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Deep RL scheme to control active/reactive power using the inverter’s capability curve.
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a large share of distributed generators, such as photovoltaic units and wind turbines. These inverter-based
resources are intermittent, but also controllable, and are expected to amplify the role of distribution networks
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Deep deterministic policy gradient
Decentralized control
Active distribution systems

together with other distributed energy resources, such as storage systems and controllable loads. The available
control methods for these resources are typically categorized based on the available communication network
into centralized, distributed, and decentralized or local. Standard local schemes are typically inefficient,
whereas centralized approaches show implementation and cost concerns. This paper focuses on optimized
decentralized control of distributed generators via supervised and reinforcement learning. We present existing
state-of-the-art decentralized control schemes based on supervised learning, propose a new reinforcement
learning scheme based on deep deterministic policy gradient, and compare the behavior of both decentralized
and centralized methods in terms of computational effort, scalability, privacy awareness, ability to consider
constraints, and overall optimality. We evaluate the performance of the examined schemes on a benchmark
European low voltage test system. The results show that both supervised learning and reinforcement learning
schemes effectively mitigate the operational issues faced by the distribution network.
Nomenclature

A Action space of the environment in the
Reinforcement Learning (RL) model.

𝛼′ Action of the RL method that maximizes
the expected return in the next state 𝑠′.

𝛼𝑡 Action of the RL method at time step
(iteration) 𝑡.

𝛼1,𝑗,𝑡 Active power action of DER at node 𝑗 and
time 𝑡.

𝛼2,𝑗,𝑡 Reactive power action of DER at node 𝑗 and
time 𝑡.

𝛽𝑗, 𝑘 Regression coefficients for the 𝑗th DER unit
and 𝑘th feature of the supervised learning
method.

𝝓𝑗, 𝑘 The 𝑘th input measurement for the 𝑗th
inverter-based DER.

𝜱𝑗 Feature matrix of the supervised learning
method for the 𝑗th inverter-based DER.

𝒖 Vector of control variables in the central-
ized method.

𝛥𝑡 Length of each time period in the central-
ized method.

𝜂𝜇 Learning rate for the actor network in the
RL model.

𝜂�̃� Learning rate for the critic network in the
RL model.

𝛾 Discount factor of the RL method.
E(⋅) Expectation operator used in the RL

method.
𝐱 State vector representing bus voltage mag-

nitudes and angles, except for the slack bus
where the angle is set to 0 degrees and the
magnitude is fixed.

𝐲 Constant parameter vector comprising the
network topology, physical characteristics
of the grid, and the thermal and voltage
constraint limits.

 The set of inverter-based DERs in the
distribution network.

 , 𝜏 The set and number of time steps used in
the optimization problems.

P Transition function of the environment in
the RL method.

𝜇 Actor network that maps the observed state
into an action in the RL method.

𝜇′ Target actor network: a time-delayed copy
of the actor network.

𝜙𝑗,1,𝑡 Net active power demand at node 𝑗 and
time 𝑡 of the supervised learning method.
2

𝜙𝑗,2,𝑡 Local measured voltage at node 𝑗 and time
𝑡 of the supervised learning method.

𝜙𝑗,3,𝑡 Maximum active power capability of the
inverter at node 𝑗 and time 𝑡.

𝜙𝑗,4,𝑡 Feature combination of 𝜙𝑗,1,𝑡 and 𝜙𝑗,2,𝑡 at
node 𝑗 and time 𝑡 of the supervised learning
method.

𝜋 Control policy of the RL method.
𝜃𝜇′ Parameters of the target actor network of

the RL method.
𝜃𝜇 Parameters of the actor network of the RL

method.
𝜃�̃�′ Parameters of the target critic network of

the RL method.
𝜃�̃� Parameters of the critic network of the RL

method.
𝜃𝑘𝑚,𝑡 Voltage angle difference between buses 𝑘

and 𝑚 at time 𝑡.
𝜃𝑠𝑙𝑎𝑐𝑘 Fixed reference slack bus voltage angle.
�̃�𝑗, 𝑡 Active power injection at node 𝑗 and

time 𝑡 according to the supervised learning
method.

�̃� Critic network that uses the state–action
pair to calculate the action value (Q-value).

�̃�∗(⋅) Optimal action value function (Bellman
equation) of the RL method.

�̃�𝜋 (⋅) Action value function (Q-function of the RL
method) following policy 𝜋.

�̃�′ Target critic network: a time-delayed copy
of the critic network.

𝑉 𝜋 (⋅) Value function of the RL method.
𝑐(⋅) General objective function representation of

the centralized method.
𝑐1 Cost parameter of the RL method to penal-

ize the local voltage constraint.
𝑐2 Cost parameter of the RL method to penal-

ize the case where the apparent inverter
power is violated.

𝐶𝑃 Cost parameter to penalize curtailing active
power.

𝐶𝑄 Cost parameter to penalize reactive power
control.

𝑐𝑜𝑠(𝜙max) Power factor corresponding to the accept-
able inverter operational mode.

𝑓 (⋅) Power flow equations enforcing active and
reactive power balances at each node.
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𝑔DER(⋅) DER technical inequality constraints and
regulatory limitations in the centralized
method.

ℎ𝐼 (⋅) Current (thermal) constraints referring to
acceptable current magnitudes.

ℎ𝑉 (⋅) Voltage constraints referring to acceptable
voltage magnitudes.

ℎDER(⋅) DER technical equality constraints of the
centralized method.

𝐼𝑏𝑟,𝑖,𝑡 Current flowing at branch 𝑖 and time 𝑡.
𝐼𝑖,max Maximum thermal limit at branch 𝑖.
𝑁𝑏 Total number of network nodes in the

system.
𝑁𝐾 The number of features in the supervised

learning method.
𝑁𝑘 Random noise following the Ornstein–

Uhlenbeck process in the RL
method.

𝑁ℎ𝑜𝑟 Time horizon of the optimization problem
in the centralized method.

𝑁𝑂𝑃𝐹 The number of optimal setpoints obtained
in the centralized method.

𝑃𝑐𝑢𝑟𝑡,𝑗,𝑡 Curtailed power of the unit connected at
node 𝑗 and time 𝑡.

𝑃min
𝑔,𝑗,𝑡 Lower limit for active power injection at

node 𝑗 at time 𝑡.
𝑃𝑔,𝑗,𝑡 Active power injection of the unit connected

at node 𝑗 and time 𝑡.
𝑃max
𝑔,𝑗,𝑡 Maximum available active power of the unit

connected at node 𝑗 and time 𝑡.
𝑃𝑖𝑛𝑗,𝑗,𝑡 Total power injection at node 𝑗 and time

step 𝑡.
𝑃𝑙,𝑗,𝑡 Active power load at node 𝑗 and time step

𝑡.
𝑄𝑐𝑡𝑟𝑙,𝑗,𝑡 Reactive power output of unit connected at

node 𝑗 and time 𝑡.
𝑄max

𝑔,𝑗,𝑡 Upper limit for reactive power of unit
connected at node 𝑗 and time 𝑡.

𝑄min
𝑔,𝑗,𝑡 Lower limit for reactive power of unit

connected at node 𝑗 and time 𝑡.
𝑄𝑔,𝑗,𝑡 Reactive power injection/absorption of unit

at node 𝑗 and time 𝑡.
𝑄𝑖𝑛𝑗,𝑗,𝑡 Total reactive power injection/absorption

at node 𝑗 and time 𝑡.
𝑄𝑙,𝑗,𝑡 Reactive power load at node 𝑗 and time step

𝑡.
𝑅(⋅) Reward function of the RL method.
𝑟(𝑠, 𝛼) Immediate reward of the RL method re-

ceived for taking action 𝛼 in state 𝑠
𝑆 State space representation of the environ-

ment in the RL method. Current state
denoted as 𝑠 and next state as 𝑠′.

𝑠𝑡 State of the RL method at time step 𝑡.

