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Abstract
A micromechanical model for the analysis of structurally periodic flexoelectric plates with periodically varying thickness
is developed on the basis of asymptotic homogenization. The period of thickness variation is small and comparable to
the plate thickness; accordingly, the plate is usually referred to as having a ‘‘rapidly varying thickness.’’ The stipulation for
rapidly varying thickness is important because it is envisioned that the developed model can be applied to a broad range
of thin plates, both stratified as well as plates endowed with an arbitrary distribution of reinforcements attached to the
surface or embedded within the plate. The microscopic problem is implemented in two steps pertaining, respectively, to
first- and second-gradient asymptotic homogenization. Each level of homogenization culminates in its own set of unit cell
problems from which the effective coefficients of the homogenized structure can eventually be obtained. These effective
coefficients couple the force and moment resultants as well as the averaged electric displacement with the first and sec-
ond gradients of the macroscopic displacement and electric potential. Once the effective coefficients are obtained, the
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macroscopic problem is invoked, which provides a set of four differential equations from which the macroscopic vari-
ables of mechanical displacement and electric potential can be obtained. The model is illustrated by means of laminated
flexoelectric composites as well as simple rib-reinforced plates. It is shown that in the limiting case of a thin, purely elas-
tic plate, the derived model converges to the familiar classical plate model.

Keywords
Flexoelectric Plates, first- and second-gradient asymptotic homogenization, effective properties, reinforced plates

1. Introduction

A major issue in micromechanics of advanced composite materials is determination of the effective
properties of highly inhomogeneous composites, which will naturally depend on the spatial distribution,
geometric characteristics, and mechanical properties of the constituent materials of the composite. At
present, different methods have been developed and applied to the micromechanical analysis of compo-
site materials. A highly significant contribution regarding the quantitative characterization of micro-
structure of composites, calculation of their effective properties, microstructure-properties relationships,
and cross-property connections was made by Igor Sevostianov, see, e.g., Sevostianov [1], Sevostianov
and Kachanov [2–4], and Sevostianov and Giraud [5].

Recent developments in micro/nano electromechanical systems (MEMSs/NEMSs) and devices have
spurred the exponential growth of the nanotechnology sector. At the forefront of these developments
are devices that exploit the coupling between electrical and mechanical energy such as nanomotors,
nanomachines and nanorobots [6], piezotronic transistors and piezotronics [7], nanoelectromechanical
switches [8], sensors and actuators [9,10], and many other devices and systems [11]. The physical prop-
erty that is predominantly used to transduce electrical to mechanical energy is piezoelectricity which
describes the generation of electric polarization in response to an applied uniform mechanical strain, or,
conversely, the induction of mechanical deformation under the application of an electric field. However,
since piezoelectricity is mathematically described by a third-order tensor, it must vanish (as must all
odd-order tensors) under inversion-center symmetry; as a result, piezoelectricity is restricted to non-
centrosymmetric crystals and many common dielectric materials do not exhibit piezoelectricity [12]. The
presence of non-uniform strain however, or, equivalently, strain gradient, can override the crystallo-
graphic symmetry of centrosymmetric crystals so that they, too, can undergo polarization. An excellent
physical description of this phenomenon can be found in Maranganti et al. [12] and Sharma et al. [13,
14]. This induction of polarization response under an applied mechanical strain gradient is called direct
flexoelectricity, and the mechanical deformation response under an applied electric field gradient is called
converse flexoelectricity, see for example, Maranganti et al. [12], Sharma et al. [13,14], Shu et al. [15], and
Huang et al. [16]. Even though from a theoretical perspective at least, all dielectric materials exhibit flex-
oelectricity, this phenomenon is negligible at the micron or mm scales where the strain and field gradients
are, ordinarily, small. However, since these gradients scale inversely with size, then one can appreciate
that flexoelectric coupling becomes more prominent at the nanoscale and can be exploited for many
emerging nanotechnology applications [15–19] provided that the pertinent nanostructures are properly
designed [13]. For comprehensive review works on different aspects of flexoelectricity, the reader is
referred to the works of Yudin and Tagantsev [19], Shu et al. [15], Huang et al. [16], and many others.

Clearly, the incorporation of flexoelectric components, devices, and systems in new engineering appli-
cations will be facilitated if their properties are known at the design stage; thus, micro/nano mechanical
models become important. The pioneering contributions with respect to gradient effects are attributed
to the nonlocal theory developed by Mindlin [20] who formulated a comprehensive linear model for the
deformation of an elastic body based on the functional dependence of the potential energy density on
both strain as well as its first and second gradients. Since then, and more systematically in recent years, a
significant volume of associated works has been disseminated in the literature pertaining to various mod-
eling aspects such as topology optimization of multimaterial flexoelectric composites [21–23], numerical
and/or analytical determination of the effective properties of flexoelectric structures [24–29], bending
and vibration analysis of flexoelectric beams [30–33], dynamic analysis and control of flexoelectric plates
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and shells [34–38], and many others. Ever since the rapid growth of the additive manufacturing industry
has significantly facilitated fabrication of composites and metamaterials with arbitrary architectures, it
stands to reason that the development of models that predict their behavior and properties a priori is a
step in the right direction. Furthermore, since thin-walled structures (beams, plates, and shells) constitute
significant elements of emerging MEMS/NEMS devices and systems, our objective in this work is to
develop a comprehensive micromechanical model pertaining to flexoelectric plates with periodically
varying thickness. The period of thickness variation is small and comparable to the plate thickness;
accordingly, and in the language of asymptotic homogenization, the plate is usually referred to as having
a ‘‘rapidly varying thickness.’’ The ‘‘rapidly varying thickness’’ stipulation is important in that it will
broaden the applicability of the model to not only laminated structures but also flexoelectric reinforced
plates endowed with an arbitrary arrangement of reinforcements and/or actuators bonded to the top
and bottom surface (or embedded within the plate). In other words, the periodic distribution of reinfor-
cing elements (e.g., ribs or spars) or sensors/actuators (e.g., piezoelectric) on the top and bottom surfaces
will give the plate a ‘‘rapidly varying thickness’’ and, at the same time, widen the range of structures that
can be designed and analyzed. To the best of our knowledge, there is a relative shortage of such reported
models and we hope that current work will constitute a welcome addition to the existing literature. We
note here some of our recent works where we followed this strategy for magnetoelectric composite and
reinforced plates and shells [39–44], albeit using only first-gradient homogenization.

Since most advanced composites and metamaterials currently being modeled, designed, and fabri-
cated have a periodic or nearly periodic configuration, they lend themselves nicely to analytic treatment
via the method of asymptotic homogenization. The relevant mathematical details can be found in
Bensoussan et al. [45], Sanchez-Palencia [46], Bakhvalov and Panasenko [47], and Cioranescu and
Donato [48]. Briefly, when analyzing an advanced composite structure, one has to deal with two sources
of complication; coupling between two spatial scales, the microscopic and macroscopic scales, and phys-
ical coupling between different fields such as mechanical, electrical, magnetic, thermal, and so on. The
overarching characteristic of asymptotic homogenization is that it successfully decouples the micro-
scopic and the macroscopic scales so that the two can be treated separately. The microscopic scale gov-
erns the substructural characteristics of the composite because of the different constituents and their
relative spatial configuration and physical behavior while the macroscopic scale is a manifestation of
the global formulation of the problem. Central to the microscopic scale is the recovery of the so-called
unit cell problems, solved entirely in the domain of a periodicity or unit cell, which eventually permit
the determination of the effective coefficients. Once determined, these effective coefficients are universal
in nature and can be used to analyze a broad range of boundary value problems associated with the
given geometrical setting. The effective coefficients then enter the governing equations of the homoge-
nized structure formulated in terms of a set of macroscopic variables that may be calculated. In the
model we are developing in this work, these latter variables are the three components of mechanical dis-
placement and the electric potential. Once these are determined, the relevant field variables (stress,
strain, electric displacement, etc.) are obtained in terms of the first and second gradients of mechanical
displacement and electric potential (or, equivalently strain, strain gradient, electric field, and field gradi-
ent). This is the macroscopic problem.

Many problems in elasticity, electro/magnetoelasticity, and thermoelasticity have been solved on the
basis of asymptotic homogenization. Kalamkarov et al. [49] and Kalamkarov and Kolpakov [50] exam-
ined a broad range of problems related to the modeling and design of composite plates and shells.
Hadjiloizi et al. [51] developed a quasi-static asymptotic homogenization model pertaining to magneto-
electric thin plates with rapidly varying thickness and obtained closed-form expressions for the effective
properties of stratified structures as well as rib- and wafer-reinforced plates. Important among the effec-
tive properties are the so-called product properties, the most common of which are magnetoelectricity,
pyroelectricity, and pyromagnetism. These are properties that develop when piezoelectric and piezomag-
netic constituents are present in a composite structure but are not typically exhibited by either piezoelec-
tric or piezomagnetic materials on their own. In an interesting application of this work concerning
elastic aerospace applications, Hadjiloizi et al. [52] obtained closed-form expressions for the effective
properties of wingbox structures with trapezoidally arranged reinforcements. In addition to the afore-
mentioned quasi-static models, Hadjiloizi et al. [53–55] formulated dynamic models for magnetoelectric
plates and shells wherein it was shown that the homogenized structures exhibited memory-like behavior
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even though none of the constituents were taken to be viscoelastic to begin with Christofi et al. [44].
Guinovart-Sanjuán et al. [56–59] developed comprehensive micromechanical models for thick laminated
shells with perfect and non-perfect interface bonding. Interesting applications of their work include
laminated shells with complex geometrical architecture such as chevron-like structures as well as thick
laminated shells with non-constant thickness.

Other state-of-the art research activities that showcase the application or potential for application of
asymptotic homogenization and variational asymptotic homogenization pertain to bi-pantographic fab-
rics, biological materials, bio-inspired implants, three-dimensional cellular structures and general topo-
logically and geometrically interlocked architecture materials [60–62], hierarchical infills for additive
manufacturing [29,63,64], piezoelectric nanogenerators for flexible electronics [65], wave propagation in
periodic viscoelastic materials [66], thermoelastic materials with spatially dependent periodic relaxation
time [67], thin films/nanostructures including surface and interface properties [68], and many others.
Many of these emerging classes of materials cannot, usually, be adequately analyzed using first-gradient
homogenization and their modeling inevitably invokes second-gradient effects. In turn, this necessitates
an expanded set of effective properties that must be determined from the analysis.

Motivated by the foregoing applications, our objective is to develop a general first- and second-order
asymptotic homogenization model for thin flexoelectric plates with rapidly varying thickness. Most of
the published works using higher-order asymptotic homogenization essentially use a three-dimensional
formalism with periodicity in all directions. Instead, our interest lies in analyzing composite plate struc-
tures with distinct in-plane and out-of-plane behavior (such as bending and torsion) whereby periodicity
exists only in the tangential directions but not in the transverse direction. Furthermore, we are interested
in a model that is applicable to both laminated structures and reinforced flexoelectric plates endowed
with an arbitrary arrangement of reinforcements and/or actuators attached to the top and bottom sur-
face of the plate or embedded within the plate.

Following this Introduction, the remainder of the paper is organized as follows: Sections 2 and 3 set
up the problem and define the relevant variables. The associated asymptotic homogenization problem is
derived in Sections 4 (involving first gradient of mechanical displacement and electric potential) and 5
(second-order homogenization) and include the unit cell problems with their boundary conditions.
Section 6 describes the macroscopic problem, obtains expressions for the effective coefficients, and com-
pares limiting cases of the model with previously published results. Section 7 illustrates application of
the model to thin laminates and a ribbed plate and, finally, Section 8 concludes the work.

