. Hence, the truncation
levels I and G are variational parameters which can be freely set, and not part of the prior
model specification.

To conduct variational Bayesian inference for our model, we also impose a prior distri-
bution over the model biases and mean ranking. Specifically, we consider

p(µ) = N (µ|µ0, σ2µ) (13)
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p(ρu) = N (ρu|0, ς2u) (14)

p(ηm) = N (ηm|0, e2m) (15)

p(wi) = N (wi|0, s2i I) (16)

Let Θ = {v, ṽ,W , µ, {ρu, zu}Uu=1, {ηm,xm}Mm=1} be the set of hidden variables and un-
known parameters of the IBP-HFA model, and Ξ be the set of the hyperparameters of the
imposed priors, Ξ = {α, γ, µ0, σ2µ, {ς2u}Uu=1, {e2m}Mm=1, {s2i }Ii=1}. Variational Bayesian infer-
ence consists in the introduction of an arbitrary distribution q(Θ) to approximate the actual
posterior p(Θ|Ξ,D), which is computationally intractable (Bishop, 2006). The variational
posterior q(Θ) is obtained by maximization of the variational free energy (Chatzis et al.,
2008)

L(q) =

ˆ
dΘq(Θ)log

p(D ,Θ|Ξ)

q(Θ)
(17)

which comprises a lower bound of the log marginal likelihood (log evidence), logp(D), of
the model (Jordan et al., 1998).

Due to the considered conjugate prior configuration of the IBP-HFA model, the varia-
tional posterior q(Θ) is expected to take the same functional form as the prior, p(Θ) (Chatzis
et al., 2008). Derivation of the variational posterior distribution q(Θ) involves maximization
of the variational free energy L(q) over each one of the factors of q(Θ) in turn, holding the
others fixed, in an iterative manner (Bishop, 2006). By construction, this iterative, con-
secutive updating of the variational posterior distribution is guaranteed to monotonically
and maximally increase the free energy L(q) (Chatzis et al., 2008). Let us denote as 〈.〉 the
posterior expectation of a quantity. We yield the following posteriors:

1. Regarding the stick-breaking variables of the employed IBPs, the posterior distribu-
tions are similar to the one derived in Doshi-Velez et al. (2009). We have

q(vλ) = Beta(vλ|τλ1, τλ2) (18)

where

τλ1 =α+

I∑
k=λ

U∑
u=1

q(zuk = 1)

+

I∑
k=λ+1

[
U −

U∑
u=1

q(zuk = 1)

][
k∑

h=λ+1

qh

] (19)

τλ2 = 1 +

I∑
k=λ

[
U −

U∑
u=1

q(zuk = 1)

]
qλ (20)

and
q(ṽλ) = Beta(ṽλ|τ̃λ1, τ̃λ2) (21)
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where

τ̃λ1 =γ +
G∑
k=λ

M∑
m=1

q(xmk = 1)

+

G∑
k=λ+1

[
M −

M∑
m=1

q(xmk = 1)

][
k∑

h=λ+1

q̃h

] (22)

τ̃λ2 = 1 +
G∑
k=λ

[
M −

M∑
m=1

q(xmk = 1)

]
q̃λ (23)

and, following (Teh et al., 2007), the quantities qλ and q̃λ are defined as

qλ ∝ exp

[
ψ(τλ2) +

λ−1∑
h=1

ψ(τh1)−
λ∑
h=1

ψ(τh1 + τh2)

]
(24)

q̃λ ∝ exp

[
ψ(τ̃λ2) +

λ−1∑
h=1

ψ(τ̃h1)−
λ∑
h=1

ψ(τ̃h1 + τ̃h2)

]
(25)

and are normalized so that the they sum to one.

