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Abstract: Maritime container terminals (MCTs) play a fundamental role in international maritime
trade, handling inbound, outbound, and transshipped containers. The increasing number of ships and
containers creates several challenges to MCTs, such as congestion, long waiting times before ships dock,
delayed departures, and high service costs. The berth allocation problem (BAP) concerns allocating
berthing positions to arriving ships to reduce total service cost, waiting times, and delays in vessels’
departures. In this work, we extend the study of continuous BAP, which considers a single quay
(straight line) for berthing ships, to multiple quays, as found in many ports around the globe. Multi-
Quay BAP (MQ-BAP) adds the additional dimension of assigning a preferred quay to each arriving
ship, rather than just specifying the berthing position and time. In this study, we address MQ-BAP with
the objective of minimizing the total service cost, which includes minimizing the waiting times and
delays in the departure of ships. MQ-BAP is first formulated as a mixed-integer linear problem and
then solved using the cuckoo search algorithm (CSA), a computational intelligence (CI)-based approach.
In addition, the exact mixed-integer linear programming (MILP) method, two other state-of-the-art
metaheuristic approaches, namely the genetic algorithm (GA) and particle swarm optimization (PSO),
as well as a first come first serve (FCFS) approach, are also implemented for comparison purposes.
Several experiments are conducted using both randomly generated and real data from the Port of
Limassol, Cyprus, which has five quays serving commercial vessel traffic. The comparative analysis
and experimental results show that the CSA-based method achieves the best overall results in affordable
time as compared to the other CI-based methods, for all considered scenarios.

Keywords: berth allocation problem; intelligent sea transportation; cuckoo search algorithm;
metaheuristic optimization; port efficiency

1. Introduction

Maritime transport accounts for 90% of the world’s seaborne trade and 74% of all
goods imported or exported from Europe are carried by ships [1]. According to a recent
United Nations Conference on Trade and Development (UNCTAD) report on maritime
transport in 2021 [2], total global containerized trade increased by 45.45%, with twenty-foot
equivalent units (TEUs) totaling 110 million in 2010 and rising to 160 million TEUs in 2021.
The container traffic has also increased in 2021, although it decreased in 2020 compared to
2019 due to the pandemic situation. Maritime container terminals (MCTs) play a crucial
role in meeting the growing demand for maritime transport. In order to meet the growing
demand for MCTs, their operations need to be optimized using modern technologies and
optimization-based approaches. Due to this practical need, the development of novel
and efficient methods to optimize terminal operations has attracted considerable attention
from academia and industry [3–6]. In [7], the authors investigate the factors affecting
the various waiting times in the port of Limassol, Cyprus, from both quantitative and
qualitative perspectives. For the shipping industry, and especially in the context of short
sea shipping, the benefits become obvious for all stakeholders involved in the port call
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process, including shipping companies, port service providers, and ship agents, in terms
of providing better information and decision support systems to increase their efficiency
and that of the ports [8]. MCT operators must therefore adopt appropriate strategies and
approaches to properly utilize port resources and avoid the problems mentioned above.

Port operations in MCTs consist of three fundamental operations, i.e., seaside, landside,
and marshalling yard [9]. The seaside operations involve the process of loading and unload-
ing incoming vessels, while the marshalling yard aims to store all incoming containers for
further processing (delivery). The landside operations, on the other hand, include activities
that link internal (terminal) and external (local) transportation. This study addresses one of
the most important decision problems of seaside operations, the berth allocation problem
(BAP). In terms of berthing layout, BAP at the MCT can be either discrete, continuous, or
hybrid. In discrete BAP, the berthing layout is used to perform loading and unloading
operations, with the entire wharf divided into a number of berthing positions, called berths.
As for continuous BAP, the arriving vessels can moor anywhere on the quay, typically along
numbered positions. The last type, hybrid BAP, combines the characteristics of the previous
two layouts, i.e., discrete and continuous. In terms of problem type, BAP can be divided
into three types, strategic, tactical, and operational [10]. At the strategic level, decisions can
be made in a time frame of one year to several years. This longer time horizon includes
decisions such as establishing shared or dedicated berths. At the tactical level, decisions
are made on a time horizon that ranges from a week to several months. Some of the aspects
that can be dealt with at this level are the allocation of quay cranes with the corresponding
work profiles, the tactical shipyard templates, the transshipment flows between vessels, etc.
The operational level involves decisions that span from one to several days. Such issues
are usually aimed at minimizing berth idle times and container ship arrival and departure
delays. This study focuses on the operational aspects of BAP.

Numerous studies deal only with the allocation of berths at a single quay, assuming
that it forms one straight line in which vessels can be berthed according to their length
and the positions of other vessels. For example, an exact approach to solve SQ-BAP is
presented in [11], an evolutionary algorithm in [12], and a metaheuristic-based method
in [13]. However, this assumption is not realistic for several ports around the globe, which
consist of multiple separate line segments or quays for berthing [14]. For example, the
Port of Limassol in Cyprus, has seven continuous berthing quays, as depicted in Figure 1.
Considering multiple quays adds a new dimension to the BAP; the problem of assigning
vessels to quays in addition to assigning berthing positions and times for each separate
quay. This requires a multiple space–time representation, as can be seen in Figure 2.

Figure 1. A satellite view of the Port of Limassol, Cyprus, illustrating its seven berthing quays (taken
from [15]). Note: Only the quays marked with a ∗ are used for commercial purposes.
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Figure 2. BAP solution with two berthing quays (Quay 1: continuous and Quay 2: discrete) and
10 arriving ships. Each rectangle denotes a ship, whose height (y-dimension) shows the ship’s length
and whose width (x-dimension) represents the handling time (in hours) of the ship.

On the contrary, very few studies propose solutions for the Multi-Quay BAP (MQ-
BAP) [14,16,17]. These studies often make some unrealistic assumptions, do not consider
practical constraints (like a penalty for non-optimal berthing positions, preferred and
alternative berthing quays of each arriving ship, a safety time interval between consecutive
vessels entering the port, as well as a safety time and distance between vessels berthed at a
particular quay), are limited to solving small scale problems, and cannot provide optimal
solutions for medium/large scale problems as elaborated in Section 2. These limitations
motivate us to consider a formulation with several practical constraints and to propose a
solution that can solve real port problems, which have been ignored in the current literature.
Therefore, this paper extends single quay BAP to the case of MQ-BAP, proposing a solution
for ports having multiple quays. Real data are used from the Port of Limassol, the largest
port in Cyprus, to validate our method. The port has seven continuous quays, out of which
five are used for commercial purposes. Some preliminary results from this study appeared
in [18] and the unique contributions of this work are as follows:

• Develop a mixed-integer linear programming (MILP) model for a realistic port en-
vironment that considers multiple quays and several practical constraints with the
objective of minimizing the total service cost.

• Propose the cuckoo search algorithm (CSA), a recently developed computational
intelligence (CI)-based approach, to solve the problem in affordable computation time,
since MQ-BAP is NP-hard and cannot be solved efficiently by exact methods.