2. Fundamental expressions and variables

The electrical enthalpy density, =, of a flexoelectric dielectric material may be written in terms of the
mechanical strain, electric field as well as their gradients, see Sharma [14], Hu and Shen [69], Shen and
Hu [70], Zhuang [71], and Abdollahi et al. [72] as,

= eij, eij, k,Ei,Ei, k

� �
=

1

2
Cijkleijekl � eiklEiekl + mlijkeijEl, k � mijklEiejk, l �

1

2
kijEiEj +

� 1

2
bijklEi, jEk, l + hijkEiEj, k + rijklmeijekl,m + hijklmEi, jekl,m +

1

2
gijklmneij, kelm, n:

ð2:1Þ

Here, eij and eij, k are the mechanical strain and strain gradient; Ei and Ei, k the electric field and its gra-
dient; eikl, kij, mijkl the piezoelectric, dielectric permittivity and flexoelectric tensors; hijk, bijkl, hijklm are
higher-order tensors coupling the field gradient to the electric displacement, higher-order electric displa-
cement, and higher-order mechanical stress (to be defined shortly), respectively; and, finally, rijklm, gijklmn

are higher-order elasticity tensors coupling the strain gradient to stress and higher-order stress. We also
assume that the electric field may be expressed as the gradient of a scalar function u as,

Ei =� u, i: ð2:2aÞ
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The mechanical strain (linearized Green-Lagrange strain tensor) is defined in terms of the mechanical
displacement, ui, as,

eij =
1

2
ui, j + uj, i

� �
, ð2:2bÞ

while the strain gradient and field gradient will, henceforth, be denoted by vijk and Vij, respectively.
Thus,

vijk = eij, k, Vij = Ei, j: ð2:2cÞ

Equation (2.1) can be used to obtain the constitutive relationships for stress, sij, higher-order stress,
tijk , electric displacement, Di and higher-order electric displacement, Dij, see Zhuang et al. [71],
Abdollahi et al. [72], according to,

sij =
∂=
∂eij

= Cijklekl � ekijEk + mlijkVlk + rijklmvklm

Di =�
∂=
∂Ei

= eiklekl + kijEj + mijklvjkl � hijkVjk

tijk =
∂=
∂vijk

=� mlijkEl + rlmijkelm + hlmijkVlm + gijklmnvklm

Dij =�
∂=
∂Vij

=� mikljekl + bijklVkl � hkijEk � hijklmvklm:

ð2:3Þ

It should be noted that in many works, distinction is made between the direct and converse flexoelec-
tric tensors (as noted in the previous section). However, as detailed in Sharma et al. [14], one can express
the electric enthalpy in terms of only one of these tensors, see also Guinovart-Sanjuán [24], Zhuang et al.
[71], and we also chose to do so in equation (2.1). In parallel with Abdollahi et al. [72], one may also
define the ‘‘physical’’ stress, s�ij, and ‘‘physical’’ electric displacement, D�i , as follows:

s�ij = sij � tijk, k D�i = Di � Dij, j: ð2:4Þ

Next, defining the total electrical enthalpy as in Abdollahi et al. [72], and applying the virtual work
principle yields the pertinent equilibrium equations in the form of,

sij � tijk, k

� �
, j

+ Pi = 0 or s�ij, j + Pi = 0

Dj � Djk, k

� �
, j
� r�= 0 or D�j, j � r�= 0:

ð2:5aÞ

Finally, the boundary conditions may be taken as follows:

sij � tijk, k

� �
nj = pi or s�ijnj = pi

Dj � Djk, k

� �
nj =� s� or D�j nj =� s�:

ð2:5bÞ

Here, ni is the normal vector; Pi and r� are the body force and charge density, respectively; while pi and
s� stand for the surface traction and surface charge density. It is worth noting that more complicated
forms for the equilibrium equations and boundary conditions may be derived from application of vir-
tual work, as detailed, for example, in Hu and Shen [69] and Zhuang [71]. However, equations (2.5a)
and (2.5b) will suffice for our purpose.

3. Simplified problem formulation

Consider a thin flexoelectric and piezoelectric layer representing an inhomogeneous solid with wavy sur-
faces as shown in Figure 1. This periodic structure is generated by repeating the so-called periodicity cell
or unit cell in the x1 � x2 plane, and it is assumed that all three coordinates are made dimensionless by
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dividing by a certain characteristic dimension of the body. The ‘‘waviness’’ of the top and bottom sur-
faces models an arbitrary motif as dictated by the type and spatial orientation of reinforcements and/or
actuators attached to these surfaces. Clearly, the absence of any surface reinforcements gives rise to a
constant thickness flexoelectric plate. It is also assumed that a periodic arrangement of reinforcements
or actuators may also, or instead, be embedded inside the thin-walled structure.

The unit cell of the problem is defined by the following inequalities (see Figure 1):

� dh1

2
\x1\

dh1

2
, � dh2

2
\x2\

dh2

2
, S�\x3\S+

� �
, where

S6 = 6
d

2
6dF6 x1

dh1

,
x2

dh2

� �
:

ð3:1Þ

Here, h1 and h2 define the tangential dimensions of the unit cell and F6 defines the profile of the top/
bottom surfaces.

To reduce the complexity of the resulting expressions, we choose to ignore the higher-order stress and
electric displacement as well as the associated material tensors with the exception of the flexoelectric ten-
sor. Thus, the equilibrium equations governing the composite of Figure 1 reduce from those in equation
(2.5b) to,

∂sij xi,
xa

dha

� 	
∂xj

+ Pi xi,
xa

dha

� �
= 0;

∂Dj xi,
xa

dha

� 	
∂xj

� r� xi,
xa

dha

� �
= 0: ð3:2aÞ

In equation (3.2a) and in the sequel, we make use of the frequently adopted convention whereby
Latin indices i, j, k, ... assume values of 1, 2, and 3 while their Greek counterparts, a, b, g, ... take on val-
ues of 1 or 2 only. The functional dependence of the involved field variables in equation (3.2a) points to
the periodicity in the tangential directions (1, 2) only but not in the transverse direction. As we will see
later on, this has important ramifications in the form of the unit cell problems to be derived, in that they
will be endowed with boundary conditions on the top and bottom surfaces (reflecting the absence of per-
iodicity in the x3 direction) as opposed to ‘‘classical’’ unit cell problems, see, for example, Bakhvalov and
Panasenko [47].

Figure 1. Periodic piezoelectric and flexoelectric layer and its periodicity (unit) cell.
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The boundary conditions on the top and bottom surfaces of the flexoelectric composite reduce from
those in equation (2.5b) to,

s6
ij n6

j = p6
i and D6

j n6
j =� s�6 on S6, ð3:2bÞ

where n+
j (n

�
j ) is the outward (inward) unit normal vector on the top (bottom) surfaces given by,

n6 = 7
∂S6

∂x1

,7
∂S6

∂x2

, 1

� �
∂S6

∂x1

� �2

+
∂S6

∂x2

� �2

+ 1

" #�1
2

: ð3:2cÞ

We also assume the following conditions on the tangential surfaces,

ui = 0, u = dl1 + d2l2, ð3:2dÞ

where l1 and l2 are potential functions.
Furthermore, the relevant constitutive equations become,

sij = Cijklekl � ekijEk + mlijkVlk, Di = eiklekl + kijEj + mijklvjkl: ð3:2eÞ

It can be readily deduced from equations (2.3) or (3.2e) that the flexoelectric coefficients are sym-
metric with respect to the middle two indices, see Guinovart-Sanjuán et al. [24,25].

Microscopic analysis begins by the introduction of the so-called ‘‘fast’’ variables according to,

y1 =
x1

dh1

, y2 =
x1

dh2

, z =
x3

d
, ð3:3Þ

so that the unit cell Od is defined by,

�1=2\y1\1=2, � 1=2\y2\1=2, Z�\z\Z+f g, with Z6 = 6
1

2
6F6 yð Þ

and y= y1, y2ð Þ, x= x1, x2ð Þ,
ð3:4Þ

and the unit normal vector from equation (3.2c) becomes,

n6 = 7
1

h1

∂F6

∂y1

,7
1

h2

∂F6

∂y2

, 1

� �
1 +

1

h2
1

∂F6

∂y1

� �2

+
1

h2
2

∂F6

∂y2

� �2
" #�1

2

: ð3:5Þ

The introduction of the microscopic variables, ya, z, necessitates the transformation of the derivatives
according to,

∂

∂xa

! ∂

∂xa

+
1

dha

∂

∂ya

and
∂

∂x3

=
1

d

∂

∂z
, ð3:6aÞ

and from here onward, we adopt the following compact notations with respect to derivatives:

∂ :::ð Þ
∂xa

= :::ð Þ,a ;
∂ :::ð Þ
∂ya

= :::ð Þ aj ;
∂ :::ð Þ
∂z

= :::ð Þ 3j ;
∂2 :::ð Þ
∂xaxb

= :::ð Þ,ab ;
∂2 :::ð Þ
∂yayb

= :::ð Þ abj

∂2 :::ð Þ
∂ya∂xb

=
∂

∂ya

:::ð Þ,b ;
∂2 :::ð Þ
∂z∂xb

=
∂

∂z
:::ð Þ,b ;

∂2 :::ð Þ
∂z2

= :::ð Þ 33j :

ð3:6bÞ

Furthermore, we make the following asymptotic assumptions:

p6
a = d3r�6a , p6

3 = d4q�63 , Pa = d2f �a , P3 = d3g�3, s�6 = d3ŝ, r�= d2r̂, ð3:7aÞ
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and

mlijk = dm
fð Þ

lijk : ð3:7bÞ

The next step in the analysis involves the asymptotic expansion of each field variable in terms of pow-
ers of d as follows:

ui x, y, zð Þ= u
0ð Þ

i x, y, zð Þ+ du
1ð Þ

i x, y, zð Þ+ d2u
2ð Þ

i x, y, zð Þ+ :::

eij x, y, zð Þ= e 0ð Þ
ij x, y, zð Þ+ de 1ð Þ

ij x, y, zð Þ+ d2e 2ð Þ
ij x, y, zð Þ+ :::

vijk x, y, zð Þ= v
0ð Þ

ijk x, y, zð Þ+ dv
1ð Þ

ijk x, y, zð Þ+ d2v
2ð Þ

ijk x, y, zð Þ+ :::

sij x, y, zð Þ= s
0ð Þ

ij x, y, zð Þ+ ds
1ð Þ

ij x, y, zð Þ+ d2s
2ð Þ

ij x, y, zð Þ+ :::

ð3:8aÞ

u x, y, zð Þ=u 0ð Þ x, y, zð Þ+ du 1ð Þ x, y, zð Þ+ d2u 2ð Þ x, y, zð Þ+ :::

Ei x, y, zð Þ= E
0ð Þ

i x, y, zð Þ+ dE
1ð Þ

i x, y, zð Þ+ d2E
2ð Þ

i x, y, zð Þ+ :::

Vij x, y, zð Þ= V
0ð Þ

ij x, y, zð Þ+ dV
1ð Þ

ij x, y, zð Þ+ d2V
2ð Þ

ij x, y, zð Þ+ :::

Di x, y, zð Þ= D
0ð Þ

i x, y, zð Þ+ dD
1ð Þ

i x, y, zð Þ+ d2D
2ð Þ

i x, y, zð Þ+ :::

ð3:8bÞ

We would like to express the mechanical strain and its gradient, the electric field and its gradient as
well as the mechanical stress and electric displacement as functions of the mechanical displacement and
electric potential. To this end, we make use of equations (2.2b), (2.2c), and (3.6a) to obtain for strain,
strain gradient, and stress:

e nð Þ
ab x, y, zð Þ= 1

2
u

nð Þ
a,b + u

nð Þ
b,a

� 	
+

1

2

1

hb

u
n + 1ð Þ

a bj +
1
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u
n + 1ð Þ
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� �
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1

2
u

nð Þ
3,b +

1
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u
n + 1ð Þ

3 bj + u
n + 1ð Þ

b 3j

� �
, e nð Þ

33 = u
n + 1ð Þ

3 3j , n = 0, 1, 2:::

ð3:9aÞ
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1
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n + 2ð Þ
3 3j

� 	

v
nð Þ

3b3 =
1

2

∂

∂z
u

n + 1ð Þ
3,b +

1

hb

u
n + 2ð Þ

3 bj + u
n + 2ð Þ

b 3j

� �
, v

nð Þ
33n =

∂

∂xn

u
n + 1ð Þ

3 3j

� 	
+

1

hn

∂

∂yn

u
n + 2ð Þ

3 3j

� 	
,

ð3:9bÞ
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s
0ð Þ

ij x, y, zð Þ= Cijkb u
0ð Þ

k,b +
1

hb

u
1ð Þ

k bj

� �
+ Cijk3u

1ð Þ
k 3j + ebij u 0ð Þ

,b +
1

hb

u 1ð Þ
bj

� �
+ e3iju

1ð Þ
3j

s
nð Þ

ij = Cijkb u
nð Þ

k,b +
1

hb

u
n + 1ð Þ

k bj

� �
+ Cijk3u

n + 1ð Þ
k 3j + ebij u nð Þ

,b +
1

hb

u n + 1ð Þ
bj

� �
+ e3iju

n + 1ð Þ
3j +

� m
fð Þ

aijb u n�1ð Þ
,ab +

1

ha

∂

∂ya

u nð Þ
,b +

1

hb

∂

∂yb

u nð Þ
,a +

1

hahb

u n + 1ð Þ
abj

� �
+

� m
fð Þ

3ijb + m
fð Þ

bij3

� 	 ∂

∂z
u nð Þ
,b +

1

hb

u n + 1ð Þ
bj

� �
� m

fð Þ
3ij3 u n + 1ð Þ

33j

� 	
, n ø 1:

