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Solar Energy is the feedstock for various applications of renewable energy sources; thus, the knowledge of the intensity of the
incident solar irradiance is essential for monitoring the performance of such systems. The major unpredictable factor in defining
the solar irradiance and the performance of solar systems is the presence of clouds in the sky. So far, various researchers proposed
several models to correlate solar irradiance to cloud coverage and cloud type. The present work describes the development of a
simple method for cloud detection and computation of short-term cloud motion. The minimum accuracy of the model was 95%
for the prediction of the cloud location seven timesteps in advance with only three cloud images processed. When including the
dimensions of the cloud to the accuracy calculation, the minimum accuracy was 88%.

1. Introduction

During the past few years, there has been a major progress
in the use of solar technologies, especially in renewable
energy systems (RESs) for the production of electricity. Such
technologies include residential and large-scale photovoltaic
(PV) parks [1], solar troughs and solar tower power plants,
solar dish technologies, and the upcoming construction of
commercial solar updraft towers [2]. Still, solar RESs have not
yet been achieved to confront the use of fossil fuels mainly
due to their dependency on the sun’s irradiance, since inmost
cases, especially in PV parks, there is no affordable energy
storage option. The continuous development of technologies
that use solar energy leads to the need of accurate knowledge
of the amount of the incident solar irradiance on the surface
of the Earth. This will enable one to (1) predict the output
energy from such systems, (2) regulate the system, (3)
better design the system and the possible energy storage, (4)
recourse assessment for the specific area calculated andfinally
(5) increase the profit margins.

There are numerous models for the computation of solar
radiation, ranging from complicated computer algorithms to

very simple empirical relations that do not require any mete-
orological parameter as an input [3, 4]. Several researchers
have proposed various models to calculate the solar irradi-
ance, either ones based on the Angstrom equation [5] or
other more complex models based on various parameters.
From these parameters, the most profound parameter for
solar irradiance variations is cloudiness, because although it
can be predicted, the spatial and temporal resolution of the
predictions is very low, resulting an uncertainty in solar
energy generation prediction, especially for solar power sys-
tems without energy storage, such as PV parks [6, 7].

Apart from cloudiness, all other parameters that effect
solar irradiance can be computed with very good accuracy
using the existing numerical forecasting methods [3, 4, 8].
The influence of clouds on irradiance is due to reflection and
absorption of the irradiance by cloud particles and depends
strongly on the volume, shape, thickness, and composition of
the clouds [4].

There are three scenarios for the state of the sky regarding
clouds: clear sky, overcast sky, and partially cloudy sky. For
the first two scenarios, the numerical models along with the
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predictions of NWP models can forecast the irradiance over
a specified area [3, 4]. The third scenario is unpredictable,
presenting sudden short-term variations of irradiance due
to moving clouds, and the existing models cannot predict
the local motion of clouds. Furthermore, when using satellite
images, due to the very low temporal and spatial resolution
of the satellite imagers [9] compared to the local effects of
a cloud, the location of a cloud over the solar field of a solar
power plant cannot be forecasted precisely, and the energy
production of the system cannot be predicted.Thus, the local
motion of clouds cannot be forecasted by existingmodels and
can only be estimated by on-site ground observations [10]
using ground-based cameras or all-sky cameras [10, 11].

This paper presents the results of our progress regarding
the distinction of clouds from sky and the computation of the
cloud trajectories. The equipment and methodology used are
first presented, then the results are analysed and finally the
accuracy of our method is discussed.

2. Equipment

The equipment used in our research consists of a ground-
based digital camera positioned at the roof of a building at the
university campus in Limassol, Cyprus (34.675N, 33.045E).

The camera used was a Nikon D3100 digital single lens
reflex (DSLR), positioned at an angle of view of 30∘ to the hor-
izontal.The camera was used for capturing pictures of the sky,
as a portable, easy to use instrument, to perform preliminary
models regarding cloud detection and computation of cloud
trajectories.The imaging sensor of the camera used was 1/2,
23.1×15.4mmcolor CMOS, and the lens used was Nikon 18–
55 VR.