• Validate the performance of the developed method against the exact MILP method
and three widely adopted approaches (genetic algorithm, particle swarm optimization,
and first come first serve) using both random data as well as real data from the Port of
Limassol, Cyprus.

Compared to our preliminary study [18], this work (i) extends the mathematical formu-
lation to consider both continuous and discrete quays; (ii) introduces additional practical
constraints, including safety entrance time, safety distance, and safety time between berths;
(iii) implements and evaluates first come first serve (FCFS) method along with three popular
metaheuristic-based algorithms (i.e., CSA, GA, PSO); and (iv) extends the experimental
evaluation using real data from one month of operations at the Port of Limassol, Cyprus.

The remainder of the article is organized as follows. In Section 2, a literature review is
provided. Section 3 first discusses the problem definition and then outlines mathematical
formulations, as well as the assumptions and constraints of this study. The proposed
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metaheuristic methods are discussed in Section 4. Section 5 first presents the experimental
settings and the datasets used, and then provides a detailed comparative analysis of all
implemented methods. Section 6 provides a discussion on managerial insights, while
Section 7 concludes the paper.

2. Literature Review

There exist several research studies that deal with different categories of BAP, i.e.,
discrete, continuous, and hybrid. In this section, we review related work in continuous and
dynamic BAP employing metaheuristic/computational intelligence approaches.

The authors of [19] deal with the BAP in order to avoid delays in vessels’ departures.
The BAP is formulated in three different ways, i.e., standard MILP, MILP based on sequence
variables, and time-indexed variables-based MILP. Subsequently, these three models are
solved on a CPLEX solver and simulation results demonstrate that the time-indexed-based
MILP achieves higher efficiency with lower computation time. Another study also deals
with BAP, while additionally considering uncertainties in the operational time of ships [11].
In particular, an exact approach is developed and K-means clustering is used to model the
uncertainty. The proposed method performs well; however, it is only suitable for small
data instances.

In [12], an evolutionary algorithm (EA) is proposed to deal with BAP, where the main
objective is to reduce the weighted total service cost. In [20], a greedy randomized adaptive
search procedure is developed to solve a continuous BAP with the goal of minimizing the
total waiting time of moored vessels. They perform several simulations and implement two
benchmark methods (exact method and stochastic beam search) to evaluate the performance
of the proposed method.

Another work [21] also solves the continuous BAP and proposes a metaheuristic-based
solution. The problem is formulated using MILP and solved by GA. They perform experi-
ments on two datasets and the results are compared using the branch and bound method.
Another GA-based solution is also developed in [22] for continuous BAP. The fundamental
objective of this work is to minimize delays in departure times of ships. Alsoufi et al.
develop a hybrid algorithm, which combines the best features of GA and an exact method,
i.e., branch and cut, to solve continuous BAP [23]. Their proposed hybrid algorithm retains
the efficiency of GA and the accuracy of the exact approach. Results from simulations show
that the proposed method provides the berth allocation plan with minimum (or no) delays
in departure times. A hybrid heuristic-based genetic algorithm (GA) is developed in [13] to
solve the BAP to avoid the issue of high computation time in exact approaches. The authors
combine dynamic programming (DP) with the standard GA to solve large-scale problems
that minimize service cost [13].

A study presented in [24] proposes a solution for dynamic BAP, where a metaheuristic-
based PSO algorithm is developed with the objective of reducing computation time. The
authors of [25] deal with BAP, taking into account the uncertainty in handling times
of vessels. They develop an optimization method to solve the BAP, combining particle
swarm optimization and machine learning. Here, machine learning is used to check the
relationship between handling time and weather conditions to model the uncertainty in
handling time.

The computation time reduction is considered as an objective while investigating
dynamic BAP in [26]. The authors proposed clustering search with simulated annealing
to solve the problem in minimum computational time. Another study also deals with
continuous BAP and proposes a hybrid simulated annealing (SA) algorithm [27]. In this
study, a sequence pair representation is employed to model problem search space into two
permutations, and a scenario-based method captures the uncertainty. Eventually, SA is
exploited to determine berthing time and berthing position for arriving ships. A study
presented in [28] solves a combined BAP and quay crane allocation problem. A generalized
set partitioning model is developed to solve the combined problem. The study also discloses
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several experiments and results to show the effectiveness of the proposed model over
benchmark methods.

The authors of [29] also solve continuous BAP by developing a cuckoo search algo-
rithm, a metaheuristic approach, after formulating the problem as a mixed integer linear
problem. For comparison purposes, benchmark data (containing 10 to 30 ships) is employed
from current literature and benchmark approaches (i.e., GA and exact method) are also
implemented. In [30], the authors expand upon their previous study by proposing a new
model that includes extra practical constraints, including safety time interval between two
ships, penalty for non-optimal berthing positions, and smaller time interval (i.e., 30 min).

All aforementioned studies from the related literature have considered a single con-
tinuous quay for solving the BAP. Only a limited number of studies have dealt with the
Multi-Quay BAP (MQ-BAP). One study presented in [14] proposes a set of priority rules
and using GA to address the MQ-BAP. However, in their problem formulation, the total
length of the quay is evenly distributed among the number of quays, while the evaluation
is only performed over random data. Another study proposes a solution for MQ-BAP
using a set of heuristics based on general variable neighborhood search [16]. Even though
this approach is shown to be very efficient in solving this problem, in certain cases it
proposes solutions that are far (up to 40%) from the optimal. Another study presented
in [17] also proposes a solution for multiple quays using fuzzy logic model. They consider
two continuous-type quays for berthing arriving vessels and develop two fuzzy-based
models, i.e., fuzzy MILP and fully fuzzy linear programming (FFLP). Based on several
experiments, the authors of the study concluded that both proposed models can only solve
MQ-BAP (two quays) and provide the optimal solution when considering 10 arriving ships;
however, both models produce a non-optimal solution when considering 15–65 ships and
they cannot solve a problem in instances of more than 65 ships. Furthermore, there are some
studies that consider multiple quays in bulk ports, e.g., a study [31] deals with MQ-BAP
in tidal bulk terminals and proposes iterated local search method to solve the problem.
Another study [32] also solves MQ-BAP for bulk ports and proposes a heuristic-based
rolling horizon strategy to find an optimal solution. Finally, the authors of the current work
have also addressed the MQ-BAP with the objective of total service cost minimization in
our preliminary study [18], as discussed in Section 1.

The motivation of this study is to develop a Multi-Quay BAP model and solution that
can be applied in real ports, such as the Port of Limassol, Cyprus. As such, we consider
additional practical constraints of the port, including the preferred and alternative berthing
quays of each arriving ship, a safety time interval between consecutive vessels entering
the port, as well as a safety time and distance between vessels berthed at a particular
quay. First, the MQ-BAP is modeled as a mixed-integer linear model and then solved
by CSA. The reasons for choosing CSA are ease of implementation, fewer parameters to
tune, balanced mixing of solutions, and avoidance of local optima using random walk
by levy flights. Furthermore, we also implement the exact method using MILP and other
popular methods, GA, PSO, and FCFS, as a baseline for comparison purposes. We conduct
experiments using both random and real data from one month of operations at the Port of
Limassol and the results confirm the effectiveness of our proposed method.

