
Citation: Gravanis, E.; Sarris, E.N. A

New Analytical Method for

Calculating Subsidence Resulting by

Fluid Withdrawal from Disk-Shaped

Confined Aquifers. Water 2023, 15,

3175.

https://doi.org/10.3390/w15183175

Academic Editor: Yeshuang Xu

Received: 27 June 2023

Revised: 1 September 2023

Accepted: 4 September 2023

Published: 5 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

A New Analytical Method for Calculating Subsidence Resulting
by Fluid Withdrawal from Disk-Shaped Confined Aquifers
Elias Gravanis 1,2,* and Ernestos N. Sarris 3

1 Department of Civil Engineering and Geomatics, Cyprus University of Technology, Limassol 3036, Cyprus
2 Eratosthenes Centre of Excellence, Cyprus University of Technology, Limassol 3036, Cyprus
3 Oil and Gas Program, Department of Engineering, University of Nicosia, Nicosia 1700, Cyprus;

sarris.e@unic.ac.cy
* Correspondence: elias.gravanis@cut.ac.cy

Abstract: This work presents the derivation of analytical solutions concerning the radial subsidence
distribution ensuing from fluid extraction from a disk-shaped confined aquifer in homogeneous
formations. The study draws upon methodologies developed in petroleum geomechanics of deep
reservoirs to estimate surface uplift due to CO2 injection using Hankel-transformed thin plate theory.
These methods yield simplified expressions as compared to previous results derived using the
superposition principle on surface uplift from a uniform pressure field. Hence, closed-form formulas
for the subsidence at the well location are re-derived, while the formulas for the subsidence field are
deducted by both methods and the mathematical relation between the two methodologies is discussed.
Additionally, innovative closed-form asymptotic solutions for radial subsidence distribution are
deduced for scenarios involving deep aquifers. These solutions demonstrate exceptional accuracy
when aquifer depth exceeds aquifer diameter, exhibiting independence from formation permeability
and fluid viscosity. The study explores the influence of physical parameters on the subsidence field.

Keywords: surface subsidence; compaction-induced subsidence; fluid withdrawal; confined aquifer;
theory of elasticity; disk-shaped analytical solutions

1. Introduction

The increasing demand for water resources in recent times is directly associated with
excessive pumping of water from aquifers [1–3]. The increase in water resources demand is
caused by human activities and may be intensified due to climate change effects causing
prolonged drought periods without rainfall. This effect in combination with excessive
pumping, failure to recharge the water aquifers, and with excessive fluid withdrawal,
results in notable ground subsidence, which can become a problem of major importance to
environmental poro-geomechanics [4,5].

In general, subsidence can be classified according to anthropogenic or geological pro-
cesses. This work investigates the anthropogenic processes focusing on water withdrawal
from an aquifer. Water in an aquifer is usually pressurized owing to the weight of the over-
burden strata. The weight of the overburden is partly transferred onto the solid framework
of the rock formation and into the fluid according to the Biot effective stress principle. When
water is withdrawn from the aquifer, the fluid pressure reduces but the pressure caused
by the weight of the overburden layer remains constant thereby increasing the vertical
effective stress undertaken by the solid skeleton of the aquifer formation. This phenomenon
has the effect that the grains can take new locations in the solid matrix responsible for
volume change in the aquifer, eventually resulting in ground subsidence [6,7].

There are only a few mathematical formulations to model or describe the behavior of
the rock formation after altering the pressure distribution in the aquifer by production (i.e.,
water withdrawal). However, to the authors’ knowledge there is no single formulation that
has benefits over others. Many of these models are based on different theories (e.g., elastic,
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plastic, or poroelastic) by considering weak or strong rock formations under partial or fully
saturated conditions with time dependency. The analysis is usually performed by deriving
analytical or semi-analytical solutions and by numerical modeling. Although the physical
problem can be considered understood, there is always room for improvement [8,9].