The camera was programmed to photograph the sky at
scheduled time intervals. The pictures captured from the
camera were stored on a computer server both as pictures and
as video. The video was used for quick screening of the daily
clouds, while the pictures were used for further processing
regarding cloud distinction and classification.

The stored images were then processed by an algorithm
developed in C++.

3. Methodology: Forecast of Cloud Motion

Themethodology used in our research regarding the estima-
tion of cloud motion consists of three subalgorithms applied
to every picture taken from the camera. The first is the
preprocessing cloud detection algorithm, where the pixels
depicting clouds are distinct from the pixels depicting sky,
and, then, the cloudy pixels are separated into individual
clouds. The second algorithm computes the location of the
cloud in the picture and the statistical features that determine
the dispersion of the cloud pixels in the picture. The third
algorithmdealswith the computation of the cloud trajectories
for the clouds detected at the previous step and the estimation
of their future location.

3.1. Cloud Detection Algorithm. The technique used to dis-
tinguish clouds from the sky is a modification of the Ratio
Red/Blue (R/B) threshold technique where the picture taken

by the camera is divided pixel by pixel, into clear and
cloudy regions, utilizing their red and blue pixel values. The
principle of the technique is that the different spectrum colors
that constitute sunlight are scattered in a different way by
the particles of the sky. In a cloud-free atmosphere, which
appears blue to our eyes, more light within the blue spectrum
is scattered by gas molecules, while clouds consisting of
water and ice particles scatter the same amount of blue
and red spectrum and appear colorless (ranging from white
to dark grey) to our eyes. Thus, clear sky sections of an
image have relatively lower red pixel values compared to
cloudy sections, and thus they can be distinguished [10, 12].
When a picture is processed, a red-to-blue threshold is used
to distinguish between clear and cloudy pixels. The exact
value of the separating threshold depends on the camera
and the atmospheric conditions, so it has to be determined
empirically. Furthermore, the threshold should not be the
same across the entire image but must be determined as a
function of the relative position of the pixels towards the
horizon and the sun [11, 13].

The pictures taken by the camera are colored images
(520×280 pixels), consisting of the three main red, green and
blue (RGB) compounds. Using image-processing techniques,
the three color compounds of the initial RGB picture were
isolated into three different images, that is, three grey-level
images of the corresponding red, blue, and green layers of
the original picture. The intensity of grey (ranging from 0 to
255) of every pixel of the generated pictures represents the
amount of the specific color at the same pixel of the original
image. Subsequently, the values of the pixels in the blue and
red picture for the same pixel were compared. In our research,
we used the modified R/B threshold method, where instead
of computing the ratio of red to blue, the criterion used was
the difference of blue to red (B-R threshold) as proposed by
Heinle et al. [14]. If the difference in the intensity of a pixel
between blue and red is less than the threshold, then the pixel
was classified as cloudy; otherwise, it was classified as sky. A
binary image of the same dimensions as the original image
was then created, where every pixel classified as cloudy had a
value of 1 and every pixel classified as sky had a value of 0.

Afterwards, the picture was further processed to extract
the characteristics of the clouds. At first, the cloud coverage
of the image was defined as the ratio of the cloud pixels over
the total cloud pixels. Then, the pixels classified as cloudy
were further processed taking into account their neighboring
pixels, and each group of neighboring cloudy pixels enclosed
in the same contour was considered to be an individual
cloud. The detected clouds of every picture were numbered
and further calculations were carried out to each of them in
order to define the designated cloud characteristics (spectral
and textural features [15, 16]) which will be used for the
identification of each cloud in the consequent pictures.