3. Problem Definition and Formulations

In this section, we first introduce the MQ-BAP along with some assumptions, and
then formulate the problem as an MILP.

3.1. Problem Explanation

In contrast to existing studies, and to make the problem more practical, this work
considers MCT with multiple quays (having both continuous and discrete berthing layouts)
to berth arriving vessels. A continuous quay consists of a section of the berth line and
arriving ships can be moored at any berthing position along the berth line. The length of the
continuous berth line is known in advance. A discrete quay considers a section of the berth
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divided into berth segments. In the discrete berthing layout, only one ship can be moored
at a single berth segment in a single time interval. Note that time is discretized in a set of
time intervals (e.g., 30 or 60 min intervals) for planning. Finally, there is a set of arriving
ships, with each ship having multiple known characteristics, such as length of ship (LoS),
expected time of arrival (ETA), expected time of departure (ETD), handling time (HT),
preferred berthing position (PBP), and preferred berthing quay (PBQ). A preferred berthing
quay and position are typically requested for container ships based on the dedicated storage
area for a particular ship in order to reduce onshore transportation costs. If a ship is moored
near to its dedicated storage area, the cost and time of transporting containers to the storage
area can be reduced [33,34].

This study considers dynamic ship arrivals, for which ships are not assumed to be
present at the MCT during the planning horizon but the ETA and ETD for each ship are
provided to the MCT for the sake of better berth planning.

The objective of this study is to determine the berthing time, berthing quay, and
berthing position or segment (depending on whether it is a continuous or discrete quay,
respectively), for arriving ships in order to reduce the total cost associated with the berthing
process. The cost against a ship includes handling cost, waiting cost, and penalty costs due
to late departures, allocation of a non-optimal berthing (NOB) position, and non-optimal
berthing quay. The handling cost includes the cost of loading and unloading containers
and depends on the handling time of the ship. The waiting cost is calculated based on the
waiting time, which is the difference between ETA and the berthing time, while the late
departure penalty cost depends on the late departure time that is defined as the difference
between the task finishing time and the ETD of each ship. The penalty cost due to non-
optimal berth allocation is incurred when the ship is moored at a location other than its
PBP, since more resources are needed to move containers over a longer distance. Another
penalty cost is added if the ship is moored to a quay other than the preferred one. All the
variables used in mathematical presented in Table 1.

3.2. Assumptions of This Study

The problem under consideration and the solution are based on the following assumptions.

• The number of incoming ships in the planning period is known;
• When a vessel starts operations at any quay, it cannot be interrupted until load-

ing/unloading is completed;
• Berths from any quay become available immediately after a ship completes its tasks;
• The length of a continuous quay and the number of berths available at a discrete quay

are known;
• The ETA and ETD for each vessel are known;
• The estimated turnaround time for each vessel is known;
• Each vessel has a PBQ, a PBP, and ABQs that are known in advance;
• All berths are assumed to be free at the beginning of the time horizon (t = 0);
• The processing speed is the same for all QCs and it is known;
• Handling and waiting costs per hour for all vessels are known;
• Penalty costs for late departure, non-optimal berth allocation, and non-optimal quay

allocation are known and assumed to be the same for all arriving vessels;
• This study ignores any meteorological or other uncertainty conditions.
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Table 1. Notations.

Notation Explanation

Cost-related variables
Cd

s Penalty cost for late departure (per hour) of ship s
Ch

s Handling cost per time unit (hour) of ship s
Cnob

s Penalty cost for NOB position per m of ship s
Cnoq

s Penalty cost for NOB quay of ship s
Cw

s Waiting cost per time unit (hour) of ship s
Time-related variables
SE Safety entrance time between two ships
ST Safety time between two ships during berthing
Tad

s Actual departure time of ship s
Td

s Late departure time of ship s
Tea

s Expected arrival time of ship s
Ted

s Expected departure time of ship s
Th

s Handling time of ship s
Tw

s Waiting time of ship s
Other variables
HPqc

s Handling productivity of QCs assigned to ship s
Loads Total load (in TEUs) on ships s
Lb Length of a berth segment b (in a discrete quay)
Lq Length of a (continuous) quay q
Ls Length of ship s
Nqc

s Number of quay cranes assigned to ship s
SD Safety distance (in meters) between two ships

Decision variables
Qs Berthing quay of ship s
BPs Berthing position of ship s on Qs
Tb

s Berthing time of ship s
xsqbt 1 if ship s is scheduled at position b of quay q at time t; 0 otherwise

Indices
s ∈ S A ship s from a set of arriving ships S
q ∈ Q A quay q from a set of continuous and discrete quays Q

b ∈ Bq
A berth position or segment b from a set of available berth
positions/segments Bq in a continuous or discrete quay q, respectively

t ∈ T A time interval t from a set of time intervals T

3.3. Mathematical Formulation

The total processing cost of a ship s that is scheduled for berthing at position BPs of
particular quay Qs at time Tb

s includes a waiting cost, a handling cost, and a penalty for
late departure, expressed by the following function:

Cost(s, Qs, BPs, Tb
s ) = Tw

s · Cw
s

+ Th
s · [Ch

s + f (s, Qs, BPs)]

+ Td
s · Cd

s

(1)

The first term in Equation (1), Tw
s · Cw

s , shows the waiting cost when a ship s has to
wait for mooring. The waiting time Tw

s of ship s is calculated as the difference between the
ETA Tea

s and berthing time Tb
s of ship s, illustrated in Figure 3:

Tw
s = Tb

s − Tea
s , ∀ s ∈ S (2)

The second term in Equation (1), Th
s · [Ch

s + f (s, Qs, BPs)] presents the total processing
cost of ship s that was incurred by unloading and loading containers from/to ship s.
Similar to previous studies (e.g., [29]), this work considers the handling time of each ship
to be an input to the problem. However, calculating handling time of each ship s is fairly
straightforward and reported in other studies, such as [35]. In particular, the handling time
Th

s depends on the total volume (TEUs) Loads to be loaded/unloaded on the ship and the
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number of assigned cranes Nqc
s along with the average handling productivity of cranes

HPqc
s assigned to that particular ship.

Th
s =

Loads

Nqc
s · HPqc

s
, ∀ s ∈ S (3)

Without loss of generality, this work also introduces the penalty function f (s, Qs, BPs),
which will penalize the handling cost based on non-optimal berth allocation of ship s.
Unlike our previous study, and to make the model more realistic, this work calculates
penalty based on the absolute difference between the assigned berthing position BPs and
the preferred berthing position PBPs (if assigned to its PBQ), as well as takes into account
ABQs. The penalty function used is:

f (s, Qs, BPs) =


|PBPs − BPs| · Cnob

s , if Qs = PBQs

Cnoq
s , if Qs ∈ ABQs

∞ , otherwise

(4)

According to Equation (4), if the vessel is berthed at its preferred quay (first case), the
penalty is calculated on the basis of the absolute difference between the preferred berth
position and the assigned berth position. In the second case, if the selected berthing quay is
one of the alternate berthing quays, a fixed penalty amount Cnoq

s is added to the total cost.
Otherwise, an infinite penalty is added to the total cost to ensure that no ship is berthed at
an undesired berth (that probably is not able to serve the ship).

a

Handling time (Ths)

Scheduled 
berthing time (Tbs)

Expected departure 
time (Teds)

Actual departure 
time (Tads)

Delay in 
departure (Tds)

Time (hour)

Ship expected 
arrival time (Teas)

Waiting time (Tws)

b c d

Figure 3. An illustration of the berthing timeline (showing waiting, handling, and late depar-
ture times).

