
Combining GAs And RBF Neural Networks for Fuzzy
Rule Extraction from Numerical Data

Manolis Wallace1,2, and Nicolas Tsapatsoulis2,3

1 University of Indianapolis, Athens Campus, 9 Ipitou Str., Syntagma
105 57 Athens, Greece
wallace@uindy.gr

2 School of Electrical and Computer Engineering, National Technical University of Athens,
9 Iroon Polytechniou Str., Zographou, 157 73, Athens, Greece

{wallace, ntsap}@image.ntua.gr
3 Dept. of Computer Science, University of Cyprus, 75 Kallipoleos Str.

P.O. Box 20537, CY-1678, Nicosia, CYPRUS
nicolast@ucy.ac.cy

Abstract. The idea of using RBF neural networks for fuzzy rule extraction
from numerical data is not new. The structure of this kind of architectures,
which supports clustering of data samples, is favorable for considering clusters
as if-then rules. However, in order for real if-then rules to be derived, proper
antecedent parts for each cluster need to be constructed by selecting the appro-
priate subspace of input space that best matches each cluster’s properties. In
this paper we address the problem of antecedent part construction by (a) initial-
izing the hidden layer of an RBF-Resource Allocating Network using an unsu-
pervised clustering technique whose metric is based on input dimensions that
best relate the data samples in a cluster, and (b) by pruning input connections to
hidden nodes in a per node basis, using an innovative Genetic Algorithm opti-
mization scheme.

1 Introduction

Extracting if-then rules from numerical data using an RBF neural network can be
achieved in the following framework: (a) The RBF-hidden nodes combine inputs in
an AND form creating the antecedent part of the rule; that is rule antecedents are
considered the input to hidden connections, (b) output nodes combine the outputs of
the hidden nodes in an OR form; that is the rule consequents are the hidden to output
connections, (c) knowledge in the form of if-then rules can be derived from clustering
numeric data, (d) fuzziness is achieved both in the hidden and the output nodes forc-
ing the activation and final output to be in the interval [0 1] instead of having crisp
values.

Although the above framework seems reasonable there are two important prob-
lems: (i) All inputs are used in the antecedent part of the rule; this leads to ineffi-
ciency in creating real linguistic rules especially in cases where the input dimension is
relatively high and (ii) the classic clustering approach used in RBF neural networks
does not account for specifying different weights for the various input dimensions.
While for the second problem one could consider the use of a different metric for
creating a more “rule-like” clustering, the first problem is not that easy to solve. In

this paper we address both problems by: (1) using Genetic Algorithms for selecting
the appropriate inputs for each hidden node separately; this is radically different from
the classic combination of RBF and GAs which focus in feature selection for the
whole network [1][2][3] and (2) applying an unsupervised clustering technique, that
is based on a data dependent metric, for initializing the parameters of the hidden
nodes in the RBF network. In the proposed method clusters are created by data sam-
ples that are based on these dimensions that relate them best. This is clearly a more
“rule-like” approach that the classic unsupervised clustering methods. The modifica-
tions proposed above are applied on an modified Resource Allocation Network con-
sisting of RBF hidden nodes to account for learning required for rule extraction from
numerical data.

2 Preliminaries

One approach for extracting rules from numerical data is to apply a supervised train-
ing procedure on a domain D from which the learner has access to a representative
example set E of pairs { x ,)(xd } (numerical data), nx ℜ∈ , md ℜ∈ . By the end of
learning, performed on set E, a set of parameters G (typically represented as matrices)
that model the function png ℜ→ℜ: , is available so that ε<−)()(xgxG , ε>0.

In the proposed method the set of parameters consists of four matrices correspond-
ing to the mean vectors (matrix M) and spreads (matrix Σ) of the hidden RBF nodes,
to the association of the hidden nodes to output classes (matrix W), and to the asso-
ciation of input dimensions to hidden nodes (matrix A), i.e., which subspace of input
space need to be considered for each hidden node for maximum performance in clus-
tering. The values of matrices M, Σ and W are estimated during the formal training of
the RBF network (see Section 2.2) while the matrix A is computed by applying GAs
optimization to the (already) trained RBF network (see Section 3).