ð3:9cÞ

Likewise, the corresponding expressions for the electric field, its gradient, and the electric displace-
ment are obtained as follows:

E nð Þ
a x, y, zð Þ=� u nð Þ

,a �
1

2

1

ha

u n + 1ð Þ
aj , E

nð Þ
3 x, y, zð Þ=� u n + 1ð Þ

3j , n = 0, 1, 2::: ð3:10aÞ

V
nð Þ

ab x, y, zð Þ=� ∂

∂xb

u nð Þ
,a +

1

ha

u n + 1ð Þ
aj

� �
� 1

hb

∂

∂yb

u n + 1ð Þ
,a +

1

ha

u n + 2ð Þ
aj

� �

V
nð Þ

3b =� ∂

∂xb

u n + 1ð Þ
3j

� 	
� 1

hb

∂

∂yb

u n + 2ð Þ
3j

� 	
, V

nð Þ
33 =� u n + 2ð Þ

33j , n = 0, 1, 2:::

ð3:10bÞ

D
0ð Þ

i x, y, zð Þ= eikb u
0ð Þ

k,b +
1

hb

u
1ð Þ

k bj

� �
+ eik3u

1ð Þ
k 3j � kib u 0ð Þ

,b +
1

hb

u 1ð Þ
bj

� �
� ki3u

1ð Þ
3j

D
nð Þ

i = eikb u
nð Þ

k,b +
1

hb

u
n + 1ð Þ

k bj

� �
+ eik3u

n + 1ð Þ
k 3j � kib u nð Þ

,b +
1

hb

u n + 1ð Þ
bj

� �
� ki3u

n + 2ð Þ
3j +

+ m
fð Þ

ikab u
n�1ð Þ
,ab +

1

ha

∂

∂ya

u
nð Þ

k,b +
1

hb

∂

∂yb

u
nð Þ

k,a +
1

hahb

uk
n + 1ð Þ
abj

� �
+

+ m
fð Þ

ik3a + m
fð Þ

ika3

� 	 ∂

∂z
u

nð Þ
k,a +

1

ha

∂

∂ya

uk
n + 1ð Þ
aj

� �
+ m

fð Þ
i3k3 u n + 1ð Þ

33j

� 	
, n ø 1:

ð3:10cÞ

In the process of establishing (3.9a)–(3.10c), it is readily observed that the leading terms of the asymp-
totic expansions for mechanical displacement and strain, as well as electric potential and electric field are
independent of the macroscopic variables so that we may write,

u
0ð Þ

i = u
0ð Þ

i xð Þ, e 0ð Þ
ij = e 0ð Þ

ij xð Þ, u 0ð Þ=u 0ð Þ xð Þ, E
0ð Þ

i = E
0ð Þ

i xð Þ: ð3:11Þ

Before closing this section, let us introduce the averaging procedure:

:::h i=
ð
O
:::ð Þdy1dy2dz: ð3:12Þ

Defined over the volume of the unit cell O and note an important result pertaining to an arbitrary
function Qi(periodic in y1, y2), which we will make frequent use of in the sequel:

1

ha

Qa aj + Q3 3j


 �
=

ð1=2

�1=2

ð1=2

�1=2

Q+
i N+

i � Q�i N�i
� �

dy1dy2: ð3:13Þ

Here, we make the following definition:

N6 = 7
1

h1

∂F6

∂y1

,7
1

h2

∂F6

∂y2

, 1

� �
: ð3:14Þ
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The proof of equation (3.13) follows directly from application of the divergence theorem to the inte-
gral on the left-hand side (LHS) of equation (3.13) and imposing the periodicity of Qi.

4. First-gradient homogenization

One of our main objectives in this work is to recover the unit cell problems from which the effective coef-
ficients characterizing the homogenized flexoelectric solid can be determined. To this end, we substitute
the asymptotic expansions for mechanical stress and electric displacement, equations (3.9c) and (3.10c),
into the equilibrium equations and associated boundary conditions to obtain the following problems:

1

d
H
�1ð Þ

i + H
0ð Þ

i + dH
1ð Þ

i + d2H
2ð Þ

i + � � � = 0

1

d
H� �1ð Þ+ H� 0ð Þ+ dH� 1ð Þ+ d2H� 2ð Þ+ � � � = 0:

ð4:1aÞ

s
0, 1, 2ð Þ

ij N6
j = 0, s

3ð Þ
ij N6

j = 6v6r�6i di1 + di2ð Þ, s
4ð Þ

ij N6
j = 6v6q�6i di3ð Þ

D
0, 1, 2ð Þ

i N6
i = 0, D

3ð Þ
i N6

i = 6v6ŝ6, D
4ð Þ

i N6
i = 0:

ð4:1bÞ

In equation (4.1a) we have,

H
�1ð Þ

i =
1

hb

s
0ð Þ

ib bj + s
0ð Þ

i3 3j , H
0, 1ð Þ

i = s
0, 1ð Þ

ib,b +
1

hb

s
1, 2ð Þ

ib bj + s
1, 2ð Þ

i3 3j

H
2ð Þ

i = s
2ð Þ

ib,b +
1

hb

s
3ð Þ

ib bj + s
3ð Þ

i3 3j + f �i di1 + di2ð Þ, H
3ð Þ

i = s
3ð Þ

ib,b +
1

hb

s
4ð Þ

ib bj + s
4ð Þ

i3 3j + g�i di3ð Þ,
ð4:2aÞ

and

H� �1ð Þ=
1

hb

D
0ð Þ

b bj + D
0ð Þ

3 3j , H� 0, 1ð Þ= D
0, 1ð Þ

b,b +
1

hb

D
1, 2ð Þ

b bj + D
1, 2ð Þ

3 3j

H� 2ð Þ= D
2ð Þ

b,b +
1

hb

D
3ð Þ

b bj + D
3ð Þ

3 3j � r̂, H� 3ð Þ= D
3ð Þ

b,b +
1

hb

D
4ð Þ

b bj + D
4ð Þ

3 3j :

ð4:2bÞ

Furthermore, v6 appearing in equation (4.1b) is defined as,

v6 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + h�2

1 F6
1j

� 	2

+ h�2
2 F6

2j

� 	2
r

: ð4:3Þ

Since H
�1ð Þ

i = 0 and H� �1ð Þ= 0 then, equations (4.1a) and (4.1b) yield the following boundary value
problems:

1
hb

s
0ð Þ

ib bj + s
0ð Þ

i3 3j = 0

s
0ð Þ

ij N6
j = 0 on Z6

1
hb

D
0ð Þ

b bj + D
0ð Þ

3 3j = 0

D
0ð Þ

i N6
i = 0 on Z6

: ð4:4Þ

Substitution of s
0ð Þ

ij and D
0ð Þ

i from equations (3.9c) and (3.10c) into equation (4.4) gives the following
boundary value problems for u

1ð Þ
i and u 1ð Þ:

Diku
1ð Þ

k + Ciu
1ð Þ=� Cikm y, zð Þu 0ð Þ

k,m xð Þ � Pmi y, zð Þu 0ð Þ
,m xð Þ

Lijku
1ð Þ

k + Miju
1ð Þ+ Cijkmu

0ð Þ
k,m + emiju

0ð Þ
,m

h i
N6

j = 0 on Z6:
ð4:5aÞ

A�ku
1ð Þ

k � L�u 1ð Þ=� G�km y, zð Þu 0ð Þ
k,m xð Þ+ I�m y, zð Þu 0ð Þ

,m xð Þ

L�iku
1ð Þ

k �M�iku
1ð Þ+ eikmu

0ð Þ
k,m � kimu 0ð Þ

,m

h i
N6

j = 0 on Z6:
ð4:5bÞ
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The various differential operators appearing in equations (4.5a) and (4.5b) are defined in Appendix
A. The separation of variables on the right-hand side (RHS) of equations (4.5a) and (4.5b) suggests a
solution of the mechanical displacement and electric potential in the form of,

u
1ð Þ

i x, y, zð Þ= N
km
i y, zð Þu 0ð Þ

k,m xð Þ+ M
m
i y, zð Þu 0ð Þ

,m xð Þ+ wi xð Þ

u 1ð Þ x, y, zð Þ= Akm y, zð Þu 0ð Þ
k,m xð Þ+X m y, zð Þu 0ð Þ

,m xð Þ+ g xð Þ,
ð4:6Þ

where wi and g are the homogeneous solutions. Equation (4.6) contains four unknown local functions
of the microscopic variables, N

km
i , M

m
i , Akm, X m, which are determined via back-substitution of equation

(4.6) into equations (4.5a) and (4.5b) to yield,

1

hm

bkn
im mj y, zð Þ+ bkn

i3 3j y, zð Þ= 0

bkn
ij y, zð ÞN6

j = 0 on Z6

1

hm

bn
im mj y, zð Þ+ bn

i3 3j y, zð Þ= 0

bn
ij y, zð ÞN6

j = 0 on Z6

1

hm

dkn
m mj y, zð Þ+ dkn

3 3j y, zð Þ= 0

dkn
i y, zð ÞN6

j = 0 on Z6

1

hm

dn
m mj y, zð Þ+ dn

3 3j y, zð Þ= 0

dn
i y, zð ÞN6

j = 0 on Z6,

ð4:7Þ

where the following definitions are made:

b
km
ij y, zð Þ= LijmNkm

m + M
m
ij Akm + cijkm, b

m
ij y, zð Þ= LijmMm

m + MijX m + emij

d
km
i y, zð Þ= L�imNkm

m �M�i Akm + eikm, d
m
i y, zð Þ= L�imMm

m �M�i X
m � kim:

ð4:8Þ

The equations in (4.7) are solved entirely in the domain of the unit cell and are appropriately called unit
cell problems. More unit cell problems will be derived in the process, as we will see in the sequel. We will

refer to functions b
km
ij , b

m
ij , d

km
i ,d

m
i as the coefficient functions and from them, the effective coefficients

may eventually be obtained.
In studies involving thin-walled structures, the possibility of finding an exact solution is important. In

the case of the flexoelectric plate under examination, this solution involves the local functions N 3l
i and

A3l and is,

N31
1 =� z, N31

2 = N31
3 = 0

N32
2 =� z, N32

1 = N32
3 = 0, A31 = A32 = 0:

ð4:9Þ

This is readily shown by substituting equation (4.9) into the expressions for b
km
ij and d

km
i in equation

(4.8) to first show that,

b
3m
ij = d

3m
i = 0: ð4:10Þ

and subsequently verifying that the first and third unit cell problems in equation (4.7) are satisfied.
Collectively, the main results stemming from the foregoing analysis may be summarized as follows:

u 1ð Þ
m =� zu

0ð Þ
3,m + Nab

m u
0ð Þ

a,b + Mb
mu 0ð Þ

,b + wm, u
1ð Þ

3 = N
ab
3 u

0ð Þ
a,b + M

b
3u 0ð Þ

,b

u 1ð Þ= Aabu
0ð Þ

a,b +X bu 0ð Þ
,b + g, s

0ð Þ
ij = b

ab
ij u

0ð Þ
a,b + b

b
iju

0ð Þ
,b , D

0ð Þ
i = d

ab
i u

0ð Þ
a,b + d

b
i u 0ð Þ

,b :
ð4:11Þ

If we next apply the averaging process defined by equation (3.12) to H (0)
i = 0 and H� 0ð Þ= 0 from

equations (4.2a) and (4.2b) and, in the resulting expressions, substitute the averaged stress and electric

displacement, i.e., s
0ð Þ

ij

D E
, and D

0ð Þ
i

D E
, we will get two equations for u(0)

a and u(0). Their solution, in
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conjunction with the boundary conditions on the tangential surfaces, equation (3.2d), may be taken as
u(0)

a = u(0) = 0. Consequently, equation (4.11) reduces to,

u 1ð Þ
m =� zu

0ð Þ
3,m + wm, u

1ð Þ
3 = w3, u 1ð Þ= g, e 0ð Þ

ij = s
0ð Þ

ij = E
0ð Þ

i = D
0ð Þ

i = 0: ð4:12Þ

To obtain the next order terms in the asymptotic expansions of mechanical displacement and electric
potential, we turn our attention to the next set of balance equations coming from equations (4.2a) and
(4.2b):