The final term Td
s ·Cd

s in Equation ((1)) calculates the late departure penalty cost against
ship s when it departs after the ETD. The delayed departure time Td

s of ship s (if any) is
computed as the difference between the actual departure time Tad

s and the expected time of
departure Ted

s , as depicted in Figure 3.

Td
s = max{Tad

s − Ted
s , 0}, ∀ s ∈ S (5)

where Tad
s can be calculated as:

Tad
s = Tb

s + Th
s , ∀ s ∈ S (6)

The primary objective of the multi-quay berth allocation problem is to allocate optimal
quays and berthing positions along with berthing times to arriving ships such that the total
processing cost (that includes waiting cost, handling cost, and various penalties) can be
minimized, as presented by the following objective function
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minimize ∑
s ∈ S

∑
q ∈ Q

∑
b ∈ Bq

∑
t ∈ T

Cost(s, q, b, t) · xsqbt (7)

subject to several constraints that are presented in Table 2.

Table 2. Constraints related to continuous and discrete MQ-BAP.

General constraints

xsqbt ∈ {0, 1}, ∀ s ∈ S, q ∈ Q, b ∈ Bq, t ∈ T (8) The variable xsqbt is 1 if the ship s is scheduled at position b of quay q at time t,
and 0 otherwise.

∑
q ∈ Q

∑
b ∈ Bq

∑
t ∈ T

xsqbt = 1, ∀ s ∈ S (9) This constraint ensures that each ship may moor only once during the time t at
the mooring position b of the quay q.

Tb
s ≥ Tea

s , ∀ s ∈ S. (10) The constraint specifies that the proposed berthing time Tb
s for a given ship s

must always be equal to or later than its expected time of arrival Tea
s .

Tb
s − Tb

j ≥ SE ∀ s 6= j ∈ S (11) This condition guarantees a minimum safety entrance time SE between any two
consecutive berthing operations.

Constraints for continuous berthing layout

∑
j 6=s ∈ S

BPs+Ls+SD

∑
b=BPs−Lj−SD+1

Tb
s +Th

s +ST

∑
t=Tb

s −Th
j −ST+1

xjqbt = 0,

∀ s, j ∈ S, q = Qs

(12)

This is an overlap avoidance constraint that does not allow two vessels to share
(part of) the same berth positions during their handling times. Visually, this
constraint ensures that two rectangles (denoting the time intervals and the
berths assigned to the ships) shown in Figure 4 can never overlap. In addition,
this constraint is also responsible for maintaining the safety distance SD and
safety time ST between two ships to avoid any danger during berthing.

BPs + Ls ≤ Lq, ∀ s ∈ S, (13) This constraint ensures that the length Ls of any ship s plus its berthing position
BPs must be less than or equal to the length Lq of the quay q, where s is planned
to be berthed.

Constraints for discrete berthing layout

∑
j 6=s ∈ S

Tb
s +Th

s +ST

∑
t=Tb

s −Th
j −ST+1

xjqbt = 0, ∀ s, j ∈ S, q = Qs , b = BPs (14)

This is a restriction to avoid overlap in the case of a discrete berthing layout that
does not allow two vessels to use the same berth at the same time. Furthermore,
this constraint is responsible to ensure safety time ST between any two ships s
and j.

Ls ≤ Lb, ∀ s ∈ S, b = BPs (15) This constraint ensures that a berth b assigned to any vessel s must be at least as
long as the vessel itself.
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Figure 4. An illustration of overlapping constraint (12) with three arriving ships (ship s, j, and k)
with different berthing times, berthing positions, and lengths. This figure shows the restricted areas
for ships j and k (using dotted boxed) to avoid overlap with ship s, the already scheduled ship.
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4. Developed Methodologies

In this section, we present the implementation of our proposed CSA method (de-
veloped in this study for the first time for MQ-BAP), FCFS, and state-of-the-art popular
metaheuristic approaches, namely, GA and PSO.

4.1. Cuckoo Search Algorithm

CSA is a metaheuristic optimization algorithm developed by [36]. The CSA is inspired
by the breeding mechanism of some cuckoo species, which are fascinating because of their
beautiful sounds and aggressive reproduction mechanism. Some cuckoos lay their eggs
in communal nests of other species, where they try to remove the eggs of other birds in
order to improve the hatching probability of their own eggs. Then, other birds, probably
from other species, known as host birds take care of cuckoo eggs. However, if the host
birds realize that some eggs do not belong to them, then the cuckoo eggs are disposed or
current nests are destroyed and built elsewhere. In particular, some cuckoo species (e.g.,
new world brood-parasitic Tapera) specialize in the mimicry of the pattern or color of eggs
and they lay their eggs in nests of relevant species in order to reduce the probability of
theirs eggs being thrown or destroyed [37]. Overall, the CSA works based on the behavior
of cuckoos for laying eggs and adopts three idealized rules [36]:

1. Each cuckoo bird dumps only one egg at a time in a random nest;
2. The best nests having high-quality eggs are kept and used for the next generation;
3. The number of host nests is fixed and the egg laid by a cuckoo is detected by a host

bird with probability pα ∈ (0, 1).

The mapping of CSA to MQ-BAP is as follows. A single nest shows a set of possible
solutions containing the berthing times, quays, and positions of all arriving ships, as shown
in Figure 5. An egg in a nest denotes either a berthing time or a berthing quay or a berthing
position in that quay for an arriving ship, whereas a cuckoo egg shows a novel (or better)
solution (i.e., a berthing time or quay or position). Hence, each nest includes 3N eggs,
where N is the number of ships arriving at the port. This is because we need three solutions
for each ship (i.e., its berthing time, quay, and position).

7 10 33 49 54 61

8 11 30 46 57 58

9 10 30 47 57 57 Nest i

Nest i+1

Nest k

. . .

Berthing times by CSA for 6 ships

1 2 1 5 3 4 68 333 220 410 202 310

4 2 1 1 5 3 75 310 211 388 213 315

2 2 1 5 4 1

Berthing quays by CSA for 6 ships

66 332 222 411 207 303

Berthing positions by CSA for 6 ships

Figure 5. Solution representation by CSA considering six arriving vessels.

