

Faculty of Geotechnical Sciences and Environmental Management

Bachelor's Thesis

Computational studies on microreactors for the decomposition of formic acid for hydrogen production using heterogeneous catalysts.

Kyproula Georgiou

Supervisor Dr. Achilleas Constantinou, Assistant Professor

Limassol, May 2023

Table Abst	f Contents :act	1
1.	Introduction	1
2.	Hydrogen	3
2.	From renewable sources	3
2.	From Fossil Fuels	11
3.	Formic acid	14
3.1	Characteristics	14
3.2	Its production	15
3.3	Decomposition	19
4.	Hydrogen storage problems	20
4.1	The solution of storing hydrogen in Fa	22
5.	Fuel cells and their importance	24
6.	Catalysts	25
6.1	General comparison of homogenous and heterogeneous catalysts and the use of o	atalyst 25
6.2	Homogeneous catalysts for formic acid decomposition	26
6.	.1 Ruthenium-based	26
6.	.2 Iridium-based	26
6.	.3 Iron-based	26
6.	.4 Copper-based	27
6.3	Heterogeneous Catalysts for formic acid decomposition	27
6.	.1 Palladium-based	27
6.	.2 Gold-based	28
6.	.3 Platinum-based	28
6.	.4 Other catalysts	28
7.	Reactors	

74	51 - 41 - 4
/.1	Fixed-bed
7.2	Stirred-tank
7.3	Microreactors
8	8. A general comparison of microreactors and conventional
reac	tors
9.	Definitions of factors
9.1	Residence Time
9.2	Temperature
9.3	Pressure
10.	CFD Modelling
10.1	Simulation details
10.1	.1 Table 1: Parameters used on the simulation:
10.1	.2 Table 2: Variables used on the simulation:
10.1	3 Chemistry:
10.1	.4 Transport of diluted species:
10.1	.5 Porous medium:
10.1	.6 Domain ODEs and DAEs (dode):37
10.2	Results for packed bed 2D and 3D:
10.3	Results for single membrane microreactor for 2D and 3D: 46
10.4	Results for double membrane microreactor for 2D and 3D: 56
10.5	Comparison between models in 2D and 3D: 63
10.6	Mesh independence
11.	Conclusions and Recommendations 72
Ack	nowledgments73
Refe	erences

Table of Figures

Figure 1: Typical alkaline electrolysis cell. ¹² Figure 2: Typical SOEC electrolysis cell. ¹⁴
Figure 3: A typical PEM electrolysis cell. ¹⁷
Figure 4:Illustration of mechanism of photocatalytic water splitting for H2 production. ¹⁹ 7
Figure 5: Schematic representation of hydrogen's production through biomass steam gasification. ²⁴ 9
Figure 6: Bio-hydrogen production via bacterial bioprocesses. ²⁷
Figure 7: Possible routes to produce Hydrogen. ³⁸
Figure 8: Formic acid's production from cellulose through hydrolysis. ⁵
Figure 9: Ways to produce formic acid
Figure 10: Heating values of comparative fuels. ⁴⁹
Figure 11: Volume of 4 kg of hydrogen compacted in different ways, with size relative to the real size of
a car. ⁵²
Figure 12: Hydrogen storage technologies and their necessary conditions. ⁵¹
Figure 13: Reaction mechanisms of the two possible routes of formic acid decomposition. ⁵
Figure 14: A catalytic cycle for hydrogen storage in FA. ⁵³
Figure 15: Process flow diagram of the experimental setup for FA decomposition by Winkler et al. ⁷⁶ 29
Figure 16: Block diagram for calculations of the process steps. ⁷⁶
Figure 17: Comparison of formic acid decomposition with Pd/C catalyst in a PFR and CSTR where a)
relative performance of the catalyst as a function of substrate turnover and b) cumulative moles of formic
acid converted in the two systems as a function of substrate. ⁸²
Figure 18: Representation of the (a) fixed bed, (b) coated wall, and (c) membrane microreactors
developed for the CFD modeling study. ⁴
Figure 19: Concentration scale of formic acid (mol/m ³)
Figure 20: Concentration of formic acid for a flow rate of 0.05 mL/min, time = 500 min and $T = 30^{\circ}C$
in a 2D-packed bed reactor
Figure 21: Concentration of formic acid for a flow rate of 0.05 mL/min, time = 500 min and $T = 50^{\circ}C$
in a 2D-packed bed reactor
Figure 22: Concentration of formic acid for a flow rate of 0.05 mL/min, time = 500 min and $T = 30^{\circ}C$
in a 3D-packed bed reactor
Figure 23: Concentration of formic acid for a flow rate of 0.05 mL/min, time = 500 min and $T = 50^{\circ}C$
in a 3D-packed bed reactor
Figure 24: How conversion changes in a 2D-packed bed reactor over time as temperature changes 39
Figure 25: How conversion changes in a 3D-packed bed reactor over time as temperature changes 40
Figure 26: How conversion changes in a 2D-packed bed reactor over time as porosity changes
Figure 27: How conversion changes in a 3D-packed bed reactor over time as porosity changes
Figure 28: How conversion changes in a 2D-packed bed reactor over time as diameter changes
Figure 29: How conversion changes in a 3D-packed bed reactor over time as diameter changes
Figure 30: How conversion changes in a 2D-packed bed reactor over time as flow rate changes
Figure 31: How conversion changes in a 3D-packed bed reactor over time as flow rate changes
Figure 32: How conversion changes in a 2D-packed bed reactor over time as concentration changes 45
Figure 33: How conversion changes in a 3D-packed bed reactor over time as concentration changes 46