H
0ð Þ

1 = H
0ð Þ

1

D E
= 0 and H� 0ð Þ= H� 0ð Þ

D E
= 0, ð4:13Þ

in which we substitute the expressions for s(1)
ij and D(1)

i from equations (3.9c) and (3.10c) to get the fol-
lowing boundary value problems:

L
4ð Þ

ik u
2ð Þ

k + M
4ð Þ

i u 2ð Þ=� Cimnwm, n � Pnig, n + zCimn + ci3mn


 �
u

0ð Þ
3,mn

Lijku
2ð Þ

k + M
2ð Þ fð Þ

ij u 2ð Þ+ cijmnwm, n + evijg, n � zcijmnu
0ð Þ

3,mn

h i
N6

j = 0 on Z6:
ð4:14aÞ

t
4ð Þ

k u
2ð Þ

k + ~t 4ð Þu 2ð Þ=� G�mnwm, n + I�n g, n + zG�mn + ~m
3ð Þ

mn3

h i
u

0ð Þ
3,mn

L
� 2ð Þ
ik u

2ð Þ
k �M�i u

2ð Þ+ eimnwm, n � king, n � zeimn + m
fð Þ

imn3

� 	
u

0ð Þ
3,mn

h i
N6

j = 0 on Z6:
ð4:14bÞ

The definitions of the differential operators and variables appearing in equations (4.14a) and (4.14b)
are given in Appendix A. The separation of variables on the RHS of equations (4.14a) and (4.14b)
prompts a solution in the form of,

u
2ð Þ

i = N
1ð Þmn

i y, zð Þwm, n xð Þ+ M
1ð Þn

i y, zð Þg, n xð Þ � N
� 2ð Þmn
i y, zð Þu 0ð Þ

3,mn xð Þ+ w
2ð Þ

i xð Þ

u 2ð Þ= A 1ð Þmn y, zð Þwm, n xð Þ+X 1ð Þn y, zð Þg, n xð Þ � A� 2ð Þmn y, zð Þu 0ð Þ
3,mn xð Þ+ g 2ð Þ xð Þ:

ð4:15aÞ

where, again, w
2ð Þ

i and g 2ð Þ are homogeneous solutions. Back substitution of equation (4.15a) into equa-
tions (4.14a) and (4.14b), gives, after comparing like terms, the following six unit cell problems for the
determination of as many local functions, N

1ð Þmn
i , A 1ð Þmn, and so on appearing in equation (4.15a),

1

hg

b
1ð Þmn

ig gj y, zð Þ+ b
1ð Þmn

i3 3j y, zð Þ= 0

b
1ð Þmn

ij y, zð ÞN6
j = 0 on Z6

1

hg

b
1ð Þn

ig gj y, zð Þ+ b
1ð Þn

i3 3j y, zð Þ= 0

b
1ð Þn

ij y, zð ÞN6
j = 0 on Z6

1

hg

d
1ð Þmn

g gj y, zð Þ+ d
1ð Þmn

3 3j y, zð Þ= 0

d
1ð Þmn

i y, zð ÞN6
i = 0 on Z6

1

hg

d
1ð Þn

g gj y, zð Þ+ d
1ð Þn

3 3j y, zð Þ= 0

d
1ð Þn

i y, zð ÞN6
i = 0 on Z6

1

hg

B
�mn

ig gj y, zð Þ+ B
�mn

i3 3j y, zð Þ= 0

B
�mn
ij y, zð ÞN6

j = 0 on Z6

1

hg

D
� fð Þmn

g gj y, zð Þ+ D
� fð Þmn

3 3j y, zð Þ= 0

D
� fð Þmn
i y, zð ÞN6

i = 0 on Z6 ,

ð4:15bÞ

where the following definitions are made:

b
1ð Þmn

ij = LijmN 1ð Þmn
m + M

2ð Þ fð Þ
ij A 1ð Þmn + cijmn, b

1ð Þn
ij = LijmM 1ð Þn

m + M
2ð Þ fð Þ

ij X 1ð Þn + enij

d
1ð Þmn

i = L
� 2ð Þ
im N 1ð Þmn

m �M�i A 1ð Þmn + eimn, D
� fð Þmn
i = L

� 2ð Þ
im N� 2ð Þmn

m �M�i A� 2ð Þmn + zeimn + m
fð Þ

imn3

h i
B
�mn
ij = LijmN� 2ð Þmn

m + M
2ð Þ fð Þ

ij A� 2ð Þmn + zcijmn, d
1ð Þn

i = L
� 2ð Þ
im M 1ð Þn

m � X 1ð Þn � kin:

ð4:16Þ
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These coefficient functions are related to first-gradient homogenization and from them, the effective
in-plane and out-of-plane elastic (extensional, bending, coupling), piezoelectric and dielectric coeffi-
cients will be determined. Differential operators appearing in equation (4.16) are defined in Appendix
A. Notice from equations (4.8), (4.16), (A.1), and (A.2) that the flexoelectric coefficients have negligible
influence on the elastic and piezoelectric coefficient functions so that b

1ð Þ3n
ij ’ b3n

ij = 0 and
d

1ð Þ3n
i ’ d3n

i = 0. Thus, we can let superscript m! m in the first and third expressions in equation
(4.15b) and, as a result, the macroscopic constant w3 may be set equal to zero as in the first-gradient
elasticity model in Kalamkarov [49]. In view of this as well as equation (4.12), the leading terms in the
asymptotic expansions of stress and electric displacement are given by:

s
1ð Þ

ij = b
1ð Þmn

ij wm, n + b
1ð Þn

ij g, n + B
�mn
ij u

0ð Þ
3,mn D

1ð Þ
i = d

1ð Þmn
i wm, n + d

1ð Þn
i g, n + D

� fð Þmn
i u

0ð Þ
3,mn: ð4:17Þ

5. Second-gradient homogenization

We begin our analysis by substituting equation (4.15a) into equations (3.9a)–(3.10c) for n=1 or n=2
and, after ignoring third-order gradient of u

0ð Þ
3 , we obtain the following expressions for strain, strain gra-

dient, electric field, field gradient, mechanical stress, and electric displacement:

e 2ð Þ
ab = A

mnl
ab wm, nl + Gnl

abg, nl +
1

2
w

2ð Þ
a,b + w

2ð Þ
b,a

� 	
+

1

2

1

hb

u
3ð Þ

a bj +
1

ha

u
3ð Þ

b aj

� �

e 2ð Þ
3b =

1

2
A

mnl
3b wm, nl +

1

2
Gnl

3bg, nl +
1

2

1

hb

u
3ð Þ

3 bj + u
3ð Þ

b 3j

� �
, e 2ð Þ

33 = u
3ð Þ

3 3j :

ð5:1aÞ

v
1ð Þ

abg = D
mnl
abgwm, nl + Enl

abgg, nl +
1

2

1

hg

∂

∂yg

1

hb

u
3ð Þ

a bj +
1

ha

u
3ð Þ

b aj

� �

v
1ð Þ

3bg =
1

2
D

mnl
3bgwm, nl +

1

2
Enl

3bgg, nl +
1

2

1

hg

∂

∂yg

1

hb

u
3ð Þ

3 bj + u
3ð Þ

b 3j

� �

v
1ð Þ

33g = D
mnl
33g wm, nl + Enl

33gg, nl +
1

hg

∂

∂yg

u
3ð Þ

3 3j

� 	

v
1ð Þ

ab3 = D
mnl
ab3wm, nl + Enl

ab3g, nl +
1

2

∂

∂z

1

hb

u
3ð Þ

a bj +
1

ha

u
3ð Þ

b aj

� �

v
1ð Þ

3b3 =
1

2
D

mnl
3b3 wm, nl +

1

2
Enl

3b3g, nl +
1

2

∂

∂z

1

hb

u
3ð Þ

3 bj + u
3ð Þ

b 3j

� �
, v

1ð Þ
333 = u

3ð Þ
3 33j :

ð5:1bÞ

E
2ð Þ

b = I
mnl
b wm, nl + Jnl

b g, nl � g
2ð Þ
,b �

1

2

1

hb

u 3ð Þ
bj , E

2ð Þ
3 =� u 3ð Þ

3j : ð5:1cÞ

V
1ð Þ

ab = H
mnl
ab wm, nl + Znl

abg, nl �
1

hahb

u 3ð Þ
abj

V
1ð Þ

3b = H
mnl
3b wm, nl + Znl

3bg, nl �
1

hb

∂

∂yb

u 3ð Þ
3j , V

1ð Þ
33 =� u 3ð Þ

33j :

ð5:1dÞ

s
2ð Þ

ij = ~bmnl
ij wm, nl + ~bnl

ij g, nl + cijmbw
2ð Þ

m,b + ebijg
2ð Þ
,b + Lijku

3ð Þ
k + M

2ð Þ fð Þ
ij u 3ð Þ

D
2ð Þ

i = ~dmnl
i wm, nl + ~d

2ð Þnl
i g, nl + eimbw

2ð Þ
m,b � kibg

2ð Þ
,b + L

� 2ð Þ
ik u

3ð Þ
k �M�i u 3ð Þ:

ð5:1eÞ

The different microscopic variables and differential operators appearing in equations (5.1a)–(5.1e)
are defined in Appendix A. In contrast to the expressions in equation (4.17), the variables in equations
(5.1a)–(5.1e) are functions of the second gradient of the macroscopic variables of displacement, wm, and
electric potential, g.
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Equation (4.1a) gives the next set of problems that must be solved, namely,

H
1ð Þ

i = H
1ð Þ

i

D E
, H� 1ð Þ= H� 1ð Þ

D E
, ð5:2Þ

which, on account of equations (4.1b), (4.2a), (4.2b) and the averaging result in equation (3.12), and
upon ignoring third-gradient terms, results in the following boundary value problems:

s
1ð Þ

ib:b +
1

hb

s
2ð Þ

ib bj + s
2ð Þ

i3 3j = s
1ð Þ

ib

D E
,b

s
2ð Þ

ij N6
j = 0 on Z6

D
1ð Þ

b,b +
1

hb

D
2ð Þ

b bj + D
2ð Þ

3 3j = D
1ð Þ

b

D E
,b

D
2ð Þ

i N6
i = 0 on Z6

: ð5:3Þ

Substituting equations (5.1a)–(5.1e) into equation (5.3) results in the following system which is essen-
tially the complement of equations (4.14a) and (4.14b):

L
4ð Þ

ik u
3ð Þ

k + M
4ð Þ

i u 3ð Þ=� b
1ð Þmn

il � b
1ð Þmn

il

D E
+ ~b

3ð Þmnl
i

� 	
wm, nl � b

1ð Þn
il � b

1ð Þn
il

D E
+ ~b

3ð Þnl
i

� 	
g, nl +

� Cimlw
2ð Þ

m, l � Plig
2ð Þ
, l

Lijku
3ð Þ

k + M
2ð Þ fð Þ

ij u 3ð Þ+ ~bmnl
ij wm, nl + ~bnl

ij g, nl + cijmlw
2ð Þ

m, l + elijg
2ð Þ
, l

h i
N6

j = 0 on Z6:

ð5:4aÞ

~t
4ð Þ

k u
3ð Þ

k � ~t 4ð Þu 3ð Þ=� d
1ð Þmn

l � d
1ð Þmn

l

D E
+ ~s 3ð Þmnl

� 	
wm, nl � d

1ð Þn
l � d

1ð Þn
l

D E
+ ~s� 3ð Þnl

� 	
g, nl +

� G�mnw 2ð Þ
m, n + I�n g 2ð Þ

, n

L
� 2ð Þ
ik u

3ð Þ
k �M�i u

3ð Þ+ ~dmnl
i wm, nl + ~d

2ð Þnl
i g, nl + eimnw 2ð Þ

m, n � king 2ð Þ
, n

h i
N6

i = 0 on Z6:

ð5:4bÞ

Variables and differential operators appearing in equations (5.4a) and (5.4b) are defined in Appendix A. As
in the case of equations (4.14a) and (4.14b), we can write down the solution of u