Algorithm 1 presents the pseudocode of CSA for MQ-BAP. The total search space of
the problem at each iteration is reflected by the total number of host nests, which is fixed
(100 host nests are considered in this study). In each iteration, new solutions are generated
using levy flights [36] and the best local solution (i.e., with lowest cost) is chosen for the
next generation (lines 4–9). Next, the probability of detecting a cuckoo egg pa is used to
decide when to completely destroy a nest and generate a new, better solution (lines 10–16),
which helps to avoid local optima and explore other areas of the search space. Furthermore,
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we tested our algorithm with different pa and chose the value 0.45 where the CSA performs
well. The overall goal of the algorithm is to use cuckoo eggs (better solutions) to replace
the not-so-good eggs in the various nests. Note that a generated solution at any point of
the algorithm may not be feasible (i.e., it may violate some constraints), in which case a
large cost per constraint violation is added to the solution’s total cost. Consequently, it
is possible that the best solution in some iteration may not be feasible; however, it is a
comparatively best solution (a nest) out of the 100 solutions (nests). With an increasing
number of iterations (typically a few hundreds), the algorithm converges first toward
feasible solutions and eventually towards a near-optimal solution.

Algorithm 1 CSA for MQ-BAP

1: X[1..k] = Generate initial population of host nests
2: (each nest contains 3N possible solutions)
3: for t = 1 to max number of iterations do
4: for i = 1 to k do
5: xnew = X[i] + α ⊕ Levy(λ)
6: if (cost(xnew) < cost(X[i])) then
7: X[i] = xnew

8: for i = 1 to k do
9: if (rand(0, 1) < pa) then

10: X[i] = Destroy old nest
11: X[i] = Generate new host nest with
12: new possible solutions
13: xbest = Find nest with lowest fitness value in X

4.2. Genetic Algorithm

The Genetic Algorithm (GA) is a well-known population-based metaheuristic algo-
rithm (also known as a global search algorithm). It is inspired by the theory of biological
evolution developed by [38]. GA is famous in the family of metaheuristics due to its high
convergence rate, and, therefore, it can solve various types of optimization problems. Since
there is a high probability to survive in fitter organisms, GA follows the concept of the
survival of the fittest [39]. To find an optimal solution, GA generates a random population
and updates it using iterative genetic operators, i.e., chromosome representation, selection,
crossover, and mutation.

The complete working mechanism of GA is described next and visualized in Figure 6.
First, a random population of n chromosomes (possible solutions) is initialized, where
each chromosome is generated. A single solution is called a gene, a solution set is called a
chromosome, and all solution sets form a population. Next, the fitness of all chromosomes
(solutions) is calculated using the objective function of this study. The crossover cr is
performed on two parents using crossover probability crp to produce an offspring o. Parents
selection is performed by roulette wheel and a single point crossover is employed. Then,
displacement mutation m is applied with the probability of mp to offspring o to produce
a new offspring o′. The new offspring o′ is included in the entire population to avoid
the algorithm becoming stuck in local optima and ensure diversity in new solutions.
Interested readers can find further details of parameter settings and methodologies from
these studies [38,39]. The fitness values of the new population are calculated and the same
steps (selection, crossover, and mutation) will be repeated until the termination conditions
are met.
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Figure 6. Flow chart of GA.

4.3. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm also belongs in the metaheuristic
family, it is proposed by [40], and it works on the basis of behaviours of social animals.
The PSO algorithm employs a swarm of particles that traverse a multi-dimensional search
space to find optima. Each particle is a possible solution and altered by experiences of
its own and neighbors. Furthermore, each particle is associated with a position vector
and a velocity vector and updates its position based on the velocity vector, as well as its
previous experiences.

The main steps in standard PSO [40] are given next and visualized in Figure 7. A ran-
dom population of particles (solutions), based on the problem dimension, is initialized,
where a random position vector and a random velocity vector are assigned to each particle
(solution). A random population of possible solutions (particles) is generated and random
velocity and position vectors are assigned to each particle. The population size depends on
the problem dimension. The fitness of all particles is computed following the objective of
the study and the best particle with the fittest objective value is selected. Then, the position
and velocity of all particles are revised based on previous values along with some model
parameters. The fitness evaluation and vector updates repeat until the termination criterion
is met, which is a max number of iterations (1000).

Initial population generation with 
particles’ velocities and positions

Fitness evaluation and store 
the best particle with gbest

Update the velocity and 
position of each particle

Termination 
criteria?

(max iterations)

Termination of algorithm

Yes

No

Figure 7. Flow chart of PSO.
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4.4. First Come First Serve (FCFS)

In this study, we have also implemented a first come first serve (FCFS) policy for
solving the MQ-BAP, as developed in [41]. The FCFS solves the MQ-BAP based entirely
on the priority of arrival times [42]. That is, the first vessel to arrive will be allocated to its
preferred berthing quay and preferred berthing position. In the event that no berthing slot
is available at the time of arrival, the vessel needs to wait until the berthing slot becomes
available. All constraints are respected like in the other approaches.

5. Computational Experiments

To verify the efficiency and effectiveness of the proposed approach, this section dis-
cusses the results obtained from several experiments using both random and real data from
the Port of Limassol, Cyprus. For the real data, we consider different planning horizons
of one week, two weeks, and four weeks during March 2019, with 28 ships arriving for
loading and unloading in the first week, 68 ships in the first two weeks, and 138 ships in
four weeks, respectively.

CSA, GA, PSO, FCFS, and MILP have all been implemented to perform a comparative
analysis. Grid search was used to tune the parameters for each metaheuristic approach.
For the CSA implementation, we set the number of host nests to 100, and the discovery
rate to 0.45. The GA implementation is based on [14]; however, the parameters of GA are
not presented in that study. Hence, we set the population size as 100, the crossover rate
as 0.90, and the mutation rate as 0.10 based on other GA-based studies [23,24]. Regarding
PSO, inertia weight, local learning coefficient, global learning coefficient, and population
size are set to 1, 1.5, 2.0, and 100, respectively. For all heuristic algorithms, i.e., CSA, GA,
and PSO, the maximum number of iterations, i.e., the termination criterion, is set as 1000.

Furthermore, following the objective function (Equation (7)), the performance metrics
of our experiments are total service cost (that includes handling cost, waiting cost, and
several penalties) along with computational time. All experiments are conducted on an
Intel Core i7 2.4 GHz computer system with 16 GB RAM. All compared algorithms are
developed in MATLAB on the same computer system and tested on the same datasets.

5.1. Real Data Instances from Port of Limassol

As for the multi-quay data instances, this study uses real data collected from the
Port of Limassol, Cyprus. The Limassol port has five commercial continuous quays with
different lengths, Container/Ro-Ro Quay: 450 m; Container Quay: 800 m; East Quay:
480 m; West Quay: 770 m; and North Quay: 430 m. For each ship, the ETA, HT, ETD, PBQ,
ABQ, PBP, and LoS are known. It is important to note that the real data do not include
PBPs and ABQs for arriving vessels. Hence, we added PBPs randomly, as shown in the
seventh column of Table 3. We also assign up to one ABQ for each vessel based on the port
characteristics (e.g., availability of cranes, passenger boarding bridges) and ship type (e.g.,
container ship, passenger ship). In particular, the Container/Ro-Ro Quay is ABQ for ships
having Container Quay as PBQ and vice versa and the West Quay is ABQ for ships with
North Quay as PBQ and vice versa. There is no ABQ for ships with PBQ East Quay as
this is the only quay that can handle passenger vessels. The real world data are collected
through an online system developed for the STEAM Project [5].