2.1 Unsupervised clustering of high dimensional data

In this work, we extend the classic agglomerative clustering algorithm in order to
incorporate soft feature selection in the inter cluster distance estimation process, thus
providing an output that is more effective (better results) and more efficient (faster
convergence) for initializing the network. Let 1c and 2c be two clusters of data sam-

ples. Let also ir , { }1..i F∈ be a distance metric defined in space iS S⊆ , F the
count of distinct metrics that may be defined among a pair of clusters, S the count of
features for the data samples and iS the count of features considered by the i -th sam-
ple-to-sample distance metric. A distance metric between the two clusters, when
considering the i -th sample-to-sample distance metric, is given by

()
()

1 2,
1 2

1 2

(,)
,

i i i
a c b c

i

r a b
f c c

c c

κ

κ ∈ ∈=
⋅

∑
where ia , ib are the positions of data samples a and b

in feature space iS , 1c , 2c are the cardinalities of clusters 1c and 2c respectively
and κ∈ is a constant. The “context” is a selection of features that should be con-

sidered when calculating an overall distance value; we define it as a vector Fctx +∈

with
1

1
F

i
i

ctx
=

=∑ . Given a context, the overall distance between clusters 1c and 2c is

calculated as () ()() ()*
1 2 1 2 1 2

1
, , ,

F

i i
i

f c c ctx c c f c c
λ

=

= ⋅∑ . In the non-trivial cases the opti-

mal context is provided by () ()
()
()

1
11 2

1 2 1 2
1 2

,
, ,

,
F

i F
i

f c c
ctx c c ctx c c

f c c
λ−⎛ ⎞⎟⎜ ⎟⎜= ⋅ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

, { }1.. 1i F∀ ∈ − and

()
()
()

1 2 1
11 2

1 21

1,

,
,

F
F

F

ii

ctx c c

f c c
f c c

λ−

=

=

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑

. For the sake of space, the proof for this is omitted

and the reader is directed to [4] for more details on the proposed extension to the
agglomeration process.

2.2 RBF network initialization and training

Learning is incorporated into the network using the gradient descent method, while a
squared error criterion is used for network training. The squared error ()e t at itera-

tion t is computed in the standard way:
() () ()()2

1

1
2

p

k k
k

e t d t y t
=

= −∑
 where ()kd t is the

desired output and ()ky t is the output of neuron k given by
()

2

2

1
1

k

k

z

k z

ey t
e

−
=

+ ,

() ()
T

k kz w tφ= ⋅
 where 1 2 (), ...

T

k k k kq tw w w w⎡ ⎤= ⎢ ⎥⎣ ⎦ are the weights connecting the RBF hid-
den neurons with the output neurons (note that these parameters are constrained to
have binary values so as to better accommodate the extraction of if-then rules) and
()tφ

 is the output of the hidden layer. For the sake of space, the reader is directed to
[6] for more details on the training of the RBF network.

3. Derivation of the antecedent part of if-then rules using Genetic
Algorithms

The last step for the creation of if-then rules is the derivation of the antecedent part
through the estimation of matrix A. The initialization of the hidden layer based on the
results of the clustering method, described in Section 3, supports the construction of
clusters with similarities in subspaces of the input space. However, when the training
of the RBF network concludes all inputs are connected to all hidden neurons, thus all

values of A matrix are set to one. In order to construct a proper antecedent part sev-
eral input connections to hidden neurons need to removed. Moreover, these connec-
tions need, in general, to be different for each hidden node so as allow us to consider
each hidden neuron as an if-then rule. In order to accommodate the above require-
ment a genetic algorithm optimization procedure is followed as described below.

Let iφ be the activation of i-th hidden neuron and I be the set of data samples of
training set E (which in addition to I contains the corresponding target vectors). Let
also iS be the subset of I (ISi ⊂) such that every data sample belonging to it
(iSx∈∀) activates the most the i-th hidden neuron. The aim of the training is to find
a string that optimizes the activation iφ over set iS . For this purpose a genetic algo-
rithm (GA) optimization scheme is used. We utilize a “per rule” feature selection
methodology for the construction of the antecedent part of the rules. The coding that
has been selected models the presence or absence of the corresponding input dimen-
sion in the antecedent part of a rule as 1 or 0 respectively. The fitness function F that

is used is given by ∑
∈

=
iSx

i
i

i x
Scard

SF)(
)(

1)(φ where card(Si) is the cardinality of set

iS and)(xiφ is the activation of the i-th hidden neuron when fed by the input vector
x . The objective is to find the binary string that maximizes the fitness function

)(iSF . The realization of the genetic operators reproduction, mutation and crossover

is as follows: Reproduction. The fitness function)(iSF is used in the classical “rou-
lette” wheel reproduction operator that gives higher probability of reproduction to the
strings with better fitness according to the following procedure: i) an order number, q,
is assigned to the population strings. That is q ranges from 1 to Np, where Np is the
size of population, ii) the sum of fitness values (Fsum) of all strings in the population
is calculated, iii) the interval [0 Fsum] is divided into Np sub-intervals each of one
being, iv) a random real number R0 lying in the interval [0 Fsum] is selected, v) the
string having the same order number as the subinterval of R0 is selected and vi) steps
(4) and (5) are repeated Np times in order to produce the intermediate population to
which the other genetic operators will be applied. Crossover. Given two strings of
length k (parents) an integer number kr ℵ∈ is randomly selected. The two strings
retain their gene values up to gene r and interchange the values of the remaining
genes creating two new strings (offspring). Mutation. This operator is applied to each
gene of a string and it alters its content, with a small probability.