3ð Þ
k and u 3ð Þ in the form of,

u
3ð Þ

i = N
2ð Þmnl

i y, zð Þwm, nl xð Þ+ M
2ð Þnl

i y, zð Þg, nl xð Þ+ N
1ð Þnl

i w
2ð Þ

n, l + M
1ð Þn

i g 2ð Þ
, n + w

3ð Þ
i xð Þ

u 3ð Þ= A 2ð Þmnl y, zð Þu 0ð Þ
m, nl xð Þ+X 2ð Þnl y, zð Þu 0ð Þ

, nl xð Þ+ A 1ð Þnlw
2ð Þ

n, l +X ng 2ð Þ
, n + g 3ð Þ xð Þ:

ð5:5Þ

To calculate the local functions appearing in equation (5.5), we back-substitute it into equations
(5.4a) and (5.4b) to obtain eight unit cell problems to accompany the set of six appearing in equation
(4.15b). Four of these are identical to the first four expressions in equation (4.15b) while the remaining
four, necessary for the determination of local functions, N

2ð Þmnl
i , M

2ð Þnl
i , A 2ð Þmnl, X 2ð Þnl, are given in

equation (5.6). As is evident, this second set of problems stemming from second-gradient asymptotic
homogenization is related to the second gradient of the mechanical strain and the electric potential.
Their solution yields the coefficient functions which, when averaged over the volume of the unit cell will
produce the corresponding effective coefficients characterizing the homogenized flexoelectric plate. We
also note that the local functions, much like their counterparts in equation (4.15a), are dependent on
only the microscopic variables and exhibit periodicity in the y1 and y2 directions.

b
1ð Þmn

il � b
1ð Þmn

il

D E
+

1

hg

B
mnl

ig gj + B
mnl

i3 3j = 0

B
mnl
ij N6

j = 0 on Z6

b
1ð Þn

il � b
1ð Þn

il

D E
+

1

hg

Bnl
ig gj + Bnl

i3 3j = 0

Bnl
ij N6

j = 0 on Z6

d
1ð Þmn

l � d
1ð Þmn

l

D E
+

1

hg

D
mnl

g gj + D
mnl

3 3j = 0

D
mnl
i N6

i = 0 on Z6

d
1ð Þn

l � d
1ð Þn

l

D E
+

1

hg

D
fð Þnl

g gj + D
fð Þnl

3 3j = 0

D
fð Þnl

i N6
i = 0 on Z6

: ð5:6Þ
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Here, we make the following definitions for the various coefficient functions:

B
mnl
ij = LijkN

2ð Þmnl

k + M
2ð Þ fð Þ

ij A 2ð Þmnl + ~bmnl
ij , Bnl

ij = LijkM
2ð Þnl

k + M
2ð Þ fð Þ

ij X 2ð Þnl + ~bnl
ij

D
mnl
i = L

� 2ð Þ
ik N

2ð Þmnl

k �M�i A 2ð Þmnl + ~dmnl
i , D

fð Þnl
i = L

� 2ð Þ
ik M

2ð Þnl

k �M�i X
2ð Þnl + ~d

2ð Þnl
i :

ð5:7aÞ

In terms of the coefficient functions of equation (5.7a), the mechanical stress and electric displacement
terms are given by,

s
2ð Þ

ij = B
mnl
ij wm, nl + Bnl

ij g, nl + b
1ð Þnl

ij w
2ð Þ

m, l + b
1ð Þn

ij g 2ð Þ
, n

D
2ð Þ

i = D
mnl
i wm, nl + D

fð Þnl
i g, nl + d

1ð Þnl
i w

2ð Þ
m, l + d

1ð Þn
i g 2ð Þ

, n :
ð5:7bÞ

An important point to be made is that in the preceding analysis, we assumed that the material coeffi-
cients, cijkl(y, z), eijk(y, z), mijkl(y, z), and so on are smooth. However, we may generalize the unit cell prob-
lems to include piecewise-smooth coefficients with discontinuities at contact surfaces between different
constituents by imposing the appropriate continuity conditions, see Kalamkarov [49]. Thus,

N 1ð Þmn
m

h ih i
= 0 N 1ð Þmn

m $ M 1ð Þn
m $ A 1ð Þmn $ X 1ð Þm $ N 2ð Þmnl

m $ M 2ð Þnl
m :::

� 	
1

hg

n kð Þ
g b

1ð Þmn
ig + n

kð Þ
3 b

1ð Þmn

i3

� �� �
= 0 b

1ð Þmn
ij $ b

1ð Þn
ij $ d

1ð Þmn
i $ d

1ð Þn
i $ B

mnl
ij $ Bnl

ij :::
� 	 ð5:8Þ

where :::½ �½ � denotes a jump in a function at a contact surface and n
kð Þ

i is the unit normal vector at this sur-
face as related to the y1, y2, zð Þ coordinate system. Before closing, let us set w

2ð Þ
3 = 0, like its counterpart

w3, and let us make the following definitions,

dwm + d2w 2ð Þ
m + d3w 3ð Þ

m + � � � = vm + O d2
� �

, dg + d2g 2ð Þ+ d3g 3ð Þ+ � � � =u�+ O d2
� �

dwm, n + d2w 2ð Þ
m, n + � � � = vm, n + O d2

� �
= e Mð Þ

mn + O d2
� �

, u
0ð Þ

3 = w, � u
0ð Þ

3, nl = t Mð Þ
mn

dg, n + d2g 2ð Þ
, n + � � � =u�, n + O d2

� �
= E Mð Þ

n + O d2
� �

dg
2ð Þ
, nl + � � � = V

Mð Þ
nl + O d2

� �
= E

Mð Þ
n, l + O d2

� �
dw

2ð Þ
m, nl + � � � = e Mð Þ

mn, l + O d2
� �

= v
Mð Þ

mnl + O d2
� �

,

ð5:9Þ

for the macroscopic tangential displacement, vm, macroscopic strain, e Mð Þ
mn , and strain gradient, v

Mð Þ
mnl,

macroscopic potential, u�, electric field, E Mð Þ
n , and field gradient, V

Mð Þ
nl as well as the transverse displace-

ment, w, and let us combine the results in equations (3.11), (4.12), (4.15a), (4.17), (5.5), and (5.7b) to
obtain the asymptotic approximations of mechanical displacement, electric potential, mechanical stress,
and electric displacement as given in equations (5.10) and (5.11). In the next section, we will compare
these results with other published works and elucidate the meaning of the different variables.

ua = v1 � gw,að Þ+ d N 1ð Þmn
a e Mð Þ

mn + M 1ð Þn
a E Mð Þ

n

� 	
+

+ d2 N� 2ð Þmn
a t Mð Þ

mn + N 2ð Þmnl
a v

Mð Þ
mnl + M

2ð Þnl
i V

Mð Þ
nl

� 	
u3 = w + d N 1ð Þmn

a e Mð Þ
mn + M

1ð Þn
3 E Mð Þ

n

� 	
+ d2 N

� 2ð Þmn

3 t Mð Þ
mn + N

2ð Þmnl

3 v
Mð Þ

mnl + M
2ð Þnl

3 V
Mð Þ

nl

� 	
u =u�+ d A 1ð Þmne Mð Þ

mn +X 1ð ÞnE Mð Þ
n

� 	
+ d2 A� 2ð Þnlt Mð Þ

mn + A 2ð Þmnlv
Mð Þ

mnl +X 2ð ÞnlV
Mð Þ

nl

� 	
:

ð5:10Þ

sij = b
1ð Þmn

ij e Mð Þ
mn + b

1ð Þn
ij E Mð Þ

n + d B�nl
ij t

Mð Þ
nl + B

mnl
ij v

Mð Þ
mnl + Bnl

ij V
Mð Þ

nl

� 	
Di = d

1ð Þmn
i e Mð Þ

mn + d
1ð Þn

i E Mð Þ
n + d D

� fð Þnl
i t

Mð Þ
nl + D

mnl
i v

Mð Þ
mnl + D

fð Þnl
i V

Mð Þ
nl

� 	
:

ð5:11Þ
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6. Governing equations, macroscopic problem, and effective coefficients

In the analysis of thin-walled plate and shell structures, it is sometimes useful to deal with the force and
moment resultants, N

fð Þ
ij and M

fð Þ
ij , respectively. In the language of the current model, these are defined

as,

N
fð Þ

ab = d sab

� �
, M

fð Þ
ab = d2 zsab

� �
: ð6:1Þ

Applying the averaging operation defined by equation (3.12) to equation (5.11), gives, on account of
equation (6.1), the following expressions for the force and moment resultants as well as the averaged
stresses and electric displacement:

sij

� �
= b

1ð Þmn
ij

D E
e Mð Þ

mn + b
1ð Þn

ij

D E
E Mð Þ

n + d B�nl
ij

D E
t

Mð Þ
nl + B

mnl
ij

D E
v

Mð Þ
mnl + Bnl

ij

D E
V

Mð Þ
nl

� 	
N

fð Þ
ab = d b

1ð Þmn

ab

D E
e Mð Þ

mn + b
1ð Þn

ab

D E
E Mð Þ

n

� 	
+ d2 B�nl

ab

D E
t

Mð Þ
nl + B

mnl
ab

D E
v

Mð Þ
mnl + Bnl

ab

D E
V

Mð Þ
nl

� 	
M

fð Þ
ab = d2 zb

1ð Þmn

ab

D E
e Mð Þ

mn + zb
1ð Þn

ab

D E
E Mð Þ

n

� 	
+ d3 zB�nl

ab

D E
t

Mð Þ
nl

�
+ zB

mnl
ab

D E
v

Mð Þ
mnl +

+ zBnl
ab

D E
V

Mð Þ
nl

	
d Dah i= d d 1ð Þmn

a

D E
e Mð Þ

mn + d 1ð Þn
a

D E
E Mð Þ

n

� 	
+ d2 D� fð Þnl

a

D E
t

Mð Þ
nl + Dmnl

a

� �
v

Mð Þ
mnl +

�
+ D fð Þnl

a

D E
V

Mð Þ
nl

	
:

ð6:2Þ

Examination of equations (5.10) and (6.2) reveals that e Mð Þ
mn are the mid-surface strains, t

Mð Þ
11 and t

Mð Þ
22

are the bending curvatures of the mid-surface in the x1–x3 and x2–x3 planes, respectively, while 2t
Mð Þ

12 is
the twisting curvature associated with torsion of the middle surface, see Hadjiloizi et al. [51,53].

Furthermore, d b
1ð Þmn

ab

D E
and d3 zB�nl

ab

D E
are the effective extensional and effective bending elastic coeffi-

cients, while d2 B�nl
ab

D E
, d2 zb

1ð Þmn

ab

D E
are the effective coupling elastic coefficients, see Kalamkarov [49]

and Hadjiloizi et al. [51,53]. Next, d b
1ð Þn

ab

D E
, d d

1ð Þmn
i

D E
are the effective in-plane piezoelectric coefficients,

d2 D
� fð Þnl
ij

D E
are their out-of-plane counterparts while �d dn

i

� �
are the effective dielectric permittivity

coefficients. In addition, d2 B
mnl
ab

D E
and d3 zB

mnl
ij

D E
are effective coefficients coupling, respectively, force

and moment resultants with strain gradient and, correspondingly, �d2 D
fð Þnl

i

D E
are the effective coeffi-

cients coupling electric displacement to field gradient. It should be noted that this latter set of effective
coefficients arises in the homogenized flexoelectric reinforced plate even though we originally ignored
this particular behavior by the individual constituents. In other words, these effective coefficients show
up in the homogenized structure even though material tensors rijklm and hijk, see equation (2.3), were
neglected from the eventual formulation of the problem as it appears in equation (3.2d). Equation (6.2)

further reveals that �d2 Bnl
ab

D E
, d2 D

fð Þnl
ij

D E
are the effective in-plane flexoelectric coefficients while

d3 zBnl
ij

D E
are their out-of-plane counterparts coupling moment resultants with electric field gradients.

Comparing the foregoing results with other published works, we would like to point out the following
observations. First, if we ignore any strain-gradient and field-gradient effects, then the expressions in
equations (5.10), (5.11), and (6.2) converge to previously established results such as those in Hadjiloizi
et al. [51–54]. If we further limit our analysis to strictly elastic behavior and first-gradient homogeniza-
tion and also ignore any corrugations of the top and bottom surfaces, these results converge to the famil-
iar classical plate model, see Gibson [73] and Reddy [74]. Second, because we follow a fully coupled
approach, the effective elastic (for example) coefficients are functions of not only the elastic parameters
of the individual constituents but also of the piezoelectric ones, see, for example, equation (4.16). This
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will be also be seen in the examples of the next section. Finally, the second-gradient homogenization pro-
cedure used in section 5 reveals that the effective reinforced plate structure would exhibit flexoelectric
behavior (stress-field gradient or electric displacement-strain gradient) even if the constituents of the
composite exhibited no flexoelectricity to begin with.