Table 3. Example data for 28 ships that arrived during the first week of March 2018 at the Port of
Limassol, Cyprus.

Ship # ETA HT ETD PBQ ABQ PBP LoS
(Date\Time) (min.) (Date\Time) (m)

1 1\04:00 919 1\22:30 Container/Ro-Ro Quay Container Quay 240 194
2 1\05:30 1490 2\06:50 East Quay - 276 139
3 1\14:00 1285 2\12:50 West Quay North Quay 84 84
4 1\15:00 5700 5\14:03 East Quay - 51 89
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Table 3. Cont.

Ship # ETA HT ETD PBQ ABQ PBP LoS
(Date\Time) (min.) (Date\Time) (m)

5 1\17:00 5970 5\21:00 West Quay North Quay 314 190
6 2\04:30 470 2\13:50 Container/Ro-Ro Quay Container Quay 138 159
7 2\05:00 168 2\09:30 Container Quay Container/Ro-Ro Quay 571 196
8 2\08:00 440 2\15:55 North Quay West Quay 53 155
9 3\04:00 905 3\20:50 Container/Ro-Ro Quay Container Quay 31 175
10 3\03:30 1331 4\06:15 Container Quay Container/Ro-Ro Quay 389 277
11 3\07:30 1870 4\14:55 East Quay - 358 162
12 3\12:30 640 3\22:40 West Quay North Quay 34 88
13 3\23:00 295 4\05:00 Container/Ro-Ro Quay Container Quay 162 133
14 5\05:00 825 5\19:00 West Quay North Quay 208 90
15 5\05:30 635 5\16:30 North Quay West Quay 190 121
16 5\08:30 315 5\13:15 East Quay - 267 178
17 5\17:30 1290 6\20:50 Container/Ro-Ro Quay Container Quay 96 129
18 5\16:00 455 6\00:25 North Quay West Quay 112 84
19 5\20:00 614 6\09:35 Container Quay Container/Ro-Ro Quay 125 294
20 6\03:30 937 6\21:25 Container/Ro-Ro Quay Container Quay 269 122
21 6\04:30 425 6\12:00 West Quay North Quay 35 102
22 6\05:30 635 6\16:30 North Quay West Quay 128 87
23 6\06:30 705 6\18:05 West Quay North Quay 113 84
24 6\07:30 1750 7\12:50 East Quay - 207 130
25 6\12:00 1070 7\10:15 Container Quay Container/Ro-Ro Quay 260 217
26 6\14:00 705 7\02:05 West Quay North Quay 219 88
27 7\05:30 455 7\13:05 West Quay North Quay 364 121
28 7\09:30 335 7\15:25 North Quay West Quay 7 155

Figure 8 shows the solutions for berth allocation developed by the four implemented
algorithms, i.e., CSA, GA, PSO, and MILP. In this figure, each rectangle represents a ship,
with the x-axis indicating the berthing time and the y-axis indicating the berthing position
for a given ship. The blue colored rectangles show the ships moored at their preferred
berth. The red rectangles, on the other hand, show the ships that moored at their ABQs
instead. Based on the cost models, the implemented methods move a ship to an ABQ if the
waiting time before the optimal berth is long, resulting in a delayed departure for the ships.
A particular vessel may also be moored at an ABQ if its PBP is unavailable for a long time
and a NOB position causes high costs or delays in delivering containers to the designated
storage area. From this figure, it can also be seen that there is a safety distance and a
safety time between any two vessels during berthing, which are subject to the following
constraints. The safety time is set to one time slot (30 min) and the safety distance between
two vessels is set to 10 m. By respecting the overlapping constraint (presented in Table 2
and visualized in Figure 4), none of the solutions allow for any scheduling overlapping
between any two ships. For instance, in order to avoid overlapping, ship 21 (highlighted
with red color in Figure 8) is moored at its ABQ (North Quay) instead of its PBQ (West
Quay) using CSA and PSO methods. However, GA and MILP shift ship 23 to its ABQ
instead to avoid overlapping.

Figure 9 shows the mean difference (and standard error) between the proposed
berthing times by the various algorithms and the optimal berthing times for the three
scenarios (i.e., one week, two weeks, and three weeks). From this figure, it can be seen
that there is no difference in case of MILP, i.e., it assigns ships always at optimal berthing
times, for the one-week scenario. However, it is important to note that MILP can only solve
the problem for one week planning horizon and it runs out of memory for the other two
scenarios (i.e., two weeks and four weeks). On the other hand, when we compare CSA
with the other heuristic methods, we observe that CSA provides a near-optimal solution
(lowest mean difference) in all tested scenarios. The mean difference between proposed
and optimal berthing times using CSA method are 0.32, 0.54, and 0.69 interval for one week,
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two weeks, and four weeks, respectively. On the contrary, PSO performs better than GA in
the cases of one week and two weeks, but worse in the four-weeks case. The highest mean
difference are 0.39 (using GA), 1.38 (using GA), and 1.69 (using PSO) intervals in one-week,
two-weeks, and four-weeks scenarios, respectively.

(a) (b)

(c) (d)

Figure 8. Berth allocation solutions by the four compared approaches for ships arriving over one week
planning horizon. (a) solution by CSA; (b) solution by GA; (c) solution by PSO; and (d) solution by MILP.

Figure 10 shows the mean and standard error for non-optimal berthing costs (in Euro)
for all arriving vessels. This figure presents the results for all four algorithms and the three
considered scenarios, i.e., one week, two weeks, and four weeks. It can be noted from
the figure that the minimum NOB cost is achieved using MILP, closely followed by CSA;
however, MILP can only solve the problem for one week planning horizon. Furthermore,
when we compare the CSA-based solution with other heuristic methods, it can be noticed
that CSA has the lowest NOB mean cost and standard error, in all tested scenarios. On the
other hand, GA performs better compared to PSO in one-week and two-weeks scenarios
but worst in the four-weeks scenario. Finally, as the planning period grows from one week
to four weeks, the performance of GA and PSO worsens at a much higher rate that CSA,
showcasing the robustness of the CSA approach to handle longer planning periods.
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Figure 9. Mean difference between optimal and proposed berthing time for all vessels per method.
MILP obtains zero difference for one week and is not able to run for two weeks and four weeks.
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Figure 10. Non-optimal berthing (NOB) cost for all vessels per method. MILP is not able to run for
two weeks and four weeks.

Figure 11 shows the total service cost incurred for all arriving ships in the planning
horizon of one week, two weeks, and one month (four weeks). From this figure, it can be
seen that the total service cost (in Euro) for the planning horizon of one week is minimal
when MILP is used (i.e., 11,005). In contrast, CSA has the lowest cost (11,095) compared to
the other two heuristic methods (i.e., GA and PSO). The highest service cost for a planning
horizon of one week is 11,795 when PSO is used. As the planning horizon increases to
two and four weeks, the CSA approach is able to achieve the lowest service cost, while the
difference between the CSA and the other two metaheuristic approaches increases.
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Figure 11. Total service cost for arriving vessels in one, two, and four weeks, for each approach.
MILP is not able to run for two weeks and four weeks.