The problem of ground subsidence is by no means a trivial process to model as it
involves a certain geomechanical complexity owing to the different formations overlaying
the aquifer formation and to a hydrodynamic complexity due to the transport properties of
the permeating fluid through the aquifer. Upon assuming homogeneity, the mathemati-
cal problem at hand processes radial symmetry around a groundwater production well.
Among the earliest contributions, models were based on the uniaxial strain assumption or
the incremental vertical total stress [10,11]. However, the solutions of such models have
proved to overestimate subsidence [12,13]. The widely used analytical model for predicting
compaction and subsidence, based on the theory of poroelasticity it the classic model of [14].
With this model, the compaction of a flat aquifer under radial symmetry about its center
axis is calculated under a uniform pressure drawdown. Also, the aquifer is included in
a semi-infinite homogeneous elastic rock formation. Since then, many models have been
proposed in the literature to improve the geometric complexities (layered stratigraphy) and
to incorporate non-uniform pressure distributions simulating the actual pressure draw-
down distribution. The author of [15] obtained the necessary Greens function to calculate
the stress and deformation fields for an arbitrary radial distribution of pressure. Quite
some time later, the authors of [5] dealt with the more complicated problem of calculating
ground subsidence due to fluid extraction from a poroelastic medium coupling the fluid
flow process and the skeletal deformations in the context of the Biot poroelasticity model,
leading to somewhat complicated solutions. Recently, the authors of [9] utilized Geertsma’s
surface subsidence expression at the location of the well to derive a simple closed-form
expression for surface subsidence due to pumping at a constant rate, using the solution
of [15] and the principle of superposition [16]. The issue of geometric complexities was also
investigated by [17] by attempting to apply poroelastic principles to reservoirs with arbi-
trary shapes by utilizing rectangular prismatic blocks. Lately, a poroelastic model to deal
with the inhomogeneities in layered formations with separate elastic properties between
the aquifer and the surrounding rocks was proposed by [18]. Case studies involving surface
subsidence include [19–23]. Recent attempts to analyze models and predict subsidence
using artificial intelligence methods in real case scenarios combined also with decision
making and risk management methodologies can be found in [24–27].

In this work, the main objective of this work is the simplification of the mathematical
derivation of the radial distribution of subsidence in the problem of fluid withdrawal from a
disk-shaped confined aquifer. This new formulation facilitates the deduction of new results,
e.g., the closed-form asymptotic solutions for the case of a deep aquifer. We suitably modify
the theory presented in [28] and later in [29] that deals with surface deformations caused
by a pressurized region inside an elastic half-space, applied to uniform and non-uniform
radial pressure distributions around an injector, respectively, in order to deduce the radial
subsidence by fluid withdrawal from a confined aquifer. Through this method we first
re-derive the closed form solutions for the subsidence at the well location obtained by [9]
utilizing the initial theory of [14] and we simplify the calculation of the radial distribution
of the subsidence field and as a result we obtain a (asymptotic) closed form solution for the
subsidence field for deep aquifer, which holds well for a depth greater or equal to the aquifer
radius. This asymptotic solution verifies explicitly the observation made by [9] that aquifer
permeability and fluid viscosity have a negligible effect on subsidence at the well location,
showing that this holds also at the level of the radial distribution. Such models present
a plausible approach that conveniently calculates surface subsidence in fluid-saturated
aquifers. Also, results from such solutions present the benefit of a first approximation
to the estimation and calibration of numerical studies for predicting subsidence in more
complex conditions.
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This paper is organized as follows: In Section 2, we present the mathematical modeling
of the problem, derive, and analyze the new mathematical expressions for the radial distri-
bution of surface subsidence and discuss in detail the method presented in [9]. In Section 3,
we apply these results to four suitable test cases (corresponding to shallow/deep aquifer
and weak/strong formations) and analyze the physical dependencies of the subsidence
field. Finally, Section 4 summarizes and discusses the findings of this work.

2. Mathematical Formulation

Subsidence or uplift due to pumping from or injection into a confined aquifer is
calculated using the theory of deformations in an elastic layer due to pumping/injection of
fluids at depth, as described in [28] for uniform pressure distributions and modified later
by [29] for non-uniform cases, suitably applied for our purposes. The analysis of [9], which
was based on the theory of [14], for calculating surface subsidence using the superposition
principle is revisited and discussed in detail. It is worth noting that the researcher in [15]
derived Green’s functions related to this problem.