1. Introduction

1.1. Motivation & background

Over the last years, Distribution Networks (DNs) have become
more and more observable and controllable, due to the widespread
installation of smart metering devices with control capabilities, and
3

𝑆max
inv,j Capacity of the unit’s inverter located at

node 𝑗.
𝑆max
𝑔,𝑗,𝑡 Maximum apparent power capability of unit

at node 𝑗 and time 𝑡.
𝑡 Time index.
𝑉min/𝑉max Minimum/Maximum acceptable voltage

magnitude in the distribution grid.
𝑉𝑗,𝑡 Voltage magnitude at bus 𝑗 at time 𝑡.
𝑉𝑠𝑙𝑎𝑐𝑘 Fixed reference bus voltage magnitude.
𝑌𝑘𝑚 Nodal admittance matrix of the distribution

grid.

Acronyms

AI Artificial Intelligence
BESS Battery Energy Storage System
BaU Business as Usual
DDPG Deep Deterministic Policy Gradient
DER Distributed Energy Resource
DG Distributed Generator
DN Distribution Network
LV Low Voltage
MAE Mean Absolute Error
MSE Mean Squared Error
ML Machine Learning
NN Neural Network
OPF Optimal Power Flow
RL Reinforcement Learning
RMSE Root Mean Squared Error
PV Photovoltaic

the deployment of numerous flexible Distributed Energy Resources
(DERs) [1]. The high number of Distributed Generators (DGs), such
as photovoltaic (PV) units or wind turbines, along with other DERs,
such as electric vehicles, Battery Energy Storage Systems (BESSs),
and flexible loads, are elevating the role of DN operators, but are
also imposing substantial challenges to the DN operation [2]. Modern
grids needs to operate safely under higher complexity, as they are not
just sinks of power anymore, and increased uncertainty due to the
intermittent nature of renewable-based DGs that cannot be predicted
perfectly and are volatile. Therefore, controlling these resources is of
crucial importance to guarantee safe and stable grid operation.

In terms of controlling approaches, the recent advances in computer
science and computational power have fostered research on machine
learning (ML) and artificial intelligence (AI). These fields offer a large
variety of suitable methods for power systems algorithms that can make
use of historical data and real-time measurements to learn parameters
and design sophisticated control functions. Traditional fit-and-forget
control approaches of (mostly) over-dimensioned grids can now be
substituted by more sophisticated mathematical approaches based on
ML which, with the additional support of the communication links,
integrate DERs safely into the existing infrastructure and optimize
the operation of the grid. Operational schemes are categorized as
centralized, distributed, and decentralized (or local) based on the com-
munication infrastructure available to govern the DERs. In the rest
of this section, we summarize the available methods and provide a
literature review on the various control approaches. Since most of our
previous work focused on centralized OPF-based control and supervised
learning methods to control DERs in distribution networks, e.g., [3–
6], we only provide a summary of these methods. Then, we focus on
the contributions of this paper performing a detailed state-of-the-art

literature review on the RL-based methods for voltage control. Finally,
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we distinguish our work against the revised literature and summarize
our contributions.

1.2. Related works

1.2.1. Centralized OPF-based methods
Centralized methods need an extensive monitoring and communica-

tion infrastructure, and they often rely on sophisticated optimization-
based control approaches. Their benefit stems from the fact that they
allow for system-wide optimal functioning through coordinated control
of DERs [7]. Because of recent advances in computational power,
wireless communication, and new theoretical discoveries in handling
the nonlinear AC power flow equations, e.g., [8,9], centralized control
has gained a lot of attention. Nevertheless, the infrastructure necessary
for this form of control is rarely present in DNs, and the financial
advantage of investing in such capabilities remains debatable.

1.2.2. Conventional decentralized and distributed methods
Decentralized control techniques, e.g., [10], use local measure-

ments to address power quality and security issues. These sorts of
controls have been integrated into a number of grid codes, and they
are presently the most commonly used approach in DNs. The sim-
plicity and low implementation costs of these systems are their key
advantages. Because no communication infrastructure is required, the
required investment is kept to a minimum. Decentralized approaches,
however, normally take a one-size-fits-all approach, with the same con-
trol settings used in all DNs, regardless of generator type or operating
conditions. In a fast-changing environment, such an approach might
lead to unanticipated challenges, such as stability issues [3,4]. Finally,
distributed techniques, e.g., [11,12], rely on minimal communication
among DERs to coordinate and produce near-optimal results. For a
detailed survey of the latest literature on distributed algorithms on the
areas of optimization and control of power systems we refer the inter-
ested reader to [12] where distributed algorithms for optimal power
flow (OPF) problems are compared. While distributed approaches at-
tempt to bridge the gap between local and centralized systems, they
still need some communication infrastructure and often use consensus-
based control algorithms that are susceptible to communication delays
and errors.

1.2.3. Decentralized methods based on supervised learning
Lately, data-driven methods based on machine learning have at-

tracted a lot of attention in the power systems area. In terms of
supervised learning, most works use regression methods to represent
he optimal behavior obtained by offline optimal power flow calcula-
ions [3,5,6,13–16]. In [3,5], we perform three-phase optimal power
low calculations based on historical data to design local controls based
n segmented regression and support vector machines that emulate
he optimal behavior without the use of any communication. The pro-
osed approach in [13,16] uses non-linear control policies to calculate
he real-time reactive power injections of inverter-based DGs. It uses
inearized grid modeling, assumes balanced operation, and focuses on
eactive power control, exploiting the flexibility of various kernel func-
ions to model complex and non-linear behaviors. In [14,15], multiple
inear regression models are used in an open-loop fashion to calculate

function for each inverter that maps its local historical data to pre-
alculated optimal reactive power injections. These works focus on
eactive power control, not considering possible combinations with
ther available controls, and [15] assumes a balanced DN, i.e. using a
ingle-phase representation. However, these approaches work well with
egacy equipment and do not require a stability analysis like [5] which
s addressed in [4]. The interested reader is referred to [17] for a review
n learning to control power systems, with an emphasis on guidelines
or concrete safety problems.
4

1.2.4. Decentralized methods based on reinforcement learning
Finally, in terms of (deep) Reinforcement Learning (RL), we restrict

urselves to works related to power systems that are in normal operat-
ng state, i.e., the control policies are learned and applied under normal
perating conditions. Such works are related to frequency regulation,
.g., [18–20], demand response, e.g., [21,22], and the main application
f this paper, voltage control, e.g., [23–31].

In [23], a two-timescale approach is used to regulate voltages in
istribution systems: on the faster timescale, a voltage tracking problem
ecides on the DER setpoints, while deep RL is used on the slower
imescale to control capacitor banks for long-term voltage stability.
he control is based on switching on/off the capacitors to regulate
oltage. In [24], voltage control is achieved by deciding on the genera-
or voltage setpoints. Deep Q-network and Deep Deterministic Policy
radient (DDPG) are used to perform voltage control, the latter of
hich showing better long-term performance due to a larger range
f exploration. A similar RL algorithm is proposed in [26] where the
uthors reduce the system’s losses by controlling the reactive power of
mart transformers. However, a data-driven network model is used to
reate the training data for the RL algorithm without interactions with
he actual distribution grid.

Ref. [27] proposes a voltage sensitivity based DDPG method to com-
ute analytically the gradient of the value function instead of using the
ritic neural network. The control relies also on reactive power only,
ut considers a multi-agent approach. In [29], the authors propose a
wo timescale hybrid voltage control strategy based on mixed-integer
ptimization and multi-agent reinforcement learning. The focus of the
ast timescale is to mitigate short-term voltage fluctuations by reactive
ower control of smart PV inverters and active power of electric
ehicles. Ref. [28] is based also on two different DERs for control; it
ses reactive power from PV and active power from a BESS to mitigate
oltage issues. Another RL-based method that controls the tap position
f voltage regulating transformers and capacitor banks is presented
n [30], whereas the authors of [31] utilize active power curtailment of
V units and reactive power control of static var compensators. In both
eferences, a single-agent approach is used in a centralized manner,
.e., the RL agent requires full knowledge of the environment.

Many of the revised papers, i.e., [23,24,26] apply an RL algo-
ithm to one control measure to regulate voltages. The references that
onsider multiple measures, i.e., [28–31], rely on separate DERs for
ach offered control measure. In our paper, we focus on decentralized
ontrol of a single agent to optimally regulate voltage, without need
or communication network. In contrast to the revised literature, we
se both active power curtailment and reactive power control from the
ame inverter-based DG. We perform a steady-state analysis and we
onsider the inverter’s capability curve to decide on the reactive and
ctive power control setpoints.