Figure 34: Concentration of formic acid for a flow rate of 0.05 mL/min, time = 500 min and $T = 30^{\circ}C$
in a 2D single membrane microreactor
Figure 35: Concentration of formic acid for a flow rate of 0.05 mL/min, time = 500 min and $T = 30$ °C in
a 3D single membrane microreactor
Figure 36: Concentration scale for carbon monoxide and hydrogen, respectively (mol/m ³)
Figure 37: Concentration of carbon monoxide for a flow rate of 0.05 mL/min, time = 500 min and T =
30°C in a 2D single membrane microreactor
Figure 38: Concentration of carbon monoxide for a flow rate of 0.05 mL/min, time = 500 min and T =
30°C in a 3D single membrane microreactor
Figure 39: Concentration of hydrogen for a flow rate of 0.05 mL/min, time = 500 min and $T = 30^{\circ}C$
in a 2D single membrane microreactor
Figure 40: Concentration of hydrogen for a flow rate of 0.05 mL/min, time = 500 min and $T = 30^{\circ}C$
in a 3D single membrane microreactor
Figure 41: How conversion changes in a 2D single membrane microreactor over time as temperature
changes
Figure 42: How conversion changes in a 3D single membrane microreactor over time as temperature
changes
Figure 43: How conversion changes in a 2D single membrane microreactor over time as porosity
changes
Figure 44: How conversion changes in a 3D single membrane microreactor over time as porosity
changes. 51
Figure 45: How conversion changes in a 2D single memorane reactor over time as diameter changes
Figure 40: How conversion changes in a 3D single membrane reactor over time as diameter changes52
changes
Figure 18: How conversion changes in a 3D single membrane microreactor over time as flow rate
changes 54
Figure 49: How conversion changes in a 2D single membrane microreactor over time as concentration
changes
Figure 50: How conversion changes in a 3D single membrane microreactor over time as concentration
changes
Figure 51: Concentration of formic acid for a flow rate of 0.05 mL/min_time = 500 min and $T = 30^{\circ}$ C
in a 2D double membrane microreactor.
Figure 52: Concentration of formic acid for a flow rate of 0.05 mL/min, time = 500 min and $T = 30^{\circ}$ C
in a 3D double membrane microreactor
Figure 53: How conversion changes in a 2D double membrane microreactor over time as temperature
changes
Figure 54: How conversion changes in a 3D double membrane microreactor over time as temperature
changes
Figure 55: How conversion changes in a 2D double membrane microreactor over time as porosity
changes
Figure 56: How conversion changes in a 3D double membrane microreactor over time as porosity
changes59
Figure 57: How conversion changes in a 2D double membrane microreactor over time as flow rate
changes