The physical model and the associated assumptions can be described as follows. Fluid
is withdrawn by volumetric rate Q through a vertical production well with negligible radius
from a confined (horizontal and disk-shaped) aquifer at a mean depth D, radius R, and
thickness H, as shown in Figure 1. The formation is semi-infinite, assuming uniform elastic
properties (shear modulus G and Poisson ratio ν). The permeable disk-shaped region (i.e.,
the confined aquifer) is also assumed to have uniform hydraulic properties, permeability k,
porosity ϕ. The fluid properties in the aquifer are also assumed to be uniform, in particular
its viscosity µ, is constant. Due to the cylindrical symmetry of the problem the pressure p
and vertical deformations w are fields depend only on the radial distance r and pumping
time t.
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The pressure distribution within the aquifer is given by the classic solution of [16], see
also [30,31], using also the series expansion of [32]. This approximation makes use the so-called
radius of influence re of the production well within the aquifer formation given by:

re =

√
e−γ

4kt
Sµ

(1)
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where γ = 0.577216 is the Euler–Masceroni constant, µ is the dynamic viscosity of the fluid
and S is the specific storage coefficient of the aquifer which may be expressed as [9]:

S =
φ

K f
+

(1− α)(α− φ)

K
+ α2Cm (2)

with Kf being the fluid bulk modulus, K the rock bulk modulus, α is the Biot coefficient,
and Cm is the coefficient of uniaxial compaction:

Cm =
1

3K
1− ν

1 + ν
(3)

Then, the pressure distribution can be expressed as:
Case re < R

p(r) = Pi −
Qµ

2πkH
ln

r2
e

r2 , 0 ≤ r ≤ re (4)

Case re > R

p(r) = Pi −
Qµ

4πkH

[
ln

R2

r2 +
r2

R2 −
3
2
+

4kt
SµR2

]
, 0 ≤ r ≤ R (5)

while p(r) is zero elsewhere in each case. The two forms of the pressure field (4) and (5),
hold at times such that the (time-dependent) radius of influence lies within the aquifer, and
outside the aquifer, respectively. Pi is the initial value of the pressure in the aquifer before
production starts.

2.1. Subsidence Derived from the Theory of Selvadurai, 2009 [28] and Li et al., 2015 [29]

In the present problem, the result for the deflection field of [29] that considers a storage
formation, a cap rock, and an elastic half-space overburden layer, is reduced to the result of
interest by taking the thickness of the caprock to zero and setting the shear modulus of the
overburden layer to zero. One easily finds:

w(r) = (1− 2ν)
α

G
H
∫ ∞

0
ξ p(ξ) e−Dξ J0(ξr)dξ (6)

where p is the Hankel transform of the pressure difference p(r) − Pi caused by pumping:

p(ξ) =
∫ ∞

0
rJ0(ξr)(p(r)− Pi)dr (7)

J0 is the zeroth order Bessel function of the first kind, and ξ is a radial wavenumber.
The calculation of the deflection profile in Equation (6) may proceed straightforwardly

because the required Hankel transforms of the pressure field in (4) and (5) can be calcu-
lated exactly. Utilizing the following identities for the Bessel functions of the first kind
(see e.g., [33]):

J′0(x) = −J1(x), (xJ1(x))′ = xJ0(x) (8)

one finds that the transforms of the profiles (4) and (5) can be calculated by the identity:∫
drrJ0(ξr) f (r) = ξ−1 J1(ξr)r f (r) + ξ−2 J0(ξr)r f ′(r)− ξ−3 J1(ξr)

d
dr
[
r f ′(r)

]
(9)

where f is an arbitrary function that includes logarithmic and quadratic terms in the variable
r. A similar methodology for the evaluation of the subsidence formula has been used in [34].

Using these results, one finds straightforwardly the following solutions for the subsi-
dence radial distribution for the cases respective to Equations (4) and (5).
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Case re < R.

w(r) = −(1− 2ν)
α

G
µQ
2πk

∫ ∞

0

[
1
ξ
(1− J0(ξ))

]
e−Dξ/re J0(ξ

r
re
)dξ (10)

Case re > R

w(r) = −(1− 2ν)
α

G
µQ
2πk

∫ ∞

0

[
1
ξ

(
1− 2

ξ
J1(ξ)

)
+

(
eγ

2
r2

e
R2 −

1
4

)
J1(ξ)

]
e−Dξ/R J0(ξ

r
R
)dξ (11)

using suitable rescaling of the radial wavenumber ξ to render it dimensionless in each
case. (These results for the radial distribution of subsidence are much simpler than the
previously obtained solutions discussed in Section 2.2 below). We observe that in both
cases the subsidence field, which depends also on time through re, is of the general form:

w(r) = (1− 2ν)
α

G
µQ
2πk
× function of

r
R

,
re

R
,

D
R

(12)

Hence the behavior of the subsidence field can be analyzed solely in terms of the two
ratios re/R and D/R, that is, in terms of the radius of influence and aquifer depth scaled by
the aquifer radial extent.

The first explicit results one may deduce from Formulas (10) and (11) is the subsidence
at r = 0 (the well location).