2. Regarding the posterior distributions over the latent variables of interest assignment,
zui, optimization of L(q) yields

q(zui = 1) =
1

1 + exp(−νui)
(26)

where

νui =
i∑

λ=1

[ψ(τλ1)− ψ(τλ1 + τλ2)]−
〈
log
(
1−

i∏
λ=1

vλ
)〉

− 1

2σ2

∑
d∈D(u)

[〈
wT
i xm(d)x

T
m(d)wi

〉
− 2

〈
wT
i xm(d)

〉 (
rd − 〈µ〉 − 〈ρu〉 −

〈
ηm(d)

〉)
+ 2

∑
l 6=i

q(zul = 1)
〈
wT
l xm(d)x

T
m(d)wi

〉]
(27)

m(d) is the identifier of the item that corresponds to the dth training example, m(d) ∈
{1, . . . ,M}, and D(u) is the subset of the training data set D that contains examples
pertaining to the uth user.

3. Regarding the posterior distributions over the latent variables of genre assignment,
xmg, optimization of L(q) yields

q(xmg = 1) =
1

1 + exp(−ν̃mg)
(28)

71



Chatzis

where

ν̃mg =

g∑
λ=1

[ψ(τ̃λ1)− ψ(τ̃λ1 + τ̃λ2)]−
〈
log
(
1−

g∏
λ=1

ṽλ
)〉

− 1

2σ2

∑
d∈D̃(m)

[〈
w∗Tg zu(d)z

T
u(d)w

∗
g

〉
− 2

〈
w∗Tg zu(d)

〉 (
rd − 〈µ〉 −

〈
ρu(d)

〉
− 〈ηm〉

)
+ 2

∑
l 6=g

q(xml = 1)
〈
w∗Tl zu(d)z

T
u(d)w

∗
g

〉]
(29)

u(d) is the identifier of the user that corresponds to the dth training example, u(d) ∈
{1, . . . , U}, D̃(m) is the subset of the training data set D that contains examples
pertaining to the mth item, and we define w∗g = [wig]

I
i=1.

4. Regarding the joint biases, assuming a spherical posterior distribution, we have

q(wi) =
G∏
g=1

q(wig) =
G∏
g=1

N (wig|ϕ̂ig, φ2ig) (30)

where

φ2ig =

[
1

s2i
+

1

σ2

D∑
d=1

q(zu(d),i = 1)q(xm(d),g = 1)

]−1
(31)

and

ϕ̂ig =
φ2ig
σ2

D∑
d=1

q(xm(d),g = 1)q(zu(d),i = 1)

×
[
rd − 〈µ〉 −

〈
ρu(d)

〉
−
〈
ηm(d)

〉
−
∑
l 6=i

∑
ξ 6=g

q(zu(d),l = 1)q(xm(d),ξ = 1) 〈wlξ〉
] (32)

5. Regarding the user biases, we have

q(ρu) = N (ρu|ρ̂u, ς̂2u) (33)

where

ς̂2u =

[
1

ς2u
+

#D(u)

σ2

]−1
(34)

#D(u) is the cardinality of D(u), and

ρ̂u =
ς̂2u
σ2

∑
d∈D(u)

[
rd − 〈µ〉 −

〈
ηm(d)

〉
−

I∑
i=1

q(zui = 1)
〈
wT
i xm(d)

〉 ]
(35)
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6. Regarding the item biases, we have

q(ηm) = N (ηm|η̂m, ê2m) (36)

where

ê2m =

[
1

e2m
+

#D̃(m)

σ2

]−1
(37)

#D̃(m) is the cardinality of D̃(m), and

η̂m =
ê2m
σ2

∑
d∈D̃(m)

[
rd − 〈µ〉 −

〈
ρu(d)

〉
−

I∑
i=1

q(zu(d)i = 1)
〈
wT
i xm

〉 ]
(38)

7. The mean ratings µ yield
q(µ) = N (µ|µ̂, σ̂2µ) (39)

where

σ̂2µ =

[
1

σ2µ
+
D

σ2

]−1
(40)

and

µ̂ = σ̂2µ

[
1

σ2

D∑
d=1

(
rd −

〈
ρu(d)

〉
−
〈
ηm(d)

〉
−

I∑
i=1

q(zu(d)i = 1)
〈
wT
i xm(d)