For a more in-depth comparative analysis, Table 4 shows the different costs (i.e.,
waiting cost, non-optimal berth allocation cost, late departure cost, normal handling cost,
and total service cost) along with the computation times for different planning horizons
using all five implemented algorithms. We conducted experiments with different data
instances to validate the productivity of the proposed CSA-based method. From this table,
we can see that the MILP method has the highest computation time of 775.77 s (~13 min)
for the planning horizon of one week. The MILP method provides an optimal solution
with the lowest total service cost (and lowest individual costs). However, if we increase
the planning horizon, and therefore the number of arriving vessels, from one week to
two weeks or four weeks, MILP cannot solve the problem and runs out of memory. The
NOB cost includes penalty costs when a vessel s is moored at a location other than its PBP
or at a quay other than its PBQ. As shown in Equation (4), the penalty is calculated based
on the absolute difference between the proposed and preferred berthing positions, i.e.,
|PBPs − BPs| · Cnob

s , where Cnob
s is equal to EUR 5 per meter. If a vessel berths at its ABQ

instead of its PBQ, an additional fixed penalty of EUR 50 is charged; however, berthing
a vessel at a location other than ABQ and PBQ incurs an infinite penalty (and thus is not
possible). From Table 4, it can be seen that the penalty for NOB is lowest when MILP is
used (EUR 235), closely followed by FCFS and CSA with EUR 255 and 280, respectively.
PSO has the highest penalty cost of EUR 980 and for GA it is EUR 560. As for waiting time
and late departure costs, it can be observed from Table 4, FCFS has the highest cost of EUR
700 and 1000, respectively. In the case of a one-week scheduling period, FCFS takes the
least computation time of 12.33 s, closely followed by GA and CSA with 18.95 and 21.91 s,
respectively, while PSO takes 73.59 s. Furthermore, if we run experiments for two-weeks
and four-weeks scenarios, it can be seen from Table 4 that CSA always provides an optimal
solution (minimum total service cost) within the least computation time, even less than GA
and PSO. FCFS also takes minimum computation time (74.32 s for two-week and 110.24
for four-week scenarios), however, the proposed cost is too high, especially in a four-week
scenario (that is EUR 140275). In two-weeks and four-weeks scenarios, CSA again provides
minimum total service costs of EUR 21,955 and 58,950, respectively. In the case of two
weeks and four weeks, the CSA takes 70.60 and 133.27 s, respectively. In contrast, GA
and PSO take 332.96 and 223.33 s for two weeks and 768.81 and 642.95 s for four weeks,
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respectively. Table 4 also presents the percentage of deviation by comparing all methods
and considering the proposed CSA method as a base value. It can be observed from the %
of deviation that there only MILP provided better results in terms of total service cost in
the one-week case scenario. In all other cases, the compared methods leads to a higher total
service cost compared to our proposed method. From the above analysis, we can conclude
that the newly developed CSA-based solution for MQ-BAP is more efficient and always
provides a near-optimal solution.

Table 4. Comparative analysis of all methods when using data for 1–4 weeks (March 2018). Note that
all costs are in Euros. % Deviation used the total service cost of the CSA approach as baseline.

Scenarios: One Week (28 Ships) Two Weeks (68 Ships) Four Weeks (168 Ships)

Algorithms: CSA GA PSO FCFS MILP CSA GA PSO FCFS MILP CSA GA PSO FCFS MILP

Waiting cost 450 550 450 700 0 1850 4700 3200 6700 - 4800 11,100 11,650 45,900 -
NOB cost 280 560 980 255 235 485 1450 2880 200 - 2580 11,125 8210 2205 -
Late departure cost 0 0 0 1000 0 0 0 200 3600 - 400 200 1600 41,000 -
Normal handling cost 10,770 10,770 10,770 10,770 10,770 19,620 19,620 19,620 19,620 - 51,170 51,170 51,170 51,170 -
Total service cost 11,500 11,880 12,200 12,725 11,005 21,955 25,770 25,900 30,120 - 58,950 73,595 72,630 140,275 -
% Deviation 3.30 6.08 10.65 −4.30 17.37 17.96 37.18 - 24.84 23.20 137.95 -
Computation time (s) 21.91 18.95 73.59 6.68 775.77 70.60 332.96 223.33 74.32 - 133.27 768.81 642.95 110.24 -

5.2. Randomly Generated Data Instances

Finally, to verify the performance and scalability of the proposed CSA-based method,
we conduct extensive experiments with randomly (uniformly) generated data instances,
in a similar way as it was performed in [14,19,23,43]. We generated 40 data instances
considering 10–150 arriving ships, 1–30 days of planning, and 1–5 berthing quays (see
Table 5). We retested all developed methods (i.e., CSA, GA, PSO, and MILP) with all data
instances and found that MILP was only able to solve the problem when considering up to
30 ships with 5 quays (see Table 5). With more ships, the computation ran out of memory.
When we compare our proposed CSA method with the two heuristics, i.e., PSO and GA, it
can be seen that our method performs well in most cases in terms of minimum total cost
and computation time. However, in some of the smaller-instance cases, it is observed that
GA performs well. For example, if we consider 10 ships, GA performs well in terms of
service cost and provides very close to the optimal solution (MILP solution). However,
when we increase the number of vessels and the number of quays, it can be seen that our
method performs better than GA and PSO in most cases. Finally, if we compare the total
service cost of all scenarios, we notice that the CSA has minimum average cost of EUR
789,890, compared to GA with EUR 998,158 and PSO with EUR 877,200.

Table 5. Comparative analysis of all methods using uniform random data (10–150 vessels, 1–30 days,
and 1–5 quays).

No. of Ships Days No. of Quays
Service Cost (Euro) Computation Time (s)

CSA GA PSO MILP CSA GA PSO MILP

10 1

1 2986 2794 4884 2790 15.03 18.37 14.23 26.43
2 1542 1494 12,384 1494 23.52 13.52 10.69 14.07
3 1994 1782 2478 1780 21.59 10.38 12.49 11.92
4 1734 1576 2620 1570 14.19 9.90 11.73 11.92
5 1510 1364 2312 1342 16.75 9.04 11.97 12.27

Avg 1953 1802 4936 1795 18.22 12.24 12.22 15.32

15 1

1 6160 13,956 15,046 4508 19.30 65.66 65.79 146.8
2 3152 3870 5244 2622 29.53 25.25 17.62 81.35
3 3360 2938 14,836 2922 19.74 69.51 29.44 103.46
4 3128 2500 6144 2494 18.15 16.93 20.00 111.71
5 3754 2500 4382 2332 24.06 16.15 23.71 17.05

Avg 3911 5153 9130 2976 22.16 38.70 31.31 92.07
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Table 5. Cont.