Finally, we refer the interested reader to two review papers; an
xtensive review in [32], summarizing the use of RL in power system
ontrol with respect to normal, emergency, and restorative control
pplications; and Ref. [33] providing a comprehensive review on recent
L-based methods to control voltages in power systems, where the
ifferent methods are compared in terms of the used environment, state
pace and action space representation, reward function, constraints,
nd challenges.

.3. Contributions

In this paper, we compare state-of-the-art decentralized control
pproaches in active distribution grids using AI-based methods. We
onsider reactive power control and active power curtailment from
he same inverter-based DG and the decentralized schemes are derived
y supervised learning and deep RL methods. More specifically, the
ontributions of this paper can be summarized as follows:
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• The proposal of a deep reinforcement learning algorithm for
voltage control in active distribution grids based on deep deter-
ministic policy gradient. The single agent represents any inverter-
based distributed energy resource and controls both active and
reactive power using the inverter’s capability curve.

• A quantitative comparison of the state-of-the-art approaches to
control distributed energy resources in active distribution grids,
i.e., based on purely local control laws, optimal power flows, su-
pervised learning and reinforcement learning, using error metrics.

• A qualitative evaluation of the different options/methods to con-
trol DERs, including optimality, constraint consideration, needed
training effort, safety, capability to adapt to changes, privacy and
scalability that can assist decisions of operators and researchers.

The remainder of the paper is organized as follows: In Section 2,
we present the mathematical formulation of the decentralized DER
controllers using (a) the supervised learning algorithms based on offline
optimal DER setpoints, and (b) RL-based schemes. Then, in Section 3,
we introduce the case study and simulation results that show the
performance of the optimized controllers according to the different
methods. Finally, we draw conclusions in Section 4.

2. Supervised learning and RL-based methods

2.1. Supervised learning based on off-line data

Supervised learning requires the offline computation of many opti-
mal DER setpoints that represent different operating conditions. These
can be obtained via OPF calculations, under specific objectives, such
as system losses minimization or reference voltage tracking. Since
the focus of this paper does not lie on OPF formulations, a generic
high-level description is provided here. For a full three-phase OPF
formulation in distribution grids, we refer the interested reader to [34].
System safety and power quality considerations can be incorporated by
including appropriate constraints in the optimization problem.

Offline OPF. An optimal power flow problem calculates the most effi-
cient settings of the power system control variables to minimize the
total cost of generating and transmitting electricity while satisfying
the operational constraints. As inputs it uses the system’s topology,
its parameters, load demand and the generators’ and lines’ operational
constraints that need to be satisfied. The outputs of an OPF problem
are the controllable units’ setpoints and the objective function value
that is optimized. We refer the interested reader to [35] for a detailed
analysis of the power flow equations and their use in an optimization
setup. Formally, the OPF problem is represented as

min
𝐮

𝑐(𝐱,𝐮) (1a)

s.t. 𝑓 (𝐱,𝐮, 𝐲) = 0, (1b)

ℎ𝑉 (𝐱,𝐮, 𝐲) ≤ 0, (1c)

ℎ𝐼 (𝐱,𝐮, 𝐲) ≤ 0, (1d)

ℎDER(𝐱,𝐮, 𝐲) ≤ 0, (1e)

𝑔DER(𝐱,𝐮, 𝐲) = 0. (1f)

The control vector 𝐮 represents the controllable entities, e.g. the DER
active and reactive power setpoints; the state vector 𝐱 refers to the
bus voltage magnitudes and angles (except for the slack bus, where
the angle is set to 0 degrees and the magnitude is fixed); the constant
parameter vector 𝐲 comprises the network topology, physical charac-
teristics of the grid, and the thermal and voltage constraint limits;
finally, the function 𝑐(𝐱,𝐮) represents the various objectives, including
the operational cost of the used measures, electricity cost/revenue by
exchanging energy with the upper voltage networks, revenues from an-
cillary service provision, etc. The power flow equations are represented
5

by Eq. (1b) which enforces active and reactive power balances at each
Fig. 1. Data-driven control design based on supervised learning.

node. Constraints (1c)–(1d) correspond to power quality constraints,
referring to acceptable voltage and current magnitudes. Finally, the
DER models and constraints are incorporated via (1e)–(1f) which model
the DER technical and regulatory limitations, such as curtailing PV
power, setting limits for the battery state of charge, updating the BESS
energy capacity at each time, etc. The simulation outcomes of many
operational conditions are provided to the data-driven design stage,
where the obtained optimal data are used to design local DER controls
for real-time DN operation based on ML techniques.

Data-driven control design. Fig. 1 summarizes the procedure to generate
the optimized local DER control models used in the real-time decision
making. As input data, each DER considers only local information,
e.g., local solar radiation, active and reactive demand, voltage mag-
nitude, maximum active and reactive power capability of the inverter,
the local time, and interaction terms among these. The scope of the
supervised ML approach is to create a model that given these local
inputs, will respond similarly to the OPF behavior it is trained from.

In order to design robust ML-based control schemes, the training
dataset should consider both expected as well as unexpected opera-
tional conditions. It should consider the seasonal variation of load and
generation, the various valid network configurations and intermittent
renewable-based energy resources. For instance, when exploring the
summer season, both sunny and cloudy days need to be considered in
the training dataset, as well as typical consumption patterns, and all
possible DN topologies. It is important to note that all the considered
conditions do not need to be present in the historic realized behavior.
Instead, they can be artificial, i.e., simulated, to be used as inputs in the
design of the ML-based schemes and lead to robust and safe data-driven
behavior.

There are various regression and classification ML algorithms, such
as segmented and multiple regression, support vector machines, and
decision trees, that can be used according to the required complexity
and accuracy in terms of mimicking the offline OPF response. The
interested reader is referred to [5] for a detailed discussion of such
models. Although the mathematical models differ from each other, they
all try to map the observed OPF behavior as close as possible using
local features. The real-time response of the 𝑗th inverter-based DER
(𝑗 ∈  ) in terms of active power control 𝑝𝑗,𝑡 is derived from the
𝑁𝑂𝑃𝐹 optimal setpoints (𝑡 ∈  ) obtained in the offline calculations,
and the final rules depend only on local features. The feature matrix
𝜱𝑗 ∈ 𝐑𝑁𝑂𝑃𝐹 ×𝑁𝐾 contains as columns the 𝑁𝐾 features and as rows
the 𝑁𝑂𝑃𝐹 observations of the 𝑘th input measurement 𝝓𝑗,𝑘 ∈ 𝐑𝑁𝐾 ,
i.e. 𝜱𝑗 = [𝝓𝑗,1,𝝓𝑗,2,… ,𝝓𝑗,𝑁𝐾

]𝑇 .

2.2. Deep RL-based methods

In this section, we explain the main principles of deep RL, and
we present in detail the mathematical model of the specific algorithm
applied in this paper.
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2.2.1. Basics of (deep) RL methods
Reinforcement learning differs from supervised learning in the sense

that the focus is not on labeled input and output data, but rather on
trying out different control actions and evaluating them according to
a reward system. Thus, a balance is sought between exploration of
uncharted territory and exploitation of gained knowledge based on the
observed states and rewards. The agents interact with the environment,
which is typically modeled as a (partially observable) Markov decision
process following the principles of dynamic programming.