〉)
+
µ0
σ2µ

]
(41)

Finally, given a trained IBP-HFA model, rating prediction for any pair of user nu and item
cm, registered with the system, can be conducted by computing the posterior expectation
of the rating function r(u,m). We have

r̂(u,m) = 〈µ〉+ 〈ρu〉+ 〈ηm〉+
∞∑
i=1

q(zui = 1)
〈
wT
i

〉
〈xm〉

=µ̂+ ρ̂u + η̂m +
∞∑
i=1

q(zui = 1)
〈
wT
i

〉
〈xm〉

(42)

where
〈xm〉 = [q(xmg = 1)]Gg=1

3.2. Related Work

Recently, several researchers have considered application of Bayesian nonparametrics to
collaborative filtering. One of the earliest works in the field was presented in Meeds et al.
(2007). The basic difference between that work and our work is that in the work of Meeds
et al. (2007), the postulated prior over the model latent variables is a Beta-Bernoulli model,
and a nonparametric nature for this model was induced by taking the limit for K → ∞
features in the context of its inference algorithm. Another major disadvantage of the method
of Meeds et al. (2007) is that it considers only one latent model variable, thus it does not
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allow for modeling both genres and interests in a joint fashion. Similar is the drawback of
the method of Zhou et al. (2010), where IBP priors are used similar to our method, as well
as of the work of Ding et al. (2010), where a nonparametric Bayesian matrix factorization
algorithm is obtained by using a suitable prior, inspired in part by the IBP prior: in both
these works, only one latent variable is considered, thus not allowing for jointly inferring
genre and interest latent variables.

4. Experiments

To evaluate the proposed approach, we performed a number of experiments using a large
sample of a ranking data set available from the GroupLens website1. This data set consists
of 10 million ratings for 10,677 movies made by 69,878 users of the MovieLens movie rating
web site2. The data set used in our experiments consists of almost one million samples
and comprises data from randomly selected users that have rated at least 10 movies each.
The ratings in the used data set are all given on a scale of 0.5 to 5 stars with increments
of 0.5 stars. To be capable of assessing the statistical significance of our findings, in our
experimental evaluations we employed 5-fold cross validation, using in each fold a random
20% of the available sample for training and the rest for testing.

We use two metrics to assess the performance of our algorithm, namely the root mean
square error (RMSE)

RMSE =

√√√√ 1

D

D∑
d=1

(rd − r̂d)2 (43)

a performance metric that penalizes large errors much more than small errors, and the mean
absolute error (MAE), defined as

MAE =
1

D

D∑
d=1

|rd − r̂d| (44)

which penalizes all errors equally, relative to their size. We compare the performance of our
method to four baselines, including two state-of-the-art approaches, namely a mean rating
method which returns the average rating as an estimate for all user/item pairs (mean-
rating), a nearest-neighbor method using the Pearson correlation coefficient as the similar-
ity metric, combined with case amplification and significance weighting (nearest-neighbor)
(Breese et al., 1998), a regularized gradient descent SVD method with user and item biases
(Paterek, 2007), and the model-based BLITR method (Harvey et al., 2011), which postu-
lates a statistical model inspired by principles employed in LDA. In our evaluations, the
settings of the BLITR model were adopted from Harvey et al. (2011); a Rao-Blackwellised
Gibbs sampler was used to draw 300 samples from the Markov chain, with a burn-in of 200
samples. For the SVD method, we used a learning rate equal to 0.002, and the 2 regulariza-
tion constants were set to 0.02 and 0.05, respectively. A neighborhood comprising 100 users
was used for the nearest-neighbor method. Our source codes were developed in MATLAB
R2011b, and were executed on a Macintosh platform running OS X 10.7.3.

1. http://grouplens.org/node/73
2. http://www.movielens.org/
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Table 1: Average performance (and statistical significance of differences from IBP-HFA)
for the evaluated methods. For latent feature/variable models the (maximum)
number of latent features is set to 50.