3.2. Computation of Cloud Center of Gravity. All the dynam-
ical and microphysical properties of a cloud are considered
to be applied to a single point in space that represents the
location of the equivalent cloud and the short-term cloud
movement can be calculated from sequential pictures, taken
at scheduled time intervals using kinematic equations. This
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point is called the center of fravity (COG) of the cloud and
is defined from the location of the cloud in the sky plane in
cartesian or polar coordinates, in a two-dimensional space.
COG is the point in space at which we consider that the total
mass of the cloud is concentrated and can be considered as
the equivalent center of mass in classical physics at which
external forces may be applied. Therefore, the coordinates
of COG result as the average of the position of each cloud
element (pixel) was weighted by themass of the element, over
the totalmass of the system (sumof the values for every pixel).
In the generated binary image, the weight of every pixel is
equal to 1, and the total mass of the cloud is equal to the
number of pixels that form the cloud while in the generated
RGB images the weight is equal to the pixel value for every
cloudy pixel. Since clouds are open shaped or hollow objects,
the COG is not identical to the geometrical center, and it can
be outside the contour of the cloud [17].

Apart from the coordinates of the COG of the cloud,
the statistical features that characterize the cloud have to be
calculated. Such features are the length and height of the
cloud (in pixels), the spread that represents the dispersion
of cloud elements over the COG (standard deviation), the
effective area of the cloud (defined as the product of the𝑥-axis
and 𝑦-axis spread), and the aspect ratio of the cloud (defined
as the ratio of the 𝑥-axis over 𝑦-axis spread). The technique
can be expanded not only to the mass of the cloud but to any
textural or spectral feature of the cloudy pixels providing the
dynamical evolution of cloud in time [18].

3.3. Computation of the Cloud Trajectories. The principle
used to estimate the cloud’s trajectories is based on the
assumption that the cloud is equivalent to a uniform object
in a rectilinear trajectory. The cloud’s motion is caused due
to advection and is considered not to be affected by the
variation of cloud’s characteristics in time, the partition of
a mother cloud in smaller clouds, or the merging of small
clouds. The short-term cloud motion was calculated from a
stack of sequential pictures, taken at scheduled time intervals
of 1 minute apart from a camera [19]. An individual cloud
was isolated in every picture, and the COG of that cloud was
recorded in every picture.Then, knowing the displacement of
the cloud and the time-lapse between the pictures, using the
equations of motion from kinematics, the cloud trajectories
for the 𝑥-axis and 𝑦-axis were calculated. Since the motion
of clouds can be approximated as a smooth deformation
with local gradual variations in velocities [20], the derived
equations were in 2nd degree polynomial form. The 2nd
degree polynomial form corresponds to clouds moving with
variable speed at constant acceleration, and at least three
sequential pictures are necessary for the computations.

At first, the equation of motion of the cloud over the
horizontal axis was estimated using the COG from the first
three pictures. Using the derived equation, the location of
the COG of the cloud was forecasted for the next time steps.
Next, this procedure was repeated using an additional known
position of the cloud (i.e., the first four pictures were used,
then the first five, and so on) in order to estimate the equation
of motion. This procedure was thus repeated, adding one
more picture at a time. At each iteration, the future location of

the COG was estimated based on the resulted equation. The
aimof this procedurewas the prediction of the future location
of the COG, using as few pictures (known time-lapses) and as
distant in time as possible (forecasted time-lapses). Then this
procedure was repeated for the vertical axis.

3.4. Accuracy of the Method. The forecasted location of a
cloud was compared to the true location of the COG as
resulted from the pictures taken, in order to estimate the
accuracy of the method. The accuracy (1) was estimated as
the distance between the forecasted COG of the cloud and
the true COG of the cloud over the true COG of the cloud.
The true COG of the cloud was derived by the pictures taken
by the camera:

𝑛
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where 𝑛
1
is the accuracy, 𝑋for, 𝑌for are the coordinates of the

forecastedCOG, and𝑋real,𝑌real are the coordinates of the real
COG for the specific time-lapse.

The drawback of the above formula is that it depends
on the location of the cloud, which affects the denominator,
resulting in different errors for clouds at different location on
the picture, even if the distance between the forecasted and
real COG is the same. Furthermore, this formula does not
include the parameter of the size of a cloud.