No. of Ships Days No. of Quays
Service Cost (Euro) Computation Time (s)

CSA GA PSO MILP CSA GA PSO MILP

20 2

1 7504 7486 7338 4738 31.69 72.95 75.21 520.84
2 3136 2396 5874 2178 25.65 30.70 34.70 292.22
3 4308 3782 5468 3782 23.51 17.37 35.65 106.07
4 3588 3418 15,644 3170 21.03 20.18 38.12 93.03
5 3386 2716 5290 2628 30.41 13.05 39.76 98.56

Avg 4384 3960 7923 3299 26.46 30.85 44.69 222.14

30 2

1 8312 10,640 13,784 7328 39.63 125.51 189.62 918.95
2 9156 8328 6378 6022 36.08 25.60 16.46 486.59
3 9370 7308 6304 6108 37.97 29.78 18.32 354.32
4 7934 7368 5656 5486 32.21 27.35 16.78 364.67
5 9150 6712 5214 5078 41.66 29.82 15.40 586.76

Avg 8784 8071 7467 6004 37.51 47.61 51.32 542.26

60 7

1 30,016 18,672 37,674 - 107.49 741.91 43.54 -
2 21,208 14,744 11,890 - 75.24 117.47 33.92 -
3 27,576 17,658 32,574 - 69.39 97.79 32.88 -
4 19,142 24,366 12,620 - 89.85 348.56 33.76 -
5 15,342 21,726 10,686 - 41.83 236.94 32.17 -

Avg 22,657 19,433 21,089 - 76.76 308.53 35.25 -

90 15

1 40,520 28,236 44,860 - 121.59 1350.63 92.00 -
2 24,148 23,122 29,348 - 251.66 641.48 45.72 -
3 23,584 32,312 19,026 - 187.22 644.33 40.86 -
4 28,728 20,872 29,732 - 129.65 264.31 49.49 -
5 24,290 40,332 26,570 - 185.92 240.29 67.04 -

Avg 28,254 28,975 29,907 - 175.21 628.21 59.02 -

120 15

1 52,094 26,464 51,358 - 191.28 2632.96 66.33 -
2 40,910 36,152 53,424 - 174.12 968.62 63.42 -
3 40,794 57,690 63,590 - 265.19 1137.96 103.85 -
4 33,498 72,372 27,586 - 278.94 956.92 58.65 -
5 32,664 120,844 49,656 - 239.85 580.59 57.73 -

Avg 39,992 62,704 49,123 - 229.88 1255.41 70.00 -

150 30

1 53,202 40,140 56,168 - 349.23 1921.07 104.58 -
2 45,828 40,412 45,148 - 377.76 1569.21 101.52 -
3 42,312 99,874 47,600 - 277.66 1633.41 95.71 -
4 45,336 59,142 35,012 - 361.27 1639.65 90.30 -
5 45,534 108,100 45,398 - 265.91 1426.03 109.54 -

Avg 46,442 69,534 45,865 - 326.37 1637.87 100.33 -

Total 789,890 998,158 877,200 - 4562.75 19,797.15 2020.70 -

In terms of computational time, MILP requires high computational time and takes
up to 918.95 s (15.3 min) to solve 30 ships, while it cannot solve the problem with more
than 30 ships. In contrast, CSA takes only 39.6 s to solve the same problem. Moreover,
GA seems to be more efficient when small data instances are considered; however, it
takes too much time when we apply it to larger data instances. For example, it takes
2632 s to solve the problem with 120 ships. In contrast, our proposed CSA is always
consistent and takes affordable time to solve the problem. CSA solves the problem with
120 ships in only 191.28 s. When we compare CSA with PSO, we find that PSO requires
less computation time compared to CSA; however, PSO often provides solutions that
are far from the optimal solution. Based on experiments with real and random data, we
can conclude that CSA always performs well and provides a near-optimal solution with
affordable computation time.
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6. Discussion

Although this study solves MQ-BAP at the operational level with the goal of reducing
the total service cost along with reducing computation time, it can also provide several
insights to terminal managers and policymakers. For instance, our proposed solution helps
managers in decision-making, especially in a complex environment. When a ship arrives
later than the expected arrival time or some additional ships arrive without notice, the
newly developed method helps managers readjust their berth allocation plan to accommo-
date these changes. Since terminal congestion is one of the most important problems for
managers, the newly developed method can deal with the congestion by mooring some
ships at the nearest berthing quay (known as an alternative berthing quay).

Moreover, the methodology based on computational intelligence helps the manage-
ment to assign the nearest berthing position (this term is introduced as PBP) to the arriving
vessels in relation to the assigned storage area in the marshalling yard. In this way, the
cost and time of transfer can be minimized. Finally, with our proposed method, maximum
productivity of container terminals can be achieved.

Furthermore, the proposed approach can be utilized for making resource planning
and capacity expansion decisions by creating and evaluating hypothetical scenarios based
on anticipated ship traffic. For instance, by repeatedly solving the MQ-BAP with increasing
number of arriving ships, an administrator can investigate how the berth waiting times
are affected and determine what is the maximum number of ships the current port can
sustain without surpassing some threshold on average waiting time. In another scenario,
the benefit (or not) of adding a new quay can also be determined by increasing the number
of available quays while keeping the number of vessels fixed. As can be observed by our
results in Table 5, when the number of arriving ships is small (10–20), using two quays
rather than one leads to a lower service cost (and lower waiting times/delays in departures).
However, adding more quays does not significantly change the service cost as two quays
are enough to handle this traffic. When the number of ships is much larger (e.g., 120 ships),
on the other hand, having up to four quays can significantly lower the service cost.

7. Conclusions

In this study, we deal with a special variant of the continuous BAP, namely the
multi-quay BAP, where more than one quay is available for mooring the arriving ships.
The MQ-BAP is formulated as a mixed-integer linear problem and then solved using exact
and metaheuristic methods, with the main objective of minimizing the total service cost
while reducing the waiting time before berthing and the delayed departures of the ships.
We considered the case of the Port of Limassol and used real data collected from the same
port. Moreover, this study also considers several practical constraints of the port and
introduces the new concept of alternative berthing quay (ABQ). The purpose of ABQ is
to reduce long waiting times of vessels. For example, if a vessel’s preferred position is
occupied for a long time, the vessel can be moored at the nearest mooring quay instead.

We have conducted several experiments using both random and real data from the
Port of Limassol to corroborate our model and verify the effectiveness of our proposed
CSA-based method. We have also implemented for comparison purposes the exact method
(i.e., MILP) and state-of-the-art popular methods, i.e., GA, PSO, and FCFS. Results reveal
that the exact method can only solve the problem for a one-week planning horizon with
high computation time. In contrast, the CSA-based method is able to solve all tested
scenarios and outperforms the other compared methods (GA, PSO, and FCFS) in terms of
both minimum service cost and computation time.
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ABQ Alternative berthing quay
BAP Berth allocation problem
CSA Cuckoo search algorithm
ETA Expected time of arrival
ETD Expected time of departure
GA Genetic algorithm
HT Handling time
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MCT Maritime container terminal
MQ-BAP Multi-quay BAP
NOB Non-optimal berthing
PBP Preferred berthing position
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