Case re < R

w0 = −(1− 2ν)
α

G
µQ
2πk

ln

[
1
2

(
1 +

√
1 +

r2
e

D2

)]
(13)

Case re > R

w0 = −(1− 2ν) α
G

µQ
2πk ×

[
ln
[

1
2

(
1 +

√
1 + R2

D2

)]
+ 1

2+

+
(

eγ

2
r2

e
R2 − D2

R2 − 5
4

)[
1−

(
1 + R2

D2

)−1/2
]] (14)

Formulas (13) and (14) are precisely the ones derived in [9] using a different method
as discussed in the next subsection.

Let us consider now the subsidence profile for the case of the deep aquifer, i.e., D >> R.
The exponential factor in the integrals in Equations (10) and (11) implies that the main
contribution to the asymptotic result comes from the small wavenumbers. Hence, we may
approximate the quantities in the brackets by their approximate form for small ξ, which
both turn out to be linear in ξ, to find:

Case re < R

w(r) = −(1− 2ν)
α

G
µQ
8πk

r2
e

D2

(
1 +

r2

D2

)−3/2

= −(1− 2ν)
α

G
Q
2π

e−γ t
SD2

(
1 +

r2

D2

)−3/2

(15)

Case re > R

w(r) = −(1− 2ν)
α

G
µQ
8πk

eγ r2
e

D2

(
1 +

r2

D2

)−3/2

= −(1− 2ν)
α

G
Q
2π

t
SD2

(
1 +

r2

D2

)−3/2

(16)

We observe that the results differ only by a constant factor eγ = 1.78, and both
Equations (15) and (16) are linear in time owing to Equation (1). That is, they are lin-
ear in the produced fluid volume Qt. We may also note that the scaled subsidence w/w0 is
given by a single formula in both cases:

w(r)
w0

=

(
1 +

r2

D2

)−3/2

(17)
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Equation (17) is the same for all times. As we shall see below, it turns out that this
result holds well for D & 2R. One should note that Equations (15) and (16) make explicit
the observation of [9] that subsidence becomes insensitive to fluid viscosity and aquifer
permeability when its depth is greater than its radial extent, deduced here also at the level
of the subsidence radial distribution.

2.2. Subsidence from the Theory of Geertsma, 1973 [14]

In the work of [9], the authors start off with the subsidence formula at the location
of the well for the case of uniform pressure difference, obtained by [14]. Setting r = 0 in
Equation (6) and utilizing Equation (7) for a uniform (unit) pressure difference up to a
distance R′, one finds by Equation (8) [14]:

W(0, R′) = (1− 2ν)
α

G
H

1−
(

1 +
R′2

D2

)−1/2
 (18)

Clearly, [W] = (length)/(pressure). Because of the linearity of (18) with respect to
the pressure difference, a non-uniform profile can be obtained by superposing constant
infinitesimal profiles of variable radial extent [9]:

w0 =
∫

W(0, R′)dp(R′) (19)

where the integration with respect to R′ extends over the interval where p(r) − Pi is not
zero. In particular, for the profiles of interest we have:

Case re < R

w0 =
∫ re

0
W(0, R′)

dp(R′)
dR′

dR′ (20)

Case re > R

w0 =
∫ R

0
W(0, R′)

dp(R′)
dR′

dR′ −W(0, R)(p(R)− Pi) (21)

The last term of Equation (21) accounts for the fact that the pressure profile in
Equation (5) does not vanish at the outer boundary of the aquifer and hence the con-
tribution from a uniform profile of ‘thickness’ −(p(R) − Pi) should also be added. Upon
integrating Equations (20) and (21) one arrives at Equations (13) and (14).

The author of [14] also derived the stress and deformation fields for this problem,
which are quoted in the works of [35]. The subsidence field (at the surface) for a unit
uniform pressure profile with radial extent R′ can be written as (using the notation of [35])

W(r, R′) = −2αCmRH(1− ν)I3(D) (22)

where the function I3 is defined by

I3(D) = −DmK(m)

2π
√

rRR
+ (U(r− R)−U(R− r))

Λ0(β|m)

2R
+ U(R− r)

1
R

(23)

where U(x) is the unit step function, U(x) = 1 for x > 0, and U(x) = 0 for x < 0. The quantities
m and β are given by

m =
4Rr

D2 + (r + R)2 , sin β =
D√

D2 + (r + R)2
(24)
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while the function Λ0 takes the form