The environment of our RL model is defined by: a (continuous
or discrete) state space 𝑆; a (continuous or discrete) action space
A; an environment transition function P : 𝑆 × A → 𝑆; a reward
function 𝑅 : 𝑆 × A → 𝑅; and a discount factor 𝛾 ∈ [0, 1]. The main
principle is summarized as follows; At each time step 𝑡, the agent (e.g., a
DER unit) observes the state 𝑠𝑡 ∈ 𝑆, performs an action 𝛼𝑡 ∈ A following
a control policy 𝜋 (e.g., PV curtailment, BESS charging or discharging,
injecting/absorbing reactive power) that alters the environment, and
receives the corresponding reward signals 𝑟 ∈ 𝑅 (e.g., revenues from
injecting power, penalties for causing voltage issues). The goal is to
learn and apply the optimal action based on the current state in order
to maximize the accumulated reward over time. This is given by 𝑅(𝑡) =

𝑇
𝑡=0 𝛾

𝑡𝑟𝑡.
Let us define the value function 𝑉 𝜋 ∶ 𝑆 → R:

𝑉 𝜋 (𝑠) = E[
𝑇
∑

𝑡=0
𝛾 𝑡𝑟𝑡|𝑆0 = 𝑠], ∀𝑠 ∈ 𝑆 (2)

nd the action value function (Q-function) �̃�𝜋 ∶ 𝑆 × 𝐴 → R:

�̃�𝜋 (𝑠, 𝛼) = E[
𝑇
∑

𝑡=0
𝛾 𝑡𝑟𝑡|𝑆0 = 𝑠, 𝐴0 = 𝛼], ∀𝑠 ∈ 𝑆,∀𝛼 ∈ A (3)

hich models the expected discounted return when the agent takes the
ction 𝛼 in state 𝑠 and then follows the policy 𝜋.

The Q-function is updated by the Bellman equation, i.e., an iterative
lgorithm given by

�̃�∗(𝑠, 𝛼) = E[𝑟(𝑠, 𝛼) + 𝛾 max
𝑎′∈A

�̃�∗(𝑠′, 𝛼′)]. (4)

where 𝛼′ refers to the action that maximizes the expected return in
the next state 𝑠′. This algorithm will converge to the optimal solution
�̃�∗(𝑠, 𝛼) as 𝑡 → ∞ as long as the state signals fulfill the Markov property.

The traditional Q-learning requires discretization of the observation
space, since it relies on tabular methods. This introduces computational
concerns when the dimensions are large, leading to memory issues
and prolonged training stages. Furthermore, it is sometimes difficult
to discretize realistic environments which include continuous variables.
For these reasons, deep RL models have gained a lot of attention lately,
due to their efficiency in approximating the policies and Q-functions.
They leverage the historic agent-environment interactions to extract
the optimal policies, which may be based on simulated or real events.
Typically, deep RL models use Neural Networks (NN) to estimate Q-
values. Their efficiency and stability are increased by using a targeted
Q-network apart from the current Q-network, and by using experience
replay where samples of the agent’s experience in terms of actions and
rewards, i.e., mini-batches, are stored and used to train the Q-network.

The available deep RL models can be categorized into model-free
and model-based algorithms. The former are easier to tune and im-
plement, but their efficiency depends on the samples. The latter are
constructed using a physical/mathematical model but are more difficult
to formulate. We explored several (deep) RL models and algorithms
that can be found in the literature, such as asynchronous advantage
actor–critic, proximal policy optimization, trust region policy optimiza-
tion, Deep Deterministic Policy Gradient (DDPG), and twin delayed
DDPG [36]. After considering the overall performance in terms of
average reward per episode and convergence stability for our use case,
we observed that the DDPG showed the best behavior with the default
6

hyperparameters, and thus, in the rest of the paper we focus on the
DDPG algorithm. Comparing different RL methods is outside the scope
of this paper, since one would need to compare the mathematical
models, the various parameter sets of each method and convergence
characteristics. The selected method is a model-free, off-policy, and
actor–critic deep RL algorithm that includes continuous state and action
spaces.

2.2.2. Deep deterministic policy gradient
In this section, we present the RL method, based on DDPG, to

control DERs in active distribution grids. The selected method follows
an ’actor–critic’ architecture, which involves two neural networks. The
actor network is responsible for learning the optimal control policy 𝜋
that maps the state of the distribution network to the corresponding
control actions of the DERs, while the critic network estimates the
Q-function (4), i.e., the expected cumulative reward obtained from
following the policy. It is ’model-free’, i.e., it does not require any prior
knowledge of the distribution network or the dynamics of the DERs,
and is an ’off-policy’ method, i.e., the agents learn from data generated
by any policy, not the optimal policy necessarily. DDPG algorithms can
work with continuous control variables, such as PV curtailment and
reactive power control actions, as considered in this paper.

The procedure and the main principles of the DDPG algorithm of the
networks are given in Fig. 2. First, the actor network, denoted as 𝜇(𝑠|𝜃𝜇)
and shown as block 1 in Fig. 2 maps the observed state into an action 𝛼,
and then the critic network denoted as �̃�(𝑠, 𝛼|𝜃�̃�) and shown as block
2 in Fig. 2, uses the state–action pair to calculate the action value (Q-
value). The parameters of the neural networks are represented by 𝜃𝜇

for the actor and 𝜃�̃� for the critic network. To foster exploration and
avoid getting stuck in local solutions, the random noise 𝑁𝑘 following
the Ornstein–Uhlenbeck process [37] is added to the policy. In each
iteration, denoted by the index 𝑘, the tuple (𝑠𝑘, 𝛼𝑘, 𝑟𝑘, 𝑠𝑘+1) is stored in
the replay buffer 𝐵 shown as block 3 in Fig. 2.

A time-delayed copy of these two networks is also used to improve
the training stability. This is achieved by introducing the so-called
target networks that are denoted by �̃�′(𝑠, 𝛼|𝜃�̃�′ ) and 𝜇′(𝑠|𝜃𝜇′ ), and
shown as block 4 in Fig. 2; their parameters 𝜃�̃�′ and 𝜃𝜇′ track smoothly
the main networks by

𝜃�̃�
′
← 𝜏𝜃�̃� + (1 − 𝜏)𝜃�̃�

′
, 𝜃𝜇

′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
. (5)

From the replay buffer 𝐵 that serves as a data-pool, 𝑁 samples are
derived to train the neural networks. More specifically, to first train
the target critic network, we calculate for each sample 𝑖 the sum of the
immediate reward and the expected Q-function value of the next state,
given by

𝑦𝑖 = 𝑟𝑖 + 𝛾�̃�′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇
′
)|𝜃�̃�

′
). (6)

Then, as shown in block 5 of Fig. 2, the critic network is updated by
minimizing the averaged loss function between the estimated reward
calculated in (6) and the expected reward of the derived 𝑁 samples
from the critic network, given by

𝐿(𝜃�̃�) = 1
𝑁

𝑁
∑

𝑖
(𝑦𝑖 − �̃�(𝑠𝑖, 𝛼𝑖|𝜃�̃�))2. (7)

Thus, the parameters of the critic network are updated by

𝜃�̃� ← 𝜃�̃� − 𝜂�̃�∇𝜃�̃�𝐿(𝜃
�̃�), (8)

here 𝜂�̃� is the learning rate for the critic network and ∇𝜃�̃�𝐿(𝜃
�̃�) is the

radient of the averaged loss function (7) with respect to 𝜃�̃�.
Finally, the actor network is updated via a gradient ascent ap-

roach shown in block 6 of Fig. 2 that maximizes the average policy
erformance of the used 𝑁 samples, given by

∇𝜃𝜇𝐽 (𝜃𝜇) ≈
1
𝑁

𝑁
∑

𝑖
∇𝛼�̃�(𝑠, 𝛼|𝜃�̃�)|𝑠=𝑠𝑖 ,𝛼=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠𝑖 . (9)

he parameters of the actor network are updated by

𝜃𝜇 ← 𝜃𝜇 + 𝜂 ∇ 𝐽 (𝜃𝜇), (10)
𝜇 𝜃𝜇
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Fig. 2. High-level flowchart overview of the DDPG algorithm.
where 𝜂𝜇 is the learning rate for the actor network and ∇𝜃𝜇𝐽 (𝜃𝜇) is the
gradient of the average policy performance with respect to 𝜃𝜇 .

The update Eqs. (8) and (10) represent the gradient steps taken to
update the neural network parameters. A descent step is used for the
critic network to minimize the loss function, and an ascent step for the
actor network to maximize the policy performance. By moving in the
negative direction of the gradient of the loss function, the critic neural
network learns to minimize the mismatch between the estimated and
expected rewards. Similarly, by taking steps in the positive direction
of the gradient of the average policy performance, the actor network
learns to take better actions, improving the policy. Both learning rates,
i.e., 𝜂�̃� and 𝜂𝜇 , influence the convergence and stability of the learning
processes, by controlling the size of the update steps. They assess the
trade-off between exploration and exploitation and the careful tuning
of them affects the overall DDPG performance and avoids oscillations.