4. Experimental results

The iris data were used to validate the proposed method as far as the rule extraction
efficiency and the classification performance is concerned. When trained with the iris
data the proposed combination of RBF-RAN and GAs creates three rules and
achieves an overall classification performance of 96.7%. The estimated matrices are

given below:

M=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

03.0
15.0
34.0
50.0

13.0
43.0
28.0
59.0

20.0
56.0
30.0
66.0

, Σ=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

02.0
04.0
08.0
07.0

04.0
10.0
06.0
10.0

05.0
11.0
06.0
13.0

 A=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
1
1

1
0
1

1
0
0

0
1
0

, W=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
010
001

We should note that the pruning of input to hidden nodes connections due to the
GA optimization has no degradation effect on the classification performance which
remains 96.7%. Comparisons with other methods (with the help of [5]), as far is the
classification performance (resubstitution accuracy), are given in Table I. We observe
that the proposed method (RBF-GAs) outperforms all listed soft computing tech-
niques, with the exception of FuGeNeSys, creating as few as three rules. More results
from the application of the proposed methodology are available and equally promis-
ing, but are omitted for the sake of space.

Table 1. Comparison of RBF-GAs with other techniques for Iris Data Classification

Method Rules Resubstitution Accuracy (%)
FuGeNeSys 5 100
NEFCLASS 7 96.7

ReFuNN 9 95.3
EFuNN 17 95.3
FuNe-I 7 96.0

RBF-Gas 3 96.7

5. Conclusions

In this paper we propose an innovative hybrid architecture, which combines resource
allocating properties, novel clustering techniques for multi-dimensional problems and
evolutionary weight connection purging in order to incorporate (a) fast classifying
capabilities, (b) expert knowledge modeling, (c) knowledge extraction from numeri-
cal data. The proposed approach embeds rule-based knowledge directly into its archi-
tecture while its resource allocating structure enables new rules to be created. The
latter is very important for two reasons: (a) there are several domains in which no
estimation about the number of rules that are required to solve a particular problem is
available, (b) rules can be created to model a changing of a context.

References

1. J. Yang, V. Honavar, “Feature Subset Selection Using A Genetic Algorithm,” ACM comput-
ing 1991

2. D. Addison, S. Wermter, G. Arevian, “A Comparison of Feature Extraction and Selection
Techniques,” Proceedings of the International Conference on Artificial Neural Networks
(ICANN’03), Istanbul, Turkey, Supplementary Proceedings pp. 212-215, June 2003.

3. Growing Compact RBF Networks Using a Genetic Algorithm,” VII Brazilian Symposium on
Neural Networks (SBRN’02) November 2002

4. M. Wallace, S. Kollias, “Robust, Generalized, Quick and Efficient Agglomerative Cluster-
ing” Proceedings of 6th International Conference on Enterprise Information Systems
(ICEIS), Porto, Portugal, April 2004.

5. L. I. Kuncheva and J. C. Bezdek, “Nearest prototype classification: Clustering, genetic
algorithms, or random search?” IEEE Trans. Syst.

6. Wallace M., Tsapatsoulis N., Kollias S. “`Intelligent Initialization of Resource Allocating
RBF Networks” Neural Networks, 2005

z1

2
Out2

1
Out1

w2 . f

(0 1 0 1 0 0)

w2

w1 . f

(1 0 1 0 1 1)

w1

tansig-2

tansig-1

(1.1 1.1 1.2 1.3)

s5

(1.2 1.1 1.1 1.2)

s4

(1.1 1.2 1.3 1.1)

s3

(1.3 1.2 1.1 1.2)

s2

(1.1 1.3 1.2 1.2)

s1

(0.8 0.3 1.1 0.4)

m5

(0.7 0.3 0.9 0.6)

m4

(0.2 0.3 1.1 0.4)

m3

(0.8 0.7 0.9 0.6)

m2

(0.2 0.7 1.1 0.6)

m1

s

m

u

out

k(m5,s5,u5)

s

m

u

out

k(m4,s4,u4)

s

m

u

out

k(m3,s3,u3)

s

m

u

out

k(m2,s2,u2)

s

m

u

out

k(m1,s1,u1)

a5 . x

(1 1 0 1)

a5

a4 . x

(0 1 1 0)

a4

a3 . x

(1 0 1 0)

a3

a2 . x

(0 1 1 1)

a2

a1 . x

(1 0 1 1)

a1

RBF-node-5

RBF-node-4

RBF-node-3

RBF-node-2

RBF-node-1

4

Input#4

3

Input#3

2
Input#2

1
Input#1

y 1z1

v 1

u1

v 2

u2

v 3

u3

v 4

u4

v 5

u5

r

y 2z2

f

x

x

 Fig. 1. The proposed RBF architecture for rule extraction