This additional parameter includes the error in shading
of the cloud over the area under consideration which is more
important than the error in the location of theCOG.Thus, the
same error in the COG is more significant for smaller clouds
than for bigger clouds. If the error in the COG is larger than
the dimensions of the cloud, the forecastedCOG is totally off-
position, and the shade of the cloud is not affecting the area
under consideration. This does not apply when the error in
the COG is smaller than the dimensions of the cloud, where
part of the cloud is shading the area under consideration.

Therefore, the accuracy is proposed as the distance
between the forecasted COG of the cloud and the true COG
of the cloud over the dimensions of the cloud (2). The
dimensions of the cloud were derived by the pictures taken
by the camera:
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where 𝑛
2
is the accuracy, 𝐷

𝑥
is the horizontal dimension of

the cloud (length), and 𝐷
𝑦
is the vertical dimension (height)

for the specific time-lapse.

4. Results

For demonstrating our methodology, we have used ten
sequential photographs of a cloud, taken at one-minute
intervals. The camera was intentionally faced towards North
to avoid the use of neutral density filters that would protect



4 Conference Papers in Energy

Table 1: Location of COG and dimensions for the selected cloud in
every picture.

Pic. Cloud pixels Length Height COG 𝑥 COG 𝑦
1 2619 99 35 93.8 219.4
2 3315 114 39 122.2 221.3
3 3884 126 47 150.0 223.4
4 4241 131 49 175.5 225.2
5 4585 132 54 199.4 226.0
6 5091 129 57 228.5 226.7
7 5382 137 62 248.3 227.8
8 5860 148 69 273.5 229.8
9 5653 127 74 290.7 228.4
10 6275 132 77 312.0 229.8

the camera lens flare or the use of sun-blocking devices which
would display the sun circle as a black area in the image.

Furthermore, if the camerawas faced towards the Sun, the
area around the sun circle would appear whiter and brighter
than the rest of the sky, and, thus, it would incorrectly be
classified by the cloud detection algorithm as “cloudy” even
if it was not [11, 13].

Using the developed algorithm, the cloudy pixels were
distinguished from the noncloudy ones, and the correspond-
ing binary images were created, where the cloudy pixels are
shown in white and the non-cloudy pixels are shown in black.
The threshold value used was 60.This value was applied to all
the pixels of the image since the camera was faced towards
north, and the field of view of the camera did not include the
horizon or the sun. For every picture, the individual clouds
were separated and identified. A cloud that was present in all
the photos was selected for demonstrating the methodology.

Figure 1 presents the initial pictures, where the prese-
lected cloud is encircled in a red contour, and the binary
representation of the distinction of clouds (white) from sky
(black) for the ten timesteps, each one-minute apart. For each
picture of the stack, the COG and the statistical features of the
selected cloud were calculated. Furthermore, the spectral and
textural features of the cloudwere computed in order to verify
the presence of the same cloud in every sequential picture.

Table 1 presents the results of the calculations for the
COG, the cloud pixels, and the dimensions for the selected
cloud in every picture. Table 2 presents the results of the
calculations for the spread for the selected cloud in every
picture. As seen from the data of the table, the COG varied
with time, while the remaineder data of the table indicate that
the cloud grows with time, and changes shape from a “thin
eclipse” towards a “circle.”

From the displacement of the COG of the cloud in the
image sequence and the evaluation of the features of the
cloud, the equation of motion of the cloud was then calcu-
lated. Using the resulting equation, the COG of the cloud
in future timesteps was forecasted up to the penultimate
picture, and the procedure was repeated using one more
known picture. Then, the forecasted positions of the cloud’s
COG were compared to the actual position of the cloud, as
derived from the original pictures.

Figure 1: Initial photograph and binary representation of the cloud/
sky distinction for the 1st, 3rd, 5th, 6th and 9th timestep.