Algorithm 1 presents the procedure of training a single DER agent
based on the DDPG model. We define an episode as one day with 24
hourly steps, i.e. 𝑇 = 24. In total, 𝑀 episodes are considered in the
training stage, corresponding to different solar radiation and loading
data that represent different operating conditions. Hence, the power
flow calculations result in different solutions, i.e. complex voltages, that
trigger different actions from the DER-agent.

First, all the networks and memory buffer are initialized. Then,
for each episode, at the beginning of each hour, the agent senses the
environment, which is represented by measuring the local voltage and
solar radiation and performs actions, such as the curtailment of active
power and reactive power control. To decide on the actions, rewards
are received based on the electricity exchange and local constraints’
satisfaction. Subsequently, a power flow calculation is performed, the
system state is updated, and the reward signals are sent to the DER
agent anew. All the simulated cases are stored in the memory buffer
used to improve the parameters of the actor and critic networks,
following the last algorithm steps.

3. Case study — results

3.1. Network description and input data

In order to compare the different decentralized control methods,
we use a typical European radial LV grid [38], sketched in Fig. 3. The
installed PV capacity is expressed as a percentage of the total peak load
as follows: PV nodes = [12, 16, 18, 19], PV share (%) = [25, 45, 35,
25]. This work considers balanced, single-phase system operation, but
7

Algorithm 1 DER-agent training based on the DDPG-model.
1: Randomly initialize actor network 𝜇(𝑠|𝜃𝜇) and critic network

�̃�(𝑠, 𝛼|𝜃�̃�) with parameters 𝜃�̃� and 𝜃𝜇 , respectively.
2: Initialize target networks 𝜇′(𝑠|𝜃𝜇′ ) and �̃�′(𝑠, 𝛼|𝜃�̃�′ ), with main

networks’ parameters, i.e., 𝜃𝜇′ ← 𝜃𝜇 and 𝜃�̃�′
← 𝜃�̃�.

3: Initialize the experience replay buffer 𝐵.
4: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1, ...,𝑀 do
5: Initialize random process 𝑁𝑘.
6: Initialize observation state 𝑠1.
7: for 𝑡 = 1, ..., 𝑇 do
8: Perform action 𝛼𝑘 = 𝜇(𝑠|𝜃𝜇) +𝑁𝑘, run power flow

calculations and observe reward 𝑟𝑘 and new state 𝑠𝑘+1 of the
system.

9: Store tuple (𝑠𝑘, 𝛼𝑘, 𝑟𝑘, 𝑠𝑘+1) in memory buffer 𝐵.
10: Randomly sample 𝑁 tuples from 𝐵.
11: Calculate (6) and update critic network by minimizing (7)

(one step of gradient descent).
12: Update the actor policy by the sampled policy gradient of (9)

(one step of gradient ascent).
13: Update the parameters of the target networks using (5).
14: end for
15: end for

Fig. 3. Benchmark European LV grid [38].

the framework can be extended to three-phase unbalanced networks
following [34].

In order to create multiple episodes, we consider different loading
conditions taken from [38], and solar radiation profiles [39] for specific
areas in Switzerland covering the time period of 2 summer months.
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Fig. 4. Scaling factors for the PV injections and the load.

Fig. 5. Different operational types within the P-Q inverter capability curve.

ig. 4 shows the scaling factors for five summer days taken from the
esting dataset. We assume a perfect spatial correlation, i.e., the PV
caling factors are the same at all nodes, which is a logical assumption
or the examined neighborhood. These scaling factors are used to test
he behavior of the different methods, i.e., they are not considered
n the training dataset. In terms of operational limits, we assume a
aximum (resp. minimum) acceptable voltage of 1.04 p u (resp. 0.96
u.) and cable current magnitude of 1 p u on the cable base.

The implementation was done in MATLAB R2021a for the super-
vised learning and in Python 3.7 for the deep RL. For the OPF-based
control, YALMIP R20210331 [40] was used as the modeling layer and
Gurobi 9.1.2 [41] as the solver. For the deep RL modeling, we used
OpenAI Gym 0.18 [36]. The results were obtained on an Intel Core
i7-2600 CPU and 16 GB of RAM.

3.2. Supervised learning based on off-line data

3.2.1. OPF formulation
The selected objective function of the centralized OPF minimizes the

control cost for all network nodes (𝑁𝑏) for the time horizon (𝑁ℎ𝑜𝑟), and
is given by

min
𝒖

𝑁ℎ𝑜𝑟
∑

𝑡=1

{𝑁𝑏
∑

𝑗=1

(

𝐶𝑃 ⋅𝑃𝑐𝑢𝑟𝑡,𝑗,𝑡+𝐶𝑄 ⋅𝑄𝑐𝑡𝑟𝑙,𝑗,𝑡

)}

⋅ 𝛥𝑡, (11)

where 𝒖 is the vector of control variables and 𝛥𝑡 is the length of
each time period. The curtailed power of the DGs connected at node
8

𝑗 and time 𝑡 is given by 𝑃𝑐𝑢𝑟𝑡,𝑗,𝑡 = 𝑃max
𝑔,𝑗,𝑡 − 𝑃𝑔,𝑗,𝑡, where 𝑃max

𝑔,𝑗,𝑡 is the
maximum available active power and 𝑃𝑔,𝑗,𝑡 the active power injection
of the DGs. The use of reactive power support 𝑄𝑐𝑡𝑟𝑙,𝑗,𝑡 = |𝑄𝑔,𝑗,𝑡| for each
DG connected to node 𝑗 and time 𝑡 is also minimized; 𝑄𝑔,𝑗,𝑡 represents
the DG reactive power injection or absorption. The coefficients 𝐶𝑃 and
𝐶𝑄 represent, respectively, the DG cost of curtailing active power and
roviding reactive power support. The assumption that 𝐶𝑄 ≪ 𝐶𝑃 is
ade, which prioritizes the use of reactive power control over active
ower curtailment.

The power injections at every node 𝑗 and time step 𝑡 are given by

𝑃𝑖𝑛𝑗,𝑗,𝑡 = 𝑃𝑔,𝑗,𝑡 − 𝑃𝑙,𝑗,𝑡, (12a)

𝑄𝑖𝑛𝑗,𝑗,𝑡 = 𝑄𝑔,𝑗,𝑡 −𝑄𝑙,𝑗,𝑡, (12b)

here 𝑃𝑙,𝑗,𝑡 and 𝑄𝑙,𝑗,𝑡 are the active and reactive node demands of
onstant power type. The nodal power balance equations using the full,
on-linear AC power flow are given by

𝑃𝑖𝑛𝑗,𝑗,𝑡 = |

|

𝑉𝑘,𝑡||

𝑁𝑏
∑

𝑚=1

|

|

𝑉𝑚,𝑡|| (𝐺𝑘𝑚 cos 𝜃𝑘𝑚,𝑡 + 𝐵𝑘𝑚 sin 𝜃𝑘𝑚,𝑡), (13a)

𝑄𝑖𝑛𝑗,𝑗,𝑡 = |

|

𝑉𝑘,𝑡||

𝑁𝑏
∑

𝑚=1

|

|

𝑉𝑚,𝑡|| (𝐺𝑘𝑚 sin 𝜃𝑘𝑚,𝑡 + 𝐵𝑘𝑚 cos 𝜃𝑘𝑚,𝑡), (13b)

here 𝑌𝑘𝑚 = 𝐺𝑘𝑚 + 𝑗𝐵𝑘𝑚 is the nodal admittance matrix, |𝑉𝑘,𝑡|, |𝑉𝑚,𝑡|
re the voltage magnitudes at buses k and m respectively at time t, and
𝑘𝑚,𝑡 = 𝜃𝑘,𝑡 − 𝜃𝑚,𝑡 is the voltage angle difference between these buses at
ime t.