In the rest of this section, we will be concerned with obtaining the governing equations of the homo-
genized flexoelectric plate. To this end, we turn our attention to the first unit cell problem in equation
(4.15b) which we multiply first by z and then by z2 and then average the resulting expressions according
to equation (3.12) to get,

b
1ð Þmn

i3

D E
= zb

1ð Þmn

i3

D E
= 0: ð6:3Þ

Repeating this procedure with the remaining unit cell problems in equations (4.15b) and (5.6) results
in the following expressions:

b
1ð Þn

i3

D E
= zb

1ð Þn
i3

D E
= B

�mn
i3

� �
= zB

�mn
i3

� �
= d

1ð Þmn

3

D E
= zd

1ð Þmn

3

D E
=

= d
1ð Þn

3

D E
= zd

1ð Þn
3

D E
= D

� fð Þmn

3

D E
= zD

� fð Þmn

3

D E
= 0

B
mnl
i3

D E
= zb

1ð Þmn

il

D E
� zh i b

1ð Þmn

il

D E
, Bnl

i3

� �
= zb

1ð Þn
il

D E
� zh i b

1ð Þn
il

D E
D

mnl
3

D E
= zd

1ð Þmn

l

D E
� zh i d

1ð Þmn

l

D E
, D

fð Þnl

3

D E
= zd

1ð Þn
l

D E
� zh i d

1ð Þn
l

D E
:

ð6:4Þ

We will make use of these expressions later on in this section. The asymptotic expansions in equations
(5.10) and (5.11) essentially contain four macroscopic variables, v1, v2, w, and u�. To obtain the requisite
system of equations for obtaining these variables, we refer to equation (4.1a) from which we write,

H 1ð Þ
a

D E
+ dH 2ð Þ

a = 0, H
1ð Þ

3

D E
+ dH

2ð Þ
3 + d2H

3ð Þ
3 = 0: ð6:5Þ

Averaging these expressions, applying the boundary conditions involving s
1ð Þ

ij , s
2ð Þ

ij , and s
3ð Þ

ij from
equation (4.1b) and using equation (6.2) results in the following equations:

∂

∂xb

b
1ð Þmn

ab

D E
e Mð Þ

mn + b
1ð Þn

al

D E
E Mð Þ

n

� 	
+ d

∂

∂xb

B
�mn
ab

D E
t Mð Þ

mn + B
mnl
ab

D E
v

Mð Þ
mnl

�
+ B

mn
ab

D E
V Mð Þ

mn

	
+

+ d ~ra xð Þ+ fah ið Þ= 0 and

s
1ð Þ

3b

D E
,b

+ d s
2ð Þ

3b

D E
,b

+ d2 s
3ð Þ

3b

D E
,b

+ ~q�3 xð Þ+ g�3
� �� �

= 0,

ð6:6Þ

where,

~r�a xð Þ=
ð0:5
�0:5

ð0:5
�0:5

v+r�+a + v�r��a
� �

dy1dy2, ~q�3 xð Þ=
ð0:5
�0:5

ð0:5
�0:5

v+q�+3 + v�q��3
� �

dy1dy2,

~ra xð Þ= d~r�a xð Þ, fah i= d f �a
� �

:

ð6:7Þ

The second expression in equation (6.6) is somewhat undesirable in that it involves s
3ð Þ

3b

D E
which we

have not determined in the preceding analysis and would, therefore, like to eliminate. To this end, we
return to the first expression in equation (6.5), multiply by z and average to obtain, on account of equa-

tions (4.1b) and (4.2a), an expression for s
3ð Þ

3b

D E
which we back-substitute into equation (6.6). After

some algebraic manipulations and use of equation (6.4), we arrive at the desired expression in the form
of,
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∂2

∂xb∂xl

zb
1ð Þmn

bl

D E
e Mð Þ

mn + zb
1ð Þn

bl

D E
E Mð Þ

n

� 	
+ d

∂2

∂xa∂xb

zh i B
�mn
ab

D E
t Mð Þ

mn

	�
+ dq3 xð Þ

+ d
∂2

∂xa∂xb

zB
mnl
ab

D E
v

Mð Þ
mnl + zB

mn
ab

D E
V Mð Þ

mn

� 	
+ d

∂

∂xb

rb xð Þ+ zfb
� �� 	

+ d g3h i= 0,

ð6:8Þ

where,

r�a xð Þ=
ð0:5
�0:5

ð0:5
�0:5

z+v+r�+a + z�v�r��a
� �

dy1dy2, ra = r�a, ~q3 = dq�3, g3h i= d g�3
� �

: ð6:9Þ

Turning, now, our attention to the electrical problem, we write from equation (4.1a),

H� 1ð Þ
D E

+ d H� 2ð Þ
D E

= 0: ð6:10Þ

Averaging this and making use of equations (3.13), (4.1b), and (6.2) results in,

∂

∂xa

d 1ð Þmn
a

D E
e Mð Þ

mn + d 1ð Þn
a

D E
E Mð Þ

n

� 	
+ d

∂

∂xa

D� fð Þmn
a

D E
t Mð Þ

mn + Dmnl
a

� �
v

Mð Þ
mnl

�
+ Dmn

a

� �
V Mð Þ

mn

	
+

+ d ~s xð Þ+ rh ið Þ= 0,

ð6:11Þ

where,

~s� xð Þ=
ð0:5
�0:5

ð0:5
�0:5

v+ŝ+ + v�ŝ�ð Þdy1dy2, ~s = d~s�, rh i= d r̂h i: ð6:12Þ

Thus, the first expression in equation (6.6) (a=1, 2) and equations (6.8) and (6.11) are the four requi-
site equations which, together with equations (3.2b) and (3.2d) can be used to determine the macroscopic
variables v1, v2, w, and u�. To summarize, the microscopic problem entails solution of the unit cell prob-
lems in equations (4.15b) and (5.6) to obtain the local functions from which the coefficient functions are
determined via equations (4.16) and (5.7a). These functions are then averaged on the basis of equation
(3.12) to calculate the corresponding effective coefficients portrayed in equation (6.2). The macroscopic
problem begins by substituting the expressions for the effective coefficients in equations (6.6), (6.8), and
(6.11) to calculate v1, v2, w, and u� after which point all field variables such as mechanical stress, strain
and strain gradient, electric displacement, field and field gradient, and so on can be obtained from equa-
tions (3.9a), (3.9b), (5.10), and (5.11).

7. Examples and discussion

The applicability of the model and the expressions of the effective coefficients will be illustrated in this
section. The first example we consider consists of a laminated piezoelastic and flexoelectric plate, the unit
cell of which is given in Figure 2. Clearly, the material properties are independent of y1 and y2, and all
partial derivatives in the unit cell problems of equations (4.15b) and (5.6) as well the definitions of the
coefficient functions in equations (4.16) and (5.7) become ordinary derivatives in z. We assume that the
constituent materials exhibit a cubic crystal symmetry around the x3 axis with the pertinent material ten-
sors given in Appendix B, see Guinovart-Sanjuán et al. [24].

As shown in Figure 2, the layout of the laminate is completely governed by the parameters
d0, d1, d2, :::, dM , where d0 = 0, dM = 1, and M corresponds to the number of laminae. The thickness of
the mth layer is dm � dm�1 in this coordinate thickness while the real thickness as measured in the origi-
nal xif g coordinate system is d(dm � dm�1). Clearly, dm = z + 1=2 and the normal vector Ni = (0, 0, 1).
Finally, it is readily determined that for a coefficient function Qi which is constant in each lamina, the
following formulae hold:
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Qih i=
ð0:5
�0:5

Qidz =

ð1
0

Qiddm =
XM
m = 1

ðdm

dm�1

Qiddm =
XM
m = 1

Q(m)
i dm � dm�1ð Þ

zQih i= 1=2
XM
m = 1

Q(m)
i d2

m � d2
m�1 � dm � dm�1ð Þ


 �
,

z2Qi

� �
= 1=3

XM
m = 1

Q(m)
i d3

m � d3
m�1 � 3=2 d2

m � d2
m�1

� �
+ 3=4 dm � dm�1ð Þ


 �
,

ð7:1Þ

where Q(m)
i is the value of the coefficient in the mth layer.

Let us now demonstrate the solution methodology for the unit cell problems, the determination of
the local functions, and the final calculation of the effective coefficients. We will begin with the first and
third unit cell problems in equation (4.15b) which, for the stratified structure of Figure 2, simplify to,

b
1ð Þmn

i3 3j zð Þ= 0

b
1ð Þmn

i3 zð Þ= 0 on Z6

d
1ð Þmn

3 3j zð Þ= 0

d
1ð Þmn

3 zð Þ= 0 on Z6
: ð7:2Þ

In each lamina, the solution of these differential equations and associated boundary conditions is
straightforward, and is b

1ð Þmn

i3 = 0 and d
1ð Þmn

3 = 0. Using these results into the appropriate expressions for
the function coefficients in equation (4.16) results in,

b
1ð Þmn

i3 = ci3k3N
1ð Þmn

k 3j + e3i3A
1ð Þmn

3j � m
fð Þ

3i33A
1ð Þmn

33j + ci3mn = 0

d
1ð Þmn

3 = e3k3N
1ð Þmn

k 3j + m
fð Þ

3k33N
1ð Þmn

k 33j � k11A
1ð Þmn

3j + e3mn = 0,
ð7:3Þ

where the differential operators in equation (A.1) are also used. Letting index i assume values of 1, 2, or

3 in equation (7.3) leads to simple equations for the local functions N
1ð Þmn

i and A 1ð Þmn, which yield the fol-
lowing expressions for the non-trivial solutions,

N
1ð Þ11

3 = N
1ð Þ22

3 =� c12

c11

z, A 1ð Þ12 = A 1ð Þ21 =
e14

k11

z, ð7:4Þ

Figure 2. Periodic piezoelectric and flexoelectric composite laminate with M laminae.
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bearing in mind the material properties of equation (B.1). The analysis proceeds in much the same way
for the remaining unit cell problems in equation (4.15b) giving the following solutions for the local
functions:

M
1ð Þ1

1 = M
1ð Þ2

2 = M
1ð Þm

3 =X 1ð Þm = 0, M
1ð Þ2

1 = M
1ð Þ1

2 =� e14

c66

z

N
� 2ð Þ11
3 = N

� 2ð Þ22
3 = �c12c�1

11

� � z2

2
, N

� 2ð Þ12
3 = N

� 2ð Þ21
3 = m

fð Þ
11 e14c�1

11 k�1
11

� 	
z

A� 2ð Þ11 = A� 2ð Þ22 = m
fð Þ

15 k�1
11 � m

fð Þ
11 c12c�1

11 k�1
11

� 	
z, A� 2ð Þ12 = A� 2ð Þ21 = e14k�1

11

� � z2

2

N� 2ð Þmn
a = 0:

ð7:5Þ

Using these local functions, function coefficients b
1ð Þmn

ij , b
1ð Þn

ij , d
1ð Þmn

i , d
1ð Þn

i , B
�mn
ij , and D

� fð Þmn
i can be

obtained from equation (4.16) and the corresponding effective coefficients be calculated on the basis of
equation (7.1). The expressions for the effective coefficients will be given in the sequel.