Λ0(β|m) =
2
π
[E(m)F(β|1−m) + K(m)E(β|1−m)− K(m)F(β|1−m)] (25)

expressed in the terms of the incomplete elliptic integrals:

F(θ|m) =
∫ θ

0

dθ′√
1 + m sin2 θ′

, E(θ|m) =
∫ θ

0

√
1 + m sin2 θ′dθ′ (26)

and their complete versions, K(m) = F(π/2|m) and E(m) = E(π/2|m). Upon replacing
W(0,R′) with W(r,R′) in Equations (20) and (21), we obtain

Case re < R

w(r) =
∫ re

0
W(r, R′)

dp(R′)
dR′

dR′ (27)

Case re > R

w(r) =
∫ R

0
W(r, R′)

dp(R′)
dR′

dR′ −W(r, R)(p(R)− Pi) (28)

Equations (22)–(28) provide the surface subsidence field w(r) for the pressure distribu-
tions (4) and (5). The subsidence profiles of [9] were deduced by this method.

One may note that the difference in the derivations of the subsidence field obtained
in the work of [9] and in this work, where we arrived at the relatively compact Equations
(10) and (11), essentially corresponds to a change in the order of integration between
the radial wavenumber and the radial coordinate. Hence, the results are expected to be
mathematically and hence numerically equivalent, but they are different in form and hence
different with respect to the ease of manipulating and analyzing them. This is indeed
shown in the derivation of the deep aquifer asymptotic solutions in Equations (15) and (16).

3. Results

We now turn to the application and further analysis of the mathematical results
presented in the previous section. For part of the analysis, we shall adopt the four different
cases that describe two relatively shallow and two relatively deep aquifers (for weak and
strong sandstones), which were used in [9]. The input data for the four cases are given
in Table 1.

Table 1. Input data used in the analyses [9].

Variable Values

Geometric Properties

Case 1 Case 2 Case 3 Case 4

Radius of aquifer, R (m) 3000 3000 3000 3000
Aquifer thickness, H (m) 100 100 100 100
Aquifer depth, D (m) 200 1000 200 1000

Aquifer Formation Properties

Porosity, ϕ (-) 0.19 0.19 0.19 0.19
Permeability, k (m2) 1.9 × 10−13 1.9 × 10−13 1.9 × 10−13 1.9 × 10−13

Poisson ratio, ν (-) 0.2 0.2 0.2 0.2
Biot coefficient, α (-) 0.8 0.8 0.8 0.8
Rock bulk modulus, K (GPa) 8 8 0.8 0.8

Fluid Properties and Pumping Parameters

Dynamic viscosity, µ (Pa.s) 0.001 0.001 0.001 0.001
Fluid bulk modulus, Kf (GPa) 2.1 2.1 2.1 2.1
Withdrawal rate, Q (m3/day) 100 100 100 100



Water 2023, 15, 3175 8 of 12

Figure 2 shows the subsidence profiles (in continuous lines) for the four cases of
Table 1, obtained by the proposed method given by Formulas (10) and (11), and from the [9]
method contained in Equations (22)–(28), for production times t = {3, 10, 30, 100, 300} days.
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Figure 2. Surface subsidence radial distribution: (a) shallow aquifer–strong rock, (b) deep–strong,
(c) shallow–weak, (d) deep–weak. The letter “d” is short for days.

Only a single curve is given in each case as the results agree exactly in all decimal fig-
ures (using the default integration algorithms of Mathematica to perform the integrations).
The circles correspond to the numerical simulations given in [9]. Figure 2a,c corresponds
to the case of shallow aquifers while Figure 2b,d to relatively deep aquifers. Furthermore,
Figure 2a,b corresponds to the strong sandstone while Figure 2c,d to the weak sandstone.

In Figure 2a the curves for t = {100, 300} days and in Figure 2c the curve for t = {300}
days exhibit a qualitative difference with respect to the other curves, that is the presence of
the aquifer outer boundary at 3 km is quite pronounced on the shape of these profiles for
which re > R. When the rock is strong (case 1), the radius of influence reaches the boundary
earlier. For Figure 2b,d the radius of influence affects the solution in the same way but the
larger depth smooths out the influence of the aquifer size on the subsidence profiles.