The constraint for the current magnitude for branch 𝑖 at time 𝑡 is
iven by

|𝐼𝑏𝑟,𝑖,𝑡| ≤ 𝐼𝑖,max, (14)
here 𝐼𝑏𝑟,𝑖,𝑡 is the branch current, and 𝐼𝑖,max is the maximum thermal

imit. Similarly, the voltage constraints for each bus 𝑗 and for each time
tep 𝑡 are given by

𝑉min ≤ |𝑉𝑗,𝑡| ≤ 𝑉max, |

|

𝑉𝑠𝑙𝑎𝑐𝑘|| = 1, 𝜃𝑠𝑙𝑎𝑐𝑘 = 0, (15)

here 𝑉max and 𝑉min are respectively the upper and lower acceptable
oltage limits for the magnitudes of the bus voltages |

|

|

𝑉𝑗,𝑡
|

|

|

, and |

|

𝑉𝑠𝑙𝑎𝑐𝑘||,
𝑠𝑙𝑎𝑐𝑘 are the fixed reference slack bus voltage magnitude and angle,
espectively.

In this work, we only consider inverter-based DGs, such as PVs.
heir output power limits are thus given by

𝑃min
𝑔,𝑗,𝑡 ≤ 𝑃𝑔,𝑗,𝑡 ≤ 𝑃max

𝑔,𝑗,𝑡 , 𝑄min
𝑔,𝑗,𝑡 ≤ 𝑄𝑔,𝑗,𝑡 ≤ 𝑄max

𝑔,𝑗,𝑡, (16)

here 𝑃min
𝑔,𝑗,𝑡, 𝑃max

𝑔,𝑗,𝑡 , 𝑄min
𝑔,𝑗,𝑡 and 𝑄max

𝑔,𝑗,𝑡 are the upper and lower limits
or active and reactive DG power at each node 𝑗 and time 𝑡. These
imits vary depending on the type of the DG and the control schemes
mplemented.

Inverter-based DERs operate within the P-Q inverter capability
urve, depicted in Fig. 5. We assume that the inverter is over-dimensione
y 10%, e.g. 𝑆max

𝑖𝑛𝑣,𝑗 = 1.1 ⋅ 𝑃max
𝑔,𝑗 to allow for reactive power control

ven when the DER is operating at the maximum active power. There
re different operational modes, such as (a) the ‘‘triangular’’ mode
▽) which imposes an operational minimum power factor, (b) the
‘rectangular’’ mode (□) which allows reactive power control at times
f low active power injections, and finally (c) the semi-circle capability
ode (○) described by (17c) which represents the full capability region

f the DER, without any constraint on the power factor. Thus, the limits
re given by

(▽) ∶ − 𝑡𝑎𝑛(𝜙max)𝑃𝑔,𝑗,𝑡 ≤ 𝑄𝑔,𝑗,𝑡 ≤ 𝑡𝑎𝑛(𝜙max)𝑃𝑔,𝑗,𝑡, (17a)

(□) ∶ − 𝑡𝑎𝑛(𝜙max)𝑃min
𝑔,𝑗,𝑡 ≤ 𝑄𝑔,𝑗,𝑡 ≤ 𝑡𝑎𝑛(𝜙max)𝑃max

𝑔,𝑗,𝑡 , (17b)

(○) ∶ 𝑄2
𝑔,𝑗,𝑡 ≤ (𝑆max

𝑖𝑛𝑣,𝑗 )
2 − 𝑃 2

𝑔,𝑗,𝑡. (17c)

The optimization problem (11)–(17) can be solved using the inte-
ior point algorithm based on the barrier method through the IPOPT
olver [42] and provides the optimal setpoints that are needed in the
upervised learning method.
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3.2.2. Supervised learning
As base features for the active and reactive power DER control

we use the active power demand 𝜙𝑗,1,𝑡 = 𝑃𝑙,𝑗,𝑡, the local measured
oltage 𝜙𝑗,2,𝑡 = 𝑉𝑗,𝑡, and the maximum active power capability of
he inverter 𝜙𝑗,3,𝑡 = 𝑃max

𝑔,𝑗,𝑡 . Combinations of these features can also
e considered, e.g., 𝜙𝑗,4,𝑡 = 𝜙𝑗,1,𝑡 ⋅ 𝜙𝑗,2,𝑡 or 𝜙𝑗,5,𝑡 = (𝜙𝑗,1,𝑡)2 if they
ncrease the accuracy metrics. Finally, the feature matrix is given by
𝒋,𝟏 = [𝜙𝑗,1,𝑡, 𝜙𝑗,2,𝑡, 𝜙𝑗,3,𝑡, 𝜙𝑗,4,𝑡]𝑇 . Using the least squares method that

an be found in [43] with many other supervised learning methods,
he local model for active power control is derived by solving

min
𝜷

∑

𝑡∈𝑁𝑂𝑃𝐹

(𝑃𝑔,𝑗,𝑡 − �̃�𝑗,𝑡)2, (18a)

�̃�𝑗,𝑡 = 𝛽𝑗,0 +
∑

𝑘⊂𝐾
𝛽𝑗,𝑘 ⋅𝜱𝒋,𝟏, (18b)

here 𝛽𝑗,𝑘 are the 𝑘 + 1 regression coefficients of the 𝑗th unit for the
⊂ 𝑁𝐾 features. A similar model for reactive power control is derived.

.3. Deep RL

We define for the active power the action space as 𝛼1,𝑗,𝑡 ∈ [0, 1]
where zero indicates complete active power curtailment and one in-
dicates no curtailment. Thus, the active power injection of the DG at
the node 𝑗 is given by 𝑃𝑔,𝑗,𝑡 = 𝛼1,𝑗,𝑡𝑃max

𝑔,𝑗,𝑡 . Regarding reactive power,
he action space is defined as 𝛼2,𝑗,𝑡 ∈ [−1, 1], and the reactive power
njection is given by 𝑄𝑔,𝑗,𝑡 = 𝛼2,𝑗,𝑡𝑆max

𝑔,𝑗,𝑡. We use the semicircle DER
apability of (17c) which needs to be respected by the agent. As states
e consider the time 𝑡, the maximum available PV power 𝑃max

𝑔,𝑗,𝑡 , and the
ocal voltage magnitude 𝑉𝑗,𝑡. The injected active and reactive power of
he agent at time 𝑡 will thus be given by

𝑃𝑖𝑛𝑗,𝑗,𝑡 = 𝛼1,𝑗,𝑡𝑃
max
𝑔,𝑗,𝑡 − 𝑃𝑙,𝑗,𝑡, (19a)

𝑄𝑖𝑛𝑗,𝑗,𝑡 = 𝛼2,𝑗,𝑡𝑆
max
𝑔,𝑗,𝑡 −𝑄𝑙,𝑗,𝑡. (19b)

Considering the curtailment costs, the operational constraints re-
arding local voltage magnitudes and the inverter capabilities, the
eward function at time 𝑡 of the agent for the DER at bus 𝑗 is given
y

𝑅(𝑡) = −
𝑇
∑

𝑡=0

(

𝐶𝑃 (1 − 𝛼1,𝑗,𝑡)𝑃max
𝑔,𝑗,𝑡 + 𝐶𝑄𝛼2,𝑗,𝑡𝑆

max
𝑔,𝑗,𝑡 + 𝑐1 ⋅max(0, 𝑉𝑗,𝑡 − 𝑉max)

+𝑐1 ⋅max(0, 𝑉min − 𝑉𝑗,𝑡) + 𝑐2 ⋅max(0, 𝑃 2
𝑔,𝑗,𝑡 +𝑄2

𝑔,𝑗,𝑡 − (𝑆max
𝑖𝑛𝑣,𝑗 )

2)
)

(20)

here 𝑐1 is a parameter to penalize the local voltage constraint, and 𝑐2
s a parameter to penalize situations that the apparent inverter power is
ot respected. Overall, the goal is to avoid local constraint violations in
erms of voltage by controlling reactive power and by curtailing active
ower. Similar to the formulation of Section 3.2.1, by selecting the
eactive power cost coefficient lower than the corresponding for active
ower curtailment, we prioritize the use of reactive power control.
hus, reactive power is expected to be utilized first to alleviate limit
iolations before active power is curtailed.

After the actions of the agent are defined, a power flow calculation
s performed in order to derive the voltages at all nodes and obtain the
ew states from the environment. In case the agent’s action does not
espect the inverter’s capability curve, the active and reactive power
re decreased proportionally to satisfy the constraint.

