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ABSTRACT

In the aftermath of the financial crisis, supervisory authorities
have considerably altered the mode of operation of financial stress
testing. Despite these efforts, significant concerns and extensive
criticism have been raised by market participants regarding the con-
sidered unrealistic methodological assumptions and simplifications.
Current stress testing methodologies attempt to simulate the risks
underlying a financial institution’s balance sheet by using several
satellite models. This renders their integration a really challenging
task, leading to significant estimation errors. Moreover, advanced
statistical techniques that could potentially capture the non-linear
nature of adverse shocks are still ignored. This work aims to address
these criticisms and shortcomings by proposing a novel approach
based on recent advances in Deep Learning towards a principled
method for Dynamic Balance Sheet Stress Testing. Experimental
results on a newly collected financial/supervisory dataset, provide
strong empirical evidence that our paradigm significantly outper-
forms traditional approaches; thus, it is capable of more accurately
and efficiently simulating real world scenarios.
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1 INTRODUCTION & MOTIVATION

Financial Stability constitutes a core component of economic pros-
perity for countries and individuals. The recent financial crises have
had a significantly adverse impact on the life of many individuals
across the globe, being a major cause of significant income reduc-
tion, rising unemployment and economic slowdown [30]. Moreover,
it was (and still is) undoubtedly established that the currently em-
ployed methods of risk management are greatly inadequate; they
fail to provide early warnings to central governments and central
banks in order to proactively intervene and prevent such adverse
financial events. Banks, regulatory authorities, and international
organizations (like IMF) performed stress testing (ST) exercises
long before the financial crisis of 2007. Nevertheless, ST exercises
before Lehman’s default failed to predict the unprecedented eco-
nomic turmoil, because they disregarded the propagation channels
of a default event through the whole micro and macro dynamics
of the global interconnected financial system. It is apparent that
the non-linear relationships that were realised between the macro-
economy and the financial balance sheets were not sufficiently
captured due to the broad use of simple linear regression models.
Further weaknesses also present in the validation function of ST
frameworks also decreased the confidence in the quantification of
the impact of an adverse scenario in the banking system. Since then,
market participants and regulators have performed rigorous STs by
expanding the scenarios to be assessed, using more granular data, and
in some cases attempting to quantify second round effects stemming
from a liquidity shock or from the default of a counter-party.

As a post-crisis response, supervisory regulation has attempted
to mitigate some of the shortfalls of current approaches by collect-
ing significant amounts of granular information towards a more
proactive supervision. This constitutes a significant step in the right
direction for banking supervision via the creation and analysis of
big datasets. However, it is surprising that regulators still refrain
from exploring more advanced statistical techniques from other
fields, such as Deep Learning (DL). These may have the potential to
further facilitate the extraction of information regarding the risks
in their banking systems. Such a capacity will in turn allow regu-
lators to spot further, and unnoticed by the current frameworks,
weaknesses in the supervised financial entities.

Machine learning (ML) algorithms have dramatically improved
the capabilities of performing Pattern Recognition, e.g., automatic
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speech recognition, computer vision and forecasting, offering state-
of-the-art performance in various scientific fields like language mod-
eling and biology. They are empirically proven to effectively deal
with high dimensional data and their structure allows for employ-
ment in streaming sequences using continuous learning algorithms,
recognizing new and evolving patterns in time-series data. Recent
studies suggest that ML techniques could lead to better predictive
performance in financial time series modelling problems [12, 20, 28].
This may yield improvements in their performance over time, of-
fering increased capabilities to capture non-linear relationships,
and decompose the noise that often exist in financial data. They
can easily cope with modeling multivariate time series, therefore
capturing the full spectrum of information contained in financial
datasets.

Motivated by the recent trends in the ML literature, this empirical
study introduces a novel paradigm for ST using DL algorithms to
model banks’ financial data in a holistic way. In particular, shocks
are propagated to each banks’ balance sheets by simultaneously
training deep neural networks with macro and financial variables.
Thus, we we take advantage of their capabilities to capture more
information hidden in big datasets. We develop inference algorithms
for our networks, suitable for learning financial time series data on
a multivariate forecasting setup.

The contributions of this study are two-fold:

(1) We present a collected dataset regarding the United States
Banking System from the database of the Federal Deposit
Insurance Corporation (FDIC). The dataset covers a 9-year
period with quarterly information with more than 175, 000
records. It comprises an extended set of variables that fully
describe the financial status of each bank along with infor-
mation concerning common macro-economic variables. This
will allow for capturing underlying dependencies between
micro and macro variables.

(2) We propose a holistic framework for balance sheet ST, which
overcomes the limitations of current approaches, yielding
more robust and close to reality results by loosening the static
balance sheet assumption. Our analysis lies at the intersec-
tion of computational finance and statistical ML, leveraging
the unique properties and capabilities of deep neural net-
works towards increasing the prediction efficacy. Under this
framework, forecasting of balance sheet items can be heavily
supported by DL, to better simulate the propagation channels
of the macro economy into the financial institutions business
models. Our vision is to provide a ST framework that can
serve as an early warning system for financial shocks on
individual banks’ balance sheets. Thus, we develop networks
that allow for some insights on the reason why a trained model
generates some prediction, facilitating further investigation
and easier adoption by regulatory bodies for real-world em-
ployment. This is in contrast to existing deep networks for
time-series data, such as Transformers[37] and LSTMs[25].