Turning our attention to the unit cell problems stemming from second-gradient homogenization, we
begin with the first and third expressions in equation (5.6) which reduce to,

b
1ð Þmn

il � b
1ð Þmn

il

D E
+ B

mnl

i3 3j = 0

B
mnl
i3 = 0 on Z6

d
1ð Þmn

l � d
1ð Þmn

l

D E
+ D

mnl

3 3j = 0

D
mnl
3 = 0 on Z6

: ð7:6Þ

Considering the first of the foregoing expressions results in the following expression in each lamina,

B
mnl
i3 = b

1ð Þmn

il

D E
z� b

1ð Þmn

il z +C
mnl
i , ð7:7Þ

where C
mnl
i are constants of integration which are obtained in each lamina to satisfy the second set of

continuity conditions in equation (5.8). Letting, as an example, indices i,m, n,l = 1, 1, 1, 1 and substitut-
ing equation (7.7) into equation (5.7) results, on account of equation (7.4), in the following expression:

N
2ð Þ111

1 = c12c�1
11 + b

1ð Þ11
11

D E
c�1

66 � b
1ð Þ11

11 c�1
66

� 	 z2

2
+C111

1 c�1
66 z: ð7:8Þ

The remaining N
2ð Þmnl

i local functions as well as their Amnl counterparts are obtained in a similar fash-
ion. It is important to note that since we are dealing with a fully coupled problem, the local functions
for some index combinations, e.g., i,m, n, l = 3, 1, 1, 1 must be obtained from both unit cells in equation
(7.6) as a system. In other words, we obtain two equations in N

2ð Þ111
3 and A111 which must be solved

simultaneously. The final expressions for the local functions are given below:

N
2ð Þ111

1 = N
2ð Þ222

2 = c12c�1
11 + b

1ð Þ11
11

D E
c�1

66 � b
1ð Þ11

11 c�1
66

� 	 z2

2
+ C111

1 c�1
66

� �
z

N
2ð Þ112

2 = N
2ð Þ221

1 = c12c�1
11 + b

1ð Þ11
22

D E
c�1

66 � b
1ð Þ11

22 c�1
66

� 	 z2

2
+ C112

2 c�1
66

� �
z

N
2ð Þ121

1 = N
2ð Þ211

1 = N
2ð Þ122

2 = N
2ð Þ211

2 = N
2ð Þ212

2 = 2m
fð Þ

46 e14c�1
66 k�1

11

� 	
z

N
2ð Þ121

2 = N
2ð Þ122

1 = N
2ð Þ212

1 = b
1ð Þ12

12

D E
c�1

66 � b
1ð Þ12

12 c�1
66 � e2

14c�1
66 k�1

11

� 	 z2

2
+ C122

1 c�1
66

� �
z

N
2ð Þ111

2 = N
2ð Þ112

1 = N
2ð Þ221

2 = N
2ð Þ222

1 = N
2ð Þmnl

3 = A 2ð Þmnl = 0:

ð7:9Þ
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Substitution of equation (7.5) into equation (4.8) reveals that b
1ð Þn

il = 0 so that the second and fourth
unit cell problems in equation (5.6) become,

Bnl
i3 3j = 0

Bnl
i3 = 0 on Z6

d
1ð Þn

l � d
1ð Þn

l

D E
+ D

fð Þnl

3 3j = 0

D
fð Þnl

3 = 0 on Z6
: ð7:10Þ

The solutions of these problems may be written down as,

Bnl
i3 = 0, D

fð Þnl

3 = d
1ð Þn

l

D E
z� d

1ð Þn
l z +C fð Þnl, ð7:11Þ

where C fð Þnl, much like their C
mnl
i counterparts in equation (7.7), are constants of integration that must be cal-

culated in each lamina to satisfy the interface conditions, see equation (5.8). Solution of equation (7.11) in com-
bination with the pertinent expressions in equation (5.7) gives the relevant local functions in the form of,

M
2ð Þ11

3 = M
2ð Þ22

3 = m
fð Þ

15 c�1
11 + m

fð Þ
11 d1

1c�1
11 k�1

11 � m
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11 d1
1

� �
c�1

11 k�1
11 � m

fð Þ
11 e2

14c�1
11 c�1

66 k�1
11

� 	
z

M
2ð Þ12

3 = M
2ð Þ21

3 = e14c12c�1
11 c�1

66

� � z2

2
, M 2ð Þmn

a = 0

X 2ð Þ11 =X 2ð Þ22 = d1
1k�1

11 � d1
1

� �
k�1

11 � e2
14c�1

66 k�1
11

� � z2

2
� C fð Þ22k�1

11
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z

X 2ð Þ12 =X 2ð Þ21 = m
fð Þ

11 e14c12c�1
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66 k�1
11 � m

fð Þ
46 + m

fð Þ
15

h i
e14c�1

66 k�1
11

� 	
z:

ð7:12Þ

An important point needs to be made with regard to the local functions given in this section. In par-
ticular, they are unique up to constant terms, an ambiguity which can be removed, see Kalamkarov [49],
by imposing that their average with respect to y1 and y2 only, :::h iy, vanishes when z=0. In other words,
for an arbitrary local function, N

mn:::
ij::: , we impose that,

N
mn:::
ij:::

D E
y
= 0 when z = 0: ð7:13Þ

Thus, for a laminate withM laminae, there are M constants that must be found. M � 1 equations will
be obtained from as many interface conditions as dictated by the first expression in equation (5.8) and
the last requisite equation will come from equation (7.14). However, we do not bother calculating these
constants because all coefficient functions contain derivatives of the local functions. Consequently, nei-
ther the coefficient functions nor the effective coefficients will be affected by these constants, and hence
they do not show up in equations (7.4), (7.5), (7.9), and (7.12).

With equations (4.16), (5.7), (6.2), and (7.1) in mind, we are now ready to compute the effective coef-

ficients for the stratified structure of Figure 2. The effective extensional, d b
1ð Þnl

ab

D E
, bending, d3 zB�nl

ab

D E
,

and coupling, d2 zb
1ð Þnl

ab

D E
, d2 B�nl

ab

D E
, elastic coefficients are given by,

b
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11

D E
= b

1ð Þ22
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D E
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11

� �
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11

D E
= c12 � c2

12c�1
11

� �
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ð7:14Þ
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The effective in-plane, d b
1ð Þn

ab

D E
, d d

1ð Þnl
i

D E
, and out-of-plane, d zb

1ð Þn
ab

D E
, piezoelectric coefficients as

well as the effective dielectric permittivity constants, �d d
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D E
by,
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Clearly, choosing different crystal geometries or materials with different poling directions would have
yielded entirely different results; this shows an advantage of the developed model in that it can be used
to tailor the effective properties of a given structure by changing geometrical (e.g., stacking sequence or
relative volume fractions in the case of laminates), physical (e.g., poling direction), or material (e.g., con-
stituent properties) parameter of interest.

The in-plane and out-of-plane strain gradient effective elastic coefficients, d2 B
mnl
ij

D E
and d2 zB

mnl
ab

D E
,

the electric displacement-field gradient coupling coefficients, �d2 D
fð Þnl

i

D E
, and the electric displacement-

curvature coupling coefficients, �d2 D
� fð Þnl
i

D E
, are given by,
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ð7:16Þ

Next, the in-plane effective flexoelectric coefficients, � d2 B
mn
ij

D E
, d2 D

mnl
i

D E
are given by,
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ð7:17aÞ

and,

d2 D111
1

� �
= d2 D222

2

� �
= d m46c�1

66

� �
c11 � c2

12c�1
11

� �
� d m46c�1

66 c11 � c2
12c�1

11

� �� �
+

+ d m11 � m15c12c�1
11

� �
D112

1

� �
= D211

2

� �
= c12 � c2

12c�1
11

� �
e14c�1

66 z
� �

� c12 � c2
12c�1

11

� �
e14c�1

66 z
� �

+ e14c�1
66 C

112
2

� �
D121

1

� �
= D211

1

� �
= e2

14k�1
11 + c66

� �
e14c�1

66 z
� �

� 2 e14zh i � 2 e3
14k�1

11 c�1
66 z

� �
+ e14c�1

66 C
121
2

� �
d2 D212

1

� �
= d2 D121

2

� �
= d m46c�1

66

� �
e2

14k�1
11 + c66

� �
+ d m15 � m46h i

d2 D221
1

� �
= d2 D112

1

� �
= d m46c�1

66

� �
c12 � c2

12c�1
11

� �
� d m46c�1

66 c12 � c2
12c�1

11

� �� �
+

+ d m46 � m15c12c�1
11

� �
D222

1

� �
= D111

2

� �
= c11 � c2

12c�1
11

� �
e14c�1

66 z
� �

� c11 � c2
12c�1

11

� �
e14c�1

66 z
� �

+ e14c�1
66 C

222
2

� �
:

ð7:17bÞ

Finally, the out-of-plane effective flexoelectric coefficients, � d3 zB
mn
ij

D E
, coupling moment resultants

with field gradient are given in equation (7.17c):
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We note that if we ignore the flexoelectric effect, the expressions for the effective elastic, piezoelectric,
and dielectric coefficients in equations (7.14) and (7.15) match those in Hadjiloizi et al. [40] and if we
further ignore piezoelectric and dielectric effects, then the effective elastic coefficients (extensional, bend-
ing, coupling) conform to those in Kalamkarov et al. [49] as well as their counterparts obtained via the
classical composite laminate theory, see, for example, Gibson [73] and Reddy [74]. As a numerical exam-
ple of the foregoing work, let us consider a 1mm thick four-layered antisymmetric laminate consisting
of BaTiO3 and GaAs with BaTiO3 occupying the top-layer position and GaAs the bottom-layer posi-
tion. The material properties of the two constituents are given in Guinovart-Sanjuán et al. [24].

Let us suppose that we vary the thickness of the GaAs layers from 0 to 0.5mm which is tantamount
to its volume fraction changing from 0 to 1. Figure 3 shows two typical out-of-plane flexoelectric coeffi-
cients, zB12

12

� �
and zB12

11

� �
, normalized with respect to the maximum value in each case. Recall from equa-

tion (6.2) that these coefficients couple the moment resultants, M
fð Þ

12 and M
fð Þ

11 with the gradient of the

electric potential (u 0ð Þ
, 12 and u 0ð Þ

, 11, respectively). As seen in Figure 3, zB12
12

� �
peaks when the two constitu-

ents have equal volume fractions and drops to zero when the laminate becomes symmetric at a GaAs
volume fraction of either 0 or 1. On the contrary, zB12

11

� �
peaks when this volume fraction is 1 due to a

higher value of B12
11 for GaAs as compared to that for BaTiO3. Figure 4 shows the variation of the effec-

tive zD
fð Þ22

3

D E
coefficient, which couples electric displacement with the gradient of the electric field, and

Figure 3. Plot of the effective zB12
12

� �
and zB12

11

� �
flexoelectric coefficients vs. thickness of the GaAs laminae.
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the effective bending stiffness in the x2 direction, zB�22
22

� �
, vs. the thickness of the GaAs constituent. It is

seen that zD
fð Þ22

3

D E
peaks when the two constituents have equal volume fractions and the elastic coeffi-

cient peaks when the entire laminate is made of BaTiO3 since this material is stiffer than its GaAs coun-
terpart. Clearly all these trends can be changed by changing a geometrical (e.g., stacking configuration),
material (nature of constituents), or physical (e.g., poling direction) parameter of interest. The closed-
form expressions obtained in this work afford complete flexibility in this manner and allow customiza-
tion of the effective properties of the laminate according to the requirements of a particular application.

The second example we will examine here pertains to the ribbed flexoelectric plate of Figure 5. The
second-gradient unit cell problems in equation (5.6) have not yet been solved for this geometry and will
not be considered in this work. Furthermore, to reduce the complexity of the relevant calculations we
will exclude the influence of the flexoelectric effect and so the first four unit cell problems in equation

Figure 4. Plot of the effective zD
fð Þ22

3

D E
and zB�22

22

� �
coefficients vs. thickness of the GaAs laminae.

Figure 5. Flexoelectric ribbed plate and its unit cell in the macroscopic variables.
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(4.15b) reduce to those in equation (4.7) and b
1ð Þmn

ij , b
1ð Þn

ij , d
1ð Þmn

i , and d
1ð Þmn

i reduce to
b

mn
ij , bn

ij, d
mn
i , and d

mn
i .