In this paper, we use OpenAI Gym [36] as the modeling platform to
est our deep RL model. Each episode is modeled as one day, i.e. 24 h.
arameter tuning is a very important step in the implementation of
L algorithms. The choice of optimal parameter values depends on

he specific mathematical problem and environment, and may require
xperimentation and tuning. Typical methods to tune the parameters of
L algorithms include grid search, random search [44], and Bayesian
9

ptimization. Grid search is a simple method where we define a set
Table 1
Hyperparameters in the deep RL training stage.

Hyperparameter in DDPG Value

Mini-batch size 120
Actor learning rate 1.00E−04
Critic learning rate 1.00E−03
Gradient Threshold 1
Sample time (h) 1
Target smooth factor 1.00E−03
Experience buffer length 1.00E−05
Noise variance 1.00E−01
Noise variance decay rate 1.00E−06
Discount factor gamma 0.99
Optimizer Adam

of values for each parameter and then evaluate the performance of
the algorithm for all possible combinations of parameter values. In
random search [44], the performance is evaluated for each combination
of parameters after randomly sampling the parameter space. Bayesian
optimization is a more sophisticated method because it constructs a
probabilistic model to predict the performance of the algorithm for
each combination of parameters and then uses it to choose the next
set of parameters that evaluate [45]. Other recent methods that show
promising results include genetic algorithms and heuristics [46] show-
ing that the optimal parameter selection is an active research question.
We refer the interested reader to [47] for a review and comparison of
hyperparameter optimization techniques.

In this paper, we have used a combination of grid search and
manual tuning to select the hyperparameters for DDPG in the context
of our specific problem. We performed a sensitivity analysis of the most
important parameters to investigate the effect of them on the stability
and performance of the algorithm. More specifically, we compared the
average reward over the training period, convergence, overall stability,
and robustness. The needed hyperparameters for the implementation of
the DDPG RL algorithm are listed in Table 1.

3.4. Comparison of Methodsand discussion

To compare the different decentralized methods, we investigate the
following approaches:

• Method 0 - Business as usual (BaU): This represents a current
local Volt/VAr control scheme defined in grid codes, e.g., [48],
and adopts a one-solution-fits-all approach for the design of the
static control laws irrespective of the location of each DG or of
the specific grid specifications.

• Method 1 - OPF: An AC OPF solution is performed at each time
step, representing the optimal benchmarking behavior. Active
power curtailment and reactive power control using (17c) are
allowed;

• Method 2 - Supervised Learning: The optimized local control
schemes are derived in the training stage following Section 2.1,
and are tested using new samples regarding solar radiation and
load. An AC PF solution is performed for each time step, with
the DG agent behaving according to their supervised data-driven
schemes;

• Method 3 - Deep RL: In this method, the agent behaves according
to the DDPG method described in Section 2.2. An AC PF solution
is performed for each time step after the agent’s actions have
taken place.

We organize the remaining section into three parts. First, we provide
detailed results for 5 summer days in order to get intuition about the
outcome of each method, and understand their strengths and limita-
tions. Then, we provide summarized monthly results, provide error
metrics compared to the optimal method, and compare the different
methods in terms of error metrics. Finally, we provide a comparative
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Fig. 6. Voltage magnitude evolution for all examined methods over 5 summer days.

valuation of the examined decentralized control methods, and we
ssess the trade-offs between privacy, needed computational effort,
onstraint consideration, scalability, and optimality.

.4.1. Detailed results over 5 summer days
Fig. 6 presents the voltage magnitude evolution of Node 16, over

he period of 5 summer days. The scaling factors for the DG unit (PV)
nd the nodal demand are given in Fig. 4. Considering the installed
G capacity and nominal load, Node 16 is mostly injecting power to

he grid (apart from the third day) which leads to high voltages. It is
bvious that the current industrial practice (Method 0) can be insuffi-
ient in cases of large DER penetration as severe voltage limit violations
till occur. This is happening because this method does not consider
he location of each DG or of the specific requirements for both active
ower curtailment and reactive power control to reduce the voltages.
ethod 1 corresponds to the centralized solution where the optimal

ehavior is achieved assuming that a bi-directional communication and
ontrol network exists. The optimal behavior indicates that minimum
ontrol efforts are used in terms of active and reactive power control
o satisfy the operational voltage constraints.

On the other hand, Methods 2 and 3 mimic the optimal centralized
olution (Method 1) without communication needs, i.e., they are based
n decentralized approaches. We observe that Method 3 results in
ower being utilized (‘‘activated’’) almost continuously, even when
his is not needed. For instance, in contrast to all other methods that
orrectly do not control power on Day 3, Method 3 utilizes reactive
ower that influences the voltage trajectory. This indicates that a larger
raining dataset is needed so that the RL-agent learns not to utilize any
ontrol when it is not needed.

By design, Method 3 tries to avoid problematic instances (see reward
unction (20)), and shows a more conservative behavior, i.e., more
ctive and reactive power control is activated to reduce the voltage
ack to acceptable values. However, both Methods 2 and 3 track the
PF behavior with marginal inefficiencies in terms of more activated
ontrol (Method 2), or short-term violations (Method 3).

As illustrated in Fig. 7, at periods of high voltages, an inductive
ehavior of the controller in Method 3 reduces the local voltage. When

the maximum reactive power consumption is not enough, active power
curtailment is also used during the first 2 days. Since this is penalized
more in the reward function, the algorithm prioritizes reactive over
active power control. However, the existence of some overvoltages
indicate the need for more training data for the deep RL scheme.

3.4.2. Monthly evaluation results at node 16
In this section, we summarize the results from applying the four
10

decentralized control methods in real-time operation for the test period
Fig. 7. Active (𝛼1,𝑗,𝑡) and reactive (𝛼2,𝑗,𝑡) control action for the RL-based control scheme.

Table 2
Summarized monthly power quality results for all examined methods.

Method 0 1 2 3

𝑃curt (%) 1.510 4.340 7.235 4.785
Losses (%) 6.110 4.720 4.310 5.215
|𝑉 |max (p u) 1.085 1.040 1.045 1.057
|𝐼|max (%) 125.940 100 104.570 108.130

of one summer month. We compare first power quality values, i.e., the
system’s losses, the maximum observed voltage magnitude at Node 16
and cable (branch 5-16) loading, as well as active power curtailment.

hen, we calculate error metrics to compare the different decentralized
pproaches against the centralized one.

ower quality quantities. Table 2 summarizes the monthly results in
erms of power quality. The power losses and the active power cur-
ailment refer to the whole month, whereas the voltage magnitude and
able flow only to the maximum value observed.

As benchmark we use the optimal case, i.e., Method 1 that satis-
ies the operational constraints at the minimum cost defined by the
bjective function (11). Method 0 (standard industry practice) shows
igher losses than the OPF-based approach, due to less active power
urtailment, i.e., more power is injected into the network. Method 2
hows higher total active power curtailment than the optimal case, but
he worst power quality values over the whole testing month result
n marginal violations. Finally, Method 3 keeps the total curtailment
alue closer to the optimal case with slightly higher violations than
ethod 2. Furthermore, it shows higher losses than Method 2 for two

easons; it curtails less active power and therefore more active power
s injected, and it shows most of the time an inductive behavior by
bsorbing reactive power as can be seen in Fig. 7. Both Methods 2 and
mimic Method 1 without communication needs.

rror metrics. In this part, we compare the performance of the exam-
ned methods using common statistical error metrics to calculate how
lose the examined decentralized methods follow the optimal response.
hus, the voltage values obtained by Method 1, i.e., 𝑉𝑚1 represent the

true’ values, and the time-series of Methods 0 (𝑉𝑚0), 2 (𝑉𝑚2) and 3 (𝑉𝑚3)
he ‘predicted’ values.

We will use the following error metrics:

• Mean Absolute Error (MAE): The MAE represents the average
absolute difference between Method 1 and the estimated values
of the other methods. It is given by: 𝑀𝐴𝐸 = 1

𝑛
∑𝑛

𝑡=1 |𝑉𝑚1,𝑡 − 𝑉𝑚,𝑡|
where 𝑛 is the number of data points (720 for the test month),
𝑉𝑚1,𝑡 is the true voltage value at time 𝑡 from Method 1, and 𝑉𝑚,𝑡
is the estimated voltage value at time 𝑖 from the other methods.
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Table 3
Performance metrics of the examined methods compared to the optimal centralized
solution.