Model RMSE p-value MAE p-value

mean-rating 1.0643 1.7× 10−12 0.8623 1.7× 10−12

nearest-neighbor 0.8449 8.2× 10−6 0.6694 8.2× 10−6

SVD 0.8387 6.05× 10−5 0.6476 6.05× 10−5

BLITR 0.8202 2.78× 10−5 0.6341 2.78× 10−5

IBP-HFA 0.8015 0.5978

4.1. Average performance results

In Table 1, we provide the average performance figures yielded by our method and its con-
sidered alternatives. These results comprise the average model performance obtained over
the conducted 5 folds of cross-validation. Additionally, apart from average performance,
we also provide the p-values obtained from the Student’s-t hypothesis test applied on the
pairs of performances of the proposed method and each one of the evaluated alternatives.
The Student’s-t test allows to assess the statistical significance of the performance differ-
ence between two evaluated methods, given a set of performance measurements. Generated
p-values of the Student’s-t test below 0.05 strongly indicate that the means of the obtained
performance statistics of the two methods provide a very good assessment of their actual
performance difference. Note that the results depicted in Table 1 were obtained by consid-
ering that the number of latent features is equal to 50, wherever applicable (this being the
truncation threshold for our method).

As we observe, all methods completely outperform the baseline mean-rating method,
with the second worst performing method being, quite unsurprisingly, nearest-neighbor
ranking. We also observe that the proposed approach outperforms by a large margin the
evaluated state-of-the-art SVD method, while a statistically significant advantage for our
method is also noticed over the recently proposed, model-based BLITR approach. This
latter result is quite significant, as it shows that the assumption of a crisp assignment of users
to interests and movies to genres, being quite oversimplistic, does actually have a negative
impact on the performance of a real-life movie recommendation system. Additionally, it
proves the efficacy and effectiveness of the IBP prior, a method the popularity of which has
been relatively confined into the realms of the small Bayesian nonparametrics community,
in real-life applications dealing with large-scale data sets.

4.2. Further investigation: Error variance

RMSE and MAE are two standard metrics for quantifying how well a prediction algorithm
works. As already discussed, they both provide a quantification of the average error accrued
over a number of test cases. However, in real-life recommender systems, apart from the av-
erage error, another also significant quality aspect that determines system attractiveness to
the average user is error variance. In other words, it is crucial that errors, whenever they
(inevitably) happen, are not too large to make system performance seem way too poor.
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Table 2: Minimum and maximum absolute error and its standard deviation for the evalu-
ated methods (50 latent features at maximum).

Model MIN Error MAX Error Standard Deviation

SVD 0 3.5 0.73

BLITR 0 2.0 0.59

IBP-HFA 0 2.0 0.51

Table 3: Average RMSE of the evaluated methods for users with less than 20, 50, or 100
available training samples.

Model ≤ 20 ≤ 50 ≤ 100 All

SVD 0.9366 0.8895 0.8713 0.8387

BLITR 0.8611 0.8468 0.8355 0.8202

IBP-HFA 0.8318 0.8202 0.8041 0.8015

Indeed, even seldom cases of too poor a result being obtained may irrevocably harm user
confidence in the system. Table 2 shows the minimum and the maximum absolute predic-
tion error obtained by the SVD, BLITR, and IBP-HFA methods, as well as its standard
deviation. As we observe, the model-based approaches, with the IBP-HFA being the better
performing of the two, are much less likely to yield completely irrelevant results that could
hamper system attractiveness to the average user.

4.3. Effect of the availability of training samples on model performance

We now examine how the performance of our model depends on the availability of training
examples. In principle, it is expected that with only few training examples, prediction
for a given user or item should become extremely problematic. In real-life systems, this is
generally the case for users or items only recently registered with the system. To make these
investigations, we proceeded as follows: After carefully analyzing the data set, we found
that 11.9% of all users have 20 or fewer ratings and nearly half (48.4%) have 50 or fewer.
Presumably, these users should be the most difficult for the system to accurately predict
their ratings. To verify this assumption, we recalculate the average error statistics obtained
in Section 4.1, taking into account the errors obtained only for users with less than 20, 50,
or 100 available training examples; our results are depicted in Table 3. We observe that our
approach is more resilient compared to its alternatives, especially the SVD method, which
experiences a noticeable performance slump as the number of training samples decreases
considerably.