Consequently, let us examine the first and third unit cell problems in equation (4.7) which we express
as,

1

hg

t
mn

ig gj y, zð Þ+ t
mn

i3 3j y, zð Þ= 0

1

hg

t
mn
ig y, zð Þn6

g + t
mn
i3 n6

3 = 0 on Z6

1

hm

p
mn

g gj y, zð Þ+ p
mn

3 3j y, zð Þ= 0

1

hg

pkn
g y, zð Þn6

g + p
mn
3 n6

3 = 0 on Z6
, ð7:18aÞ

where n6
i are the yi components of the normal vector and,

t
mn
ij = b

mn
ij � cijmn, p

mn
i = d

mn
i + eimn: ð7:18bÞ

We will follow the same methodology as the one we adopted in our previous work, see, for example,
Hadjiloizi et al. [55], and obtain the local functions, coefficient functions, and effective coefficients in
the rib and in the plate separately, and then superimpose the results. We will illustrate this methodology
by solving the preceding unit cell problems for index combination m, n = 1, 1. We reiterate that the unit
cell problems are defined in terms of the microscopic variables, and their solution is carried out in this
domain. In view of equation (3.3), it is clear that, with respect to the microscopic variables, the plate is
defined by �1=2\y1\1=2, �1=2\y2\1=2, and �1=2\z\1=2, while the rib is defined by
�1=2\y1\1=2, �t2=2h2\y2\t2=2h2, and �1=2\z\1=2 + H . Periodicity considerations stipulate that
boundary conditions on the plate must be specified on z = 61=2 (where n1 = n2 = 0, n3 = 1), while in
the region of the rib, they must be specified on y2 = 6t2=2h2 (where n1 = n3 = 0, n2 = 1), and
z = 1=2, 1=2 + H . Examination of equation (7.18a) as well as the relevant expressions in equation (4.8)
reveals that these boundary conditions take the following form:

t11
13 = t11

23 = 0, t11
33 =� c12, p11

3 = � e31 on z = 61=2 in plate

t11
12 = t11

23 = 0, t11
22 =� c12, p11

2 = 0 on y2 = 6t2=2h2 in rib

t11
13 = t11

23 = 0, t11
33 =� c12, p11

3 = � e31 on z = 1=2, 1=2 + H in rib:

ð7:18cÞ

Periodicity in y1 and y2 in the region of the plate simplifies the governing equations in equation
(7.18a) to t

mn

i3 3j = 0 and p
mn

3 3j = 0 in which we substitute the relevant expressions from equation (4.8) to
give, on account of equations (7.18b) and (7.18c), the following solutions for the local functions N 11

3

and A11:

N11
3 =� c13c�1

33 z, A11 = 0: ð7:19aÞ

Moving now to the region of the rib, we notice that since it is oriented entirely in the y1 direction, we
have no dependency on y1 so that the pertinent expressions in equation (7.19a) become:

1

h2

t
mn

i2 2j y, zð Þ+ t
mn

i3 3j y, zð Þ= 0,
1

hm

p
mn

2 2j y, zð Þ+ p
mn

3 3j y, zð Þ= 0: ð7:19bÞ

Substitution of equation (4.8) into equation (7.19b) gives, on account of equations (7.18b) and
(7.18c), a system of three equations in the local functions N11

2 ,N11
3 ,A11, the solution of which is straight-

forward and is:

N11
2 = h2 c2

12 � c12c11

� �
c2

11 � c2
12

� ��1
y2, N11

3 = c2
12 � c12c11

� �
c2

11 � c2
12

� ��1
z, A11 = 0: ð7:20Þ

Back substitution of equation (7.20) into equation (4.8) gives the desired expressions for the coeffi-
cient functions in the form of,

b
11 pð Þ
11 = c11 � c2

12c�1
11 , b

11 rð Þ
11 = c11 + 2 c3

12 � c11c2
12

� �
c2

11 � c2
12

� ��1
, d

11 pð Þ
1 = d

11 rð Þ
1 = 0, ð7:21Þ
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where the superscripts p and r denote the plate and rib, respectively. It should be noted that the expres-
sion for b11

11 in the region of the rib is equivalent to the stiffness modulus (Young’s Modulus) of the mate-
rial of the rib (in the x1 direction) and that these results match the corresponding expressions obtained in
Hadjiloizi et al. [51,55]. The effective extensional, b11

11

� �
, and coupling, zb11

11

� �
, coefficients are determined

from equations (7.21) and (3.12) and are given by,

b11
11

� �
= b

11 pð Þ
11 + b

11 rð Þ
11

Ht2

h2

� �
, zb11

11

� �
= b

11 rð Þ
11 H2 + H

� � t2

2h2

: ð7:22Þ

The calculation of the remaining effective properties coming from equation (7.18a) as well as the
solution of the other two unit cell problems in equation (4.7) follow along the same lines and will not be
shown here. As a simple example, Figure 6 shows the variation of zb11

11

� �
vs. the height of the rib for a

ribbed structure made of a BaTiO3 base plate and a GaAs rib with t2=h2 = 0:1 and properties given in
Guinovart-Sanjuán et al. [24]. The stiffening effect produced by increasing the height of the rib is evi-
dent in Figure 6. Much like the previous example pertaining to the laminated structure, this plot high-
lights the flexibility of the developed model to accommodate a broad range of architectures and tailor
the effective properties of a given structure according to the requirements of a particular application by
changing various parameters (geometrical, physical, material) as needed. We finally note that the results
for the effective elastic coefficients (extensional, bending and coupling) for the ribbed plate, agree very
closely with the corresponding results known from the structurally anisotropic theory of strengthened
plates and shells, with the exception of the zB�12

12

� �
coefficient (effective torsional stiffness) [49].

It is important at this point to provide a few details on the limits of applicability and range of accu-
racy of the developed model. To this end, we note that the homogenization problem for periodically
inhomogeneous thin plates was first addressed by Duvaut and Metellus [75] and Artola and Duvaut
[76]. In those works, the expressions for the effective coefficients obtained were valid only for plates
whose thickness was much smaller than the length of the period of the inhomogeneity, i.e., the unit cell.
This assumption is not always valid or realizable however, and it is often the case that the thickness of
the plate and the length of the period are of comparable order of magnitude. Based on this premise and
the early works of Caillerie [77,78], a significant number of works pertaining to the asymptotic homoge-
nization modeling and analysis of inhomogeneous thin-walled structures was disseminated. For a more
detailed mathematical analysis, the reader is referred to Caillerie [77,78]. The model developed and illu-
strated in the present manuscript is based on this assumption and, as we have seen, employs two

Figure 6. Plot of the effective coupling elastic coefficient zb11
11

� �
vs. height of the GaAs rib for the ribbed plate of Figure 5.
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microscopic variables, one in the tangential directions characterized by periodicity and one in the trans-
verse direction in which no periodicity exists.

Pertaining to the ribbed plate example examined in this section, we note that the approximate solu-
tions of the local problems were obtained under the assumption that the thickness of each element was
smaller than the other two dimensions, see Kalamkarov [49], and we also ignored stress concentrations
and other complications at the joint regions between the ribs and the plates. Essentially, these regions
are highly localized and do not contribute significantly to the integrals over the volume of the unit cell.
A more refined analysis (first-gradient homogenization only) where these stress concentrations are taken
into account via the introduction of appropriate singularity functions reveals that the error incurred by
ignoring them is fairly small for most effective coefficients, see Kalamkarov [49].

Before closing this section, we reiterate that the general model developed in this work, sections 2–6, is
quite general and can be applied to a broad range of composite and reinforced flexoelectric structures
beyond those examined in section 7. Furthermore, with the appropriate modifications, the model can
also be extended to the analysis of reinforced flexoelectric shells, including geometrically nonlinear
shells, to examine quasi-static, dynamic, stability, and other problems. For relevant literature, we refer
the readers to the authors’ recent works on thin magnetoelectric shells, [42–44], where only first-gradient
homogenization is considered (and therefore no flexoelectric behavior is examined), the works of
Guinovart-Sanjuán et al. [25,57,59] on thick flexoelectric and other composite shells, as well as earlier
works involving dynamic stability of thick cylindrical shells, see, for example, the works of Bert and
Birman [79], and Darabi et al. [80]. Another interesting application for which the developed model can
be adapted pertains to self-assembled semiconductor quantum dots which can be encouraged to grow at
periodic locations by pre-patterning of the substrate [81]. In a similar direction, we note the recent pub-
lication of the first author and collaborators pertaining to the development of a 3D, first-gradient
asymptotic homogenization model on quantum-dot embedded nanocomposite materials [82].

Conclusion

A micromechanical model for the analysis of structurally periodic flexoelectric and piezoelectric plates
with rapidly varying thickness is developed on the basis of asymptotic homogenization. The model suc-
cessfully decouples the microscopic and the macroscopic scales so that they are handled separately and
independently of one another. The microscopic problem is implemented in two steps, one pertaining to
first-gradient asymptotic homogenization and the other to second-gradient asymptotic homogenization
involving the second gradient of mechanical displacement and electric potential. The two homogeniza-
tion steps generate a total of 10 unit cell problems that eventually yield the effective coefficients of the
homogenized flexoelectric plate. Once these are determined, they enter a set of governing equations
(macroscopic problem) which permit the evaluation of macroscopic displacement and electric potential.
The desired field variables of mechanical stress, electric displacement, mechanical strain and its gradient,
electric field and its gradient, and so on can finally be obtained via asymptotic approximations.

One interesting feature of the developed model is its flexibility which renders it applicable to a broad
range of geometries including both stratified flexoelectric structures as well as reinforced flexoelectric
plates with a periodic arrangement of reinforcements attached to the bottom and top surfaces.
Furthermore, the closed-form expressions for the effective properties allow for their customization to
the requirements of a particular application by changing various geometric, physical, or material para-
meters of interest. Another interesting feature of the developed model is that it pertains to flexoelectric
structures with distinct in-plane and out-of-plane behavior (such as bending and torsion) whereby peri-
odicity exists in the tangential directions only. Thus, the presented model complements earlier published
works pertaining, primarily, to 3D structures which essentially used a 3D formalism with periodicity in
all three spatial directions.

The present work is illustrated by means of laminated flexoelectric composites as well as simple rib-
reinforced plates. The solution methodology for the unit cell problems is shown and the local coeffi-
cients, coefficient functions, and effective coefficients are determined. Finally, it is shown that in the lim-
iting case of a thin, purely elastic plate, the derived model converges to the familiar classical plate model.
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Appendix A: Definitions of variables and differential operators

The differential operators appearing in equations (4.5a) and (4.5b) as well as their counterparts in equa-
tions (4.14a) and (4.14b) are defined in equations (A.1) and (A.2) below:
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Lijk = cijkm

1

hm
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The microscopic variables appearing in equations (5.1a)–(5.1d) are defined in equations (A.3)–(A5)
below, with dij representing Kronecker delta:
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The microscopic variables and differential operators appearing in equation (5.1e) are defined in equa-
tions (A.6) and (A.7) below:
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The microscopic variables and differential operators appearing in equations (5.4a) and (5.4b) are
defined in equation (A.8) below:
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Appendix B: Material properties for cubic crystal symmetry around x3 axis

Following [24], we may write down the constitutive relationships of equation (3.2d) in matrix form as:

s6× 1

D3× 1

� �
=

C6× 6 �eT6× 3 06× 18 m6× 9

e3× 6 k3× 3 m3× 18 03× 9

� � e6× 1

E3× 1

re18× 1

rE9× 1

2
664

3
775: ðB:1Þ

The C6× 6, e
T
6× 3, and k3× 3 material sub-matrices appearing in equation (B.1) are given below in compact

notation, see Guinovart-Sanjuán et al. [24].

C6× 6 =

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c66 0 0

0 0 0 0 c66 0

0 0 0 0 0 c66

2
6666664

3
7777775
, eT6× 3 =

0 0 0

0 0 0

0 0 0

e14 0 0

0 e14 0

0 0 e14

2
6666664

3
7777775
, k3× 3 =

k11 0 0

0 k11 0

0 0 k11

2
4

3
5: ðB:2Þ

The m6× 9 sub-matrix is expressed as,

m6× 6 =

m1111 m2111 m3111 m1112 m2112 m3112 m1113 m2113 m3113

m1221 m2221 m3221 m1222 m2222 m3222 m1223 m2223 m3223

m1331 m2331 m3331 m1332 m2332 m3332 m1333 m2333 m3333

m1231 m2231 m3231 m1232 m2232 m3232 m1233 m2233 m3233

m1131 m2131 m3131 m1132 m2132 m3132 m1133 m2133 m3133

m1121 m2121 m3121 m1122 m2122 m3122 m1123 m2123 m3123

2
6666664

3
7777775
: ðB:3Þ
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so that for the cubic symmetry under investigation this matrix coefficients become,

m6× 6 =

m11 0 0 0 m15 0 0 0 m15

m15 0 0 0 m11 0 0 0 m15

m15 0 0 0 m15 0 0 0 m11

0 0 0 0 0 m46 0 m46 0

0 0 m46 0 0 0 m46 0 0

0 m46 0 m46 0 0 0 0 0

2
6666664

3
7777775
: ðB:4Þ

The remaining sub-matrices appearing in equation (B.1) as well as the manner in which m3× 18 can be
obtained from m6× 6 are detailed in Guinovart-Sanjuán et al. [24].
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