We observe a certain discrepancy between our results and those of the numerical
simulations of [9] although they appear—in that paper—to be in good agreement with the
theoretical calculations of the authors, which we repeat also in this work. Given that there
appear certain inconsistencies in the numerics of the semi-analytical calculations of [9], e.g.,
the subsidence at the location of the well, which follows from the closed-form solution
given here by Equations (13) and (14), does not agree with the presented semi-analytical
subsidence profiles (but it does appear to agree with our profiles). We attribute these
discrepancies to the numerical precision of the calculations of the authors of [9].
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The influence of the various physical parameters on the subsidence radial distribution
is summarized in Figure 3. Equation (12), stemming from Equations (10) and (11), states
that the subsidence radial distribution depends essentially on two dimensionless ratios:
D/R and re/R. The ratio D/R, depth over aquifer size, is formed purely by geometry. The
second ratio re/R involves the dynamics of fluid withdrawal, as the radius of influence
depends on time, and also depends on the elastic moduli of the aquifer rock.
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Figure 3. Scaled subsidence radial distribution as a function of the scaled distance: influence of
aquifer depth (D/R) and stage of evolution (re/R).

The stage of evolution is given in terms of this ratio, and all curves correspond to
ratios re/R = {1/7, 3/7, 5/7, 1, 9/7, 11/7} in the indicated colors. Given that re encodes
also the influence of elastic moduli, porosity, permeability of the aquifer rock, and the
viscosity of the fluid, the ratio re/R quantifies the ‘stage’ of evolution with respect to all
these parameters. E.g., for a given production time, a more permeable or strong formation,
will be in a more advanced stage, i.e., it will have a larger ratio re/R, than a less permeable
or weak formation.

Figure 3 illustrates explicitly the qualitative behavior of the subsidence field in dimen-
sionless form. The scaled subsidence w/|w0|, where w0 is the subsidence at r = 0 (well
location) for each case, is given as function of the scaled radial distance r/R. We observe
that when the aquifer is shallow, i.e., D/R << 1, the subsidence distribution is essentially
negligible outside the radial extent of the aquifer (Figure 3a,b). One the other hand, for
the case of deep aquifer, i.e., D/R near or larger than 1, the effect of the aquifer size on the
subsidence distribution is virtually insignificant (Figure 3c,d). Equations (15)–(17) state the
asymptotic solutions that illustrate mathematically such observations. In Figure 3d, we
also include the solution (17) with crossed circle marks, which shows that the asymptotic
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solutions are in fact an excellent approximation already for D/R ~ 2. An implication of this
fact is that the subsidence radial distribution is insensitive to variations in the permeability
of the rock and the viscosity of the fluid.

4. Conclusions

In this work we study the problem of surface subsidence as a result of fluid withdrawal
from a confined aquifer at depth, under assumptions of cylindrical symmetry and formation
homogeneity. Disk-shaped homogeneous confined aquifers typically form in geological
settings characterized by specific conditions that allow for the development of relatively flat,
horizontally extensive aquifer systems. These settings are influenced by various factors such
as sedimentary deposition, tectonics, and lithology. In homogeneous formations, where the
subsurface materials have consistent properties, such aquifers can occur in the following
geological settings: sedimentary basins, lacustrine environments, or fluvial systems. One
the other hand, the assumed geometry cannot be accommodated in geological settings like
mountainous and hilly terrains, in highly tectonically active areas, or Karstic landscapes.

This idealized problem has been revisited many times in the past due to its importance
in both hydrology and petroleum-related applications.

The main findings and results can be summarized as follows:

• We deduce novel mathematical expressions for the radial distribution of subsidence
utilizing methods by [28,29];

• We re-derive the subsidence at the well locations deduced by [9] through a different
approach based on [14]; this method is also discussed in detail;

• We derive the analytical asymptotic solutions for the radial distribution of subsidence,
w(r), for the case of deep aquifer, showing that these solutions amount to an excellent
approximation even when the aquifer depth is larger than the aquifer diameter, and
that w(r) is independent of the formation permeability and the fluid viscosity;

• Finally, we express and analyze the influence of the physical parameters on the sub-
sidence field through two similarity ratios, namely, the well radius of influence over
aquifer radius and aquifer depth over aquifer radius.

The new method and the obtained analytical results present an efficient and robust first
approximation for estimating the magnitude of the subsidence field for actual case studies.

These analytical solutions and their properties are essential tools for understanding,
managing, and mitigating subsidence resulting from fluid withdrawal. In particular, the
results from this work can prove to be beneficial in: (i) predictive modelling, for example in
time varying pumping schedules; (ii) environmental impact assessment; (iii) infrastructure
planning and design; (iv) resource management; but also (v) for calibrating benchmark
solutions in numerical studies in the context of higher complexity.
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