4.4. Effect of the truncation threshold on model performance

Further, we examine how the performance of the IBP-HFA model is related to the employed
truncation threshold of the number of existing latent features (interests/genres). For this
purpose, we repeat the experiments of Section 4.1 for various truncation threshold values,
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Figure 1: Obtained RMSE as a function of the (maximum) number of latent features (in-
terests/genres).

and we illustrate how model performance changes in Fig. 1. In the same figure, we also
illustrate how BLITR and SVD performance changes with the number of latent features
varying similar to the truncation thresholds of IBP-HFA. As we observe, the number of
latent features has a critical impact on the obtained model performance: allowing only
a small number of latent features clearly undermines the performance of all approaches.
Increasing the number of latent features yields a rapid increase in model performance,
which is more apparent in the case of the proposed approach. However, we also observe
that, as the number of latent features increases above a certain level, performance gains
seem to stall for all approaches.

4.5. Computational complexity

Finally, let us briefly discuss the computational complexity of our approach, and how it
compares to the competition. Regarding prediction generation, the computational costs of
our approach are similar to the costs of BLITR for the same number of latent features,
since both approaches simply compute a sum of weights (biases). Our method also imposes
similar memory requirements compared to BLITR, since the vast majority of the postulated
variables are common to both methods. Note also that the computational costs of our
method are also similar to the costs of SVD, while orders of magnitude lower than memory-
based methods, namely nearest-neighbor ranking, which also impose way higher memory
requirements compared to the model-based approaches.

Concerning training costs, despite the fact that our method employs two IBP priors
while BLITR adopts a much simpler construction, we have noticed that our model requires
almost half the time required by BLITR. This can be expected, as BLITR uses Gibbs sam-
pling, while our approach is based on a much more efficient truncated variational Bayesian
expectation-maximization algorithm.
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To conclude, both the computational costs and the memory requirements of our method
are comparable to existing state-of-the-art approaches, thus making it a viable alternative
for real-life recommender systems.

5. Conclusions

In this work, we presented a model-based method for collaborative rating prediction using
principles from Bayesian nonparametrics, based on the introduction of a set of latent vari-
ables representing user interest and item genre. Even though such an approach is rather
common in modern model-based collaborative rating systems, our method is fundamentally
different from existing techniques, as it is based on postulation of a novel two-level hier-
archical factor analysis model that approximates the ranking function of the system users.
Our approach is facilitated by imposing two coupled Indian Buffet Process priors over the
variables assigning users to interests and items to genres, which allows for doing inference
over the appropriate number of latent features (genres/interests).

We evaluated our approach using a large, freely-available and commonly used data
set of real item (movie) ratings. We compared the performance of our approach to four
baselines, including two extremely competitive modern methodologies. As we have shown,
our model manages to outperform the considered alternatives. Additionally, to demonstrate
the robustness of our approach, we investigated how well our model would perform in cases
of training with very sparse training data sets (only few item ratings per user). Indeed, the
need of training with extremely sparse data sets occurs with very high frequency in real-life
systems. As such, the capacity to perform adequately under such a setup is one of the most
significant merits of an item rating algorithm. As we showed, our model managed to handle
this adverse experimental setup more effectively compared to the alternatives. Finally, we
showed that our model possesses the necessary scalability merits real-life systems require.

One issue our model does not address concerns the well-known new user problem i.e.,
how an established collaborative filtering system based on our algorithm can generate de-
pendable recommendations for users with only few rankings available. In this case, better
recommendations may be achieved by considering similarities between users based on addi-
tional user features. That is, we may augment our algorithm with some extra observation
likelihood, related to features of the system users (e.g., educational level, profession, marital
status, and so on). These investigations comprise part of our ongoing research.
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