Figure 58: How conversion changes in a 3D double membrane microreactor over time as flow rate
changes
Figure 59: How conversion changes in a 2D double membrane microreactor over time as concentration
changes
Figure 60: How conversion changes in a 3D double membrane microreactor over time as concentration
changes
Figure 61: Production of carbon monoxide in all reactors in both dimensions
Figure 62: Conversion (%) vs time (min) for flow rate = 0.05 mL/min , T = 30 °C and concentration of
formic acid = 0.05 mol/m^3 64
Figure 63: Conversion (%) vs time (min) for flow rate = 0.07 mL/min, T = 30 °C and concentration of
formic acid = 0.05 mol/m ³ 64
Figure 64: Conversion (%) vs time (min) for flow rate = 0.05 mL/min , T = 50 °C and concentration of
formic acid = 0.05 mol/m^3 65
Figure 65: 2D models for normal, fine, extra fine and extremely fine meshing
Figure 66: 2D models for normal, fine, extra fine and extremely fine meshing
Figure 67: 3D models for normal, fine, extra fine and extremely fine meshing
Figure 68: 3D models for normal, fine, extra fine and extremely fine meshing

Table of Tables:

10.1.1	Table 1: Parameters used on the simulation:	. 34
10.1.2	Table 2: Variables used on the simulation:	. 35
Table 3:	Initial values:	. 37
Table 4:	Inflow concentrations:	. 37
Table 5:	Mesh independence test on 2D study:	. 67
Table 6:	Mesh independence test on 3D study:	. 67

Abstract

The rapid increase of CO₂ emissions causes dramatic climate changes. Thus, finding a solution became imperative. The key is to find a back-up source that is secure, renewable, and internationally available. A hydrogen-based economy was discovered as the most effective alternative solution to replace fossil fuels due to its sustainability. In this review, many ways of hydrogen's production through various technologies are presented, such as the generation as a product of biomass refinery through thermochemical and biological processes, from fossil fuels and water splitting like electrolysis, photolysis, and thermolysis. Hydrogen is one of the greenest energy sources, providing engines with power while causing zero emissions. Unfortunately, hydrogen's storage and transportation are unsafe, costly due to its large volume, but it is easily stored in formic acid. Formic acid is produced by the hydrogenation of CO₂, and its decomposition in mild conditions is widely used as it is a safer way of transporting and producing large amounts of hydrogen with low toxicities. As a result, atmospheric CO_2 is reducing. Moreover, there are many homogenous and heterogeneous catalysts and reactors that are utilized for the decomposition of formic acid. Reactors that can be used in this procedure are batch reactors, microreactors, CSTR, and fixed-bed reactors. These types of catalysts and reactors and their advantages-disadvantages will be analyzed further in this study.

<u>Keywords:</u> Hydrogen, Formic acid, Decomposition, Reactors, Renewable sources, Sustainable, Environmentally Friendly.

1. Introduction

Humans are the most responsible factor for the ongoing climate change due to the combustion of large quantities of fossil fuels. Nowadays, CO₂ emissions have grown abruptly at the highest rates ever recorded. The continuous waste of energy from developing economies can surpass those of the industrialized countries that have hitherto been the main cause of emissions.¹ This fact, has motivated mankind to discover an alternative solution to replace fossil fuels with eco-friendly sources, with hydrogen being the optimal choice. Hydrogen is an abundant, clean, and secure renewable energy source which has intrigued the interest since it can be utilized as an energy carrier and a potential transportation fuel.² Moreover, fuel cells operate with hydrogen-rich fuels or hydrogen and are also used in transportation, distributed thermal power generation and energy