Figure 2 presents the accuracy of our methodology for
tracking cloud motion. The vertical axis of the graph repre-
sents the accuracy 𝑛

1
and 𝑛

2
as described in Section 3. The

numerator of the accuracy for both formulas is computed as
the forecasted location of the COG of the 10th photograph
compared to the real location of the COG. The denominator
for 𝑛
1
is theCOGof the cloud in the tenth picture, whereas the
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Table 2: Spread calculations for the selected cloud in every picture.

Pic. Spread𝑋 Spread 𝑌 Effect area Aspect ratio
1 25.08 8.51 213.4 2.95
2 27.71 9.75 270.2 2.84
3 30.3 10.53 319.1 2.88
4 31.18 11.23 350.2 2.78
5 31.63 12.07 381.8 2.62
6 32.21 13.34 429.7 2.41
7 33.03 14.07 464.7 2.35
8 34.34 15.58 535.0 2.20
9 31.81 16.76 533.1 1.90
10 33.75 17.84 602.1 1.89

Accuracy in the forecasted COG of the cloud
100
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Figure 2: Accuracy in the forecasted COG of the cloud in the 10th
image compared to the measured COG of the same cloud.

denominator of 𝑛
2
is based on the dimensions of the cloud in

the tenth picture.The position of the cloud was located using
cartesian coordinateswhere point 0,0was located at the upper
left corner of the picture. The horizontal axis represents the
last known photograph that was used to derive the equation
of motion. For example, at timestep “−7,” 3 images were used
to calculate the COG of the cloud, 7 time steps in advance.
Likewise, at timestep “−6,” 4 images were used to calculate
the COG of the cloud, 6 time steps in advance, and so on.

As seen in the graph, the equation simulates very precisely
the equation of motion of the cloud, although it exhibits
great dependence on the forecast period and the number
of recorded images. As the forecast period decreases and
the number of recorded images increases, the accuracy in
the estimation of the location of the cloud increases. More
precisely, the 𝑛

1
accuracy is higher than 95% by processing

only 3 images and 7 time steps in advance of the “predicted”
image, increasing to 99% for three steps in advance.

Correspondingly, by introducing the size of the cloud in
the formula, the 𝑛

2
accuracy is always higher than 88% from

point −7 onwards, whichmeans that the predicted location of
the cloud’s elements, when taking its size into consideration
is always within the spread of the cloud.

5. Conclusions and Future Work

This paper presents the methodology for short-term predic-
tion of cloud motion, along with a demonstration of the first
results of our algorithm. A ground-based camera installed
at the roof top of a university building was programmed to
photograph the sky at scheduled time intervals. The pictures
of the sky are preprocessed by a cloud detection algorithm
that separates cloudy from non-cloudy pixels and generates a
binary equivalent of every picture. The technique proposed
in this study for the distinction is the red-blue threshold
technique, which distinguishes clouds from sky by analyzing
the image and by comparing the red to the blue values of the
image to a threshold value. For every cloud in the pictures,
the spectral and textural features were calculated. Then, the
algorithm regarding the calculation of cloud trajectories was
applied to the generated pictures. The COG of the clouds
were calculated, and the equations of motion were generated.
Using the generated equations of motion, the future position
of the cloud was forecasted, and for the verification of the
accuracy of the algorithm, the forecasted position of the
cloud was compared to the actual position measured in the
final picture. Furthermore, the dimensions of the cloud were
integrated in our error analysis in order to evaluate the effect
of the error in the forecasted location of the COG to the shade
of the cloud over a specified area.

A demonstration of the methodology was presented for
ten pictures of the sky taken at one-minute intervals. As
shown in the results, the algorithm exhibits great dependence
on the forecast period and the number of recorded images.
As the forecast period decreases and the number of recorded
images increases, the accuracy in the estimation of the
location of the cloud increases. The minimum accuracy of
the forecasted COG towards the real COG was 95% at point
−7, while when including the dimensions of the cloud to the
calculations the maximum error was 88%.

We believe that the developed methodology will provide
a useful tool for researchers that want to focus on the effect
of small local clouds on the energy production of their solar
RES.
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