MAE MSE RMSE 𝑅2

𝑉𝑚0 0.005340 0.000171 0.013059 0.457739
𝑉𝑚2 0.000740 0.000003 0.001848 0.889138
𝑉𝑚3 0.007145 0.000080 0.008947 0.745467

• Mean Squared Error (MSE): The MSE represents the average of
the squared differences between Method 1 and estimated values
of the other methods. It is given by: 𝑀𝑆𝐸 = 1

𝑛
∑𝑛

𝑡=1(𝑉𝑚1,𝑡 −𝑉𝑚,𝑡)2.
• Root Mean Squared Error (RMSE): The RMSE is the square root

of the MSE, which is easier to interpret when the voltages are
expressed in p u. It is given by: 𝑅𝑀𝑆𝐸 =

√

1
𝑛
∑𝑛

𝑡=1(𝑉𝑚1,𝑡 − 𝑉𝑚,𝑡)2.
• Coefficient of Determination (𝑅2): 𝑅2 measures the proportion

of the variance in Method 1 that is predictable from the other
methods. It is given by: 𝑅2 = 1 −

∑

𝑡=1𝑛(𝑉𝑚1,𝑡−𝑉𝑚,𝑡)2
∑

𝑡=1𝑛(𝑉𝑚1,𝑡− ̄𝑉𝑚1)2
, where ̄𝑉𝑚1 is

the mean of the optimal voltage values in Method 1.

Table 3 shows the performance metrics of Methods 0, 2 and 3 in
erms of voltage magnitude compared with the centralized OPF-based
olution of Method 1. In absolute terms, the error metrics are very low
ecause the behavior of all methods are the same or really close at non-
roblematic hours, e.g., at night, or at operational conditions that are
ot close to the limits. Thus, the relative comparison of the metrics is
ore relevant for the scope of this paper.

The results of the comparison showed that Method 2 resulted in
he lowest error values across all four metrics, indicating that it is the
losest to the benchmark optimal case. On the contrary, the current
aU shows the worst behavior in terms of these metrics showing that
here is potential for improvement by applying more sophisticated de-
entralized methods. Method 3 shows intermediate error values closer
o Method 1 than Method 0. The main reason for that is the continuous
eactive power control (see Fig. 7), that changes the voltage compared
o the OPF case even at non-problematic time periods.

.4.3. Qualitative evaluation
In this part, we discuss the strengths and limitations of each method.

he currently implemented local control schemes (i.e., Method 0), can
cale easily to very large networks, do not show privacy concerns and
o not require training effort. However, they often result in poor perfor-
ance as they cannot achieve global optimality and can only consider

ocal constraints. On the other side of the spectrum, the centralized
PF-based method (i.e., Method 1) works as a benchmark in terms of
ptimality, as it can consider both local and global constraints, and can
ake into consideration any objective. However, it shows significant
rawbacks regarding privacy, as all information is collected by one
ntity, and scalability. It requires a reliable bi-directional communi-
ation network, is sensitive to modeling errors and uncertainties and
s costly for large-scale systems. On the other hand, state-of-the-art
L-based methods, i.e., the supervised learning (Method 2) and RL

pproach (Method 3) examined in this paper, show a good trade-off
etween high performance with some training effort trying to combine
he best of the previous two worlds. Method 2 could imitate very well
he optimal response under expected normal conditions, while Method

has the advantage of being capable of adapting to changes in the
ystem over time. For example, if another agent, such as a PV unit,
s installed in the network, it will learn from experience and adapt to
hanging conditions without requiring re-training that is necessary for
ethod 2. A main difference of the ML-based methods is related to the
ay they try to approach the optimality of the central OPF scheme.
he supervised learning Method 2 modifies the well-known and widely
sed local control schemes in order to customize them based on their
11

ocation and grid challenges. The deep RL scheme of Method 3 aims at
Table 4
Qualitative evaluation of the examined control methods.

Local Central Supervised Deep
Schemes OPF Learning RL

(BaU)

Computational ✓ ✓✓ ✓✓✓ ✓✓✓

effort for training

Scalability ✓✓✓✓ ✓ ✓✓ ✓✓

Privacy ✓✓✓✓ ✓ ✓✓✓ ✓✓✓

Preservation

Constraints’ Local: ✓ Local: ✓ Local: ✓ Local: ✓
consideration Global: ✗ Global: ✓ Global: ✓ Global:✓

Optimality ✓ ✓✓✓✓ ✓✓✓ ✓✓✓

Adaptation to changes ✓✓ ✓✓✓✓ ✓ ✓✓✓✓

constructing a reward function to imitate the objective function of the
OPF case. In this paper, only local information is used to allow a fair
comparison of the studied decentralized methods.

Finally, Table 4 summarizes the findings and provides a qualitative
evaluation of the used decentralized control methods in terms of com-
putational burden for the training stage, scalability potentials, privacy-
preserving capabilities, suitability to consider local and/or global con-
straints, and optimality. Modern inverters offer capabilities for remote
configuration of the DG controllers, and thus, a distribution system
operator could easily scale such solutions and update the local con-
trollers of thousands of units remotely. For instance, an experimental
verification of the supervised learning method is applied in real invert-
ers in [49]. The real implementation efforts are not significant, since
modern inverters offer the capabilities to configure the control schemes
remotely. Regarding the reinforcement learning methods, although
there is a lot of research involving the use of RL in real PV units and
inverter-based agents, such implementations are not yet widespread
in real commercial or industrial applications. This is due to practi-
cal/technical aspects of real inverters, as well as regulatory constraints
which do not consider such control schemes yet. The computational
effort for training for both cases depends on the available data, but
since the training can take place off-line, very powerful GPU computing
resources can be used in parallel, minimizing the needed training time.
A detailed discussion on the aspects of security and privacy is outside
the scope of the paper, but the interested reader is referred to [50] for
a comprehensive survey of privacy related research in smart grids.

Overall, each method shows different characteristics in terms of lim-
itations and strengths. The choice of method depends on the system’s
control requirements, constraints, data availability, available commu-
nication network, anticipation of frequent system’s changes, and objec-
tives of the controlled distribution system.

4. Conclusion

The increasing controllability and observability in distribution net-
works call upon more advanced control schemes that are scalable,
optimal, and can consider privacy characteristics and the system’s
operational constraints. Although centralized solutions perform great
in terms of optimality, they are associated with high costs and show
robustness and privacy concerns. In this paper, we quantitatively com-
pare the centralized OPF behavior against two machine-learning-based
schemes based on supervised and reinforcement learning. We have
demonstrated through a case study that in the absence of a full com-
munication and monitoring infrastructure, the distribution grids can
still optimize their grid operation safely, by applying decentralized
controllers based on supervised and reinforcement learning (RL). Fur-
thermore, we provide intuition regarding the strengths and limitations
of each method, highlighting the overall good performance of ML-based
schemes across all examined criteria. For the specific benchmark Euro-
pean low-voltage grid and the available generating and consumption
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data, the supervised approach achieved the best results in terms of
approaching the centralized optimal solution. It showed the maximum
𝑅2 and the lowest MAE, MSE, and RMSE values. The RL method is also
ery promising since it can continuously adapt to changes when the
perational conditions or the system’s topology change. The practical
mplementation and adoption of RL-based agents in real-life scenarios
equires safety and stability studies as well as regulatory changes.

Our future work will consider three different dimensions: (a) first,
ncorporating more training data and types of controllable agents, such
s electric vehicles, battery energy storage systems, and shiftable loads
hat require incorporating time constraints, and thus increasing the
omputational effort; (b) second, it would be beneficial to use larger
etworks with real-world data and evaluate the control schemes in
real larger system, considering the system’s dynamics, interactions
ith the network’s controlling devices, such as voltage regulating trans-

ormers, and implementation challenges; (c) finally, further research is
equired in terms of reinforcement learning to study how to optimally
une the algorithm’s parameters, investigate the multi-agent behavior
here multiple agents have similar reward functions and explore the

nteractions between transmission and distribution voltage levels.
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