This study is organized as follows. In Section 2, we focus on
the related literature review on financial institutions Stress Testing.
Section 3 describes the data collection and processing. In Section 4,
we provide details regarding the estimation process of the various
ST frameworks examined in this study. In Section 5, we compare
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Figure 1: Feedforward architecture of currently established
stress testing frameworks.

across methodologies and provide experimental results using a
separate test dataset of financial balance sheet sequences of data.
Finally, in Section 6, we summarize the performance of the proposed
methodology, we identify any potential weaknesses and limitations,
while also discussing areas for future research.

2 RELATED BACKGROUND

A Stress Testing engine typically comprises four distinct elements:
(i) the perimeter of risks subjected to stress, (ii) the scenario de-
sign, (iii) the calculation engine that transforms the shocks into
an outcome in Banks’ balance sheet, and (iv) a measure of the
outcome [10]. The most famous publicly available ST exercises
are: EBA [2], CCAR (FED) [3], PRA - Bank of England [16], ECB
(top down) [13, 23], Bank of Canada [7], Central Bank of Austria
(ARNIE) [17], IMF [22], Bank of Greece (Diagnostic Exercise) [4].

To estimate the impact of an adverse shock in the economy;, all the
aforementioned exercises follow a left-to-right flow. One key aspect
is their time horizon: they estimate future losses for banks, ranging
from 2 to 5 years. During this period, the macro-economic scenarios
are provided. In turn, these are then passed through each financial
institution to project their P&L and Risk Weighted Assets (RWA),
and eventually estimate capital using regulatory hurdle rates. A
few exercises incorporate a second-round effects mechanism for
the banking system to account for any potential contagion risk.
However, macroeconomic feedback effects, e.g., the impact of a
significant institution becoming insolvent in the macro economy,
are usually not considered in such frameworks. ST performed under
this rationale, can mainly serve as a tool to challenge the recovery
plans of banks and to assess their viability; yet, their role as an early
warning system is questionable.

As Drehmann [14] aptly points, systemic banking crises are re-
flected in credit performance and property prices, and usually appear
at the high-point of the medium-term financial cycle. Therefore,
crises start before being depicted in macro scenarios. According
to Borio [10], a system is not fragile when a large financial shock
materializes. Instead, it is when even a small negative change in
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financial and macro variables is amplified through the different
dynamic system relationships and can lead to a systemic shock. For
example, after the default of Lehman, the financial market crashed
and the US GDP exhibited a sharp decrease causing a structural
break in the macro data time series.

Current versions of ST assume a static over time macro scenario,
without modeling or tracking the path dependent nature of the
multi-step decision process and financial behaviour that actually
takes place from all economic participants [9]. Further, it is well
understood that the currently employed statistical techniques fail
to adequately model the underlying non-linear relations. With such
dynamics, risks under the current globalized market tend to be
amplified when a stress event occurs, leading to a chain of events
unpredictable from the static nature of typical stress tests. Under
stressed conditions, the relationships between modeled variables are
non-linear [15, 26] and exhibit structural breaks [6].

Apart from explicitly not modeling non-linear dynamics, another
reason why ST frameworks fail to capture such relationships is that
they are composed by individual models, usually combined in a
subjective, qualitatively manner. On this basis, a small single-step
prediction error in early stages, could accumulate and propagate
when combined without taking the correlation of the financial vari-
ables into consideration. This often leads to poor performance and
prediction accuracy. Not only that, but such standalone models
can lead to double counting effects or overestimating the impact
stemming from changes in the predefined macro variables. Finally,
as one would expect, uni-variate setups are not able to appropri-
ately model complex correlated distributed variables exhibiting
non-linear behaviors.

Unfortunately, the reliability of the final estimation of ST suffers
from yet another modeling decision; that is, the usually employed
modeling simplifications. Consider for example the EBA EU wide
ST; this constitutes a bottom-up exercise covering only specific
risk on banks individuals balance sheet based on a macro scenario
that commonly employs such simplifications. Specifically, one of
the weaknesses in EBA methodology is the static balance sheet
assumption, i.e., assets and liabilities remain constant over the hori-
zon, ignoring potential management actions and new generation of
loans. In addition, mitigation actions are often taken into account
after ST is finalized and through a strong qualitative overlay and
not in a dynamic way [2].

On the other hand, System-wide ST exercises on micro-prudential
level, heavily rely upon interaction of individual banks and with
respect to data analytics, propagating the macro scenarios to their
balance sheet. Thus, estimation is not performed in a unified sta-
tistical process. In contrast, it inherits the model deficiencies and
forecast errors embedded in each banks’ individual models. The
heterogeneity in the results significantly increases estimation er-
rors and there is no robust process for regulators to account for
it. Thus, the need for independent central modeling for simulat-
ing the financial system is of great significance [24]. This mode of
operation is further rendered imperative, considering that the ST
process involves the disclosure of the methodological framework
to all market participants. In this context, there exist evidence of
second round effects regarding the accounting treatment of banks.
Specifically, based on a recent study [21], banks participating in
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regulatory exercises tend to manipulate their provisions for credit
risk to absorb the impact of the upcoming ST.

ST outcomes in current regulatory exercises heavily depend on
regulatory ratios, e.g., Capital Adequacy Ratio, which in turn are
highly dependable on the estimation of RWA. Empirical evidence
suggest that relying on the internally considered (by the financial
institutions) risk weights under the Basel Framework, can lead to
underestimation in capital needs [1]. This stems from the signifi-
cant variability of different internal models of banks. Moreover,
the employed regulatory framework for assessing the RWA, cannot
capture the hidden risk in banks complex portfolio structure. In recent
literature [19], there is evidence that more sophisticated banks in
particular (A-IRB), may perform regulatory arbitrage and manipu-
late their true risks to lower their capital requirements. Thus, robust
macro modelling of the RWA using an independent top-down model
is of the utmost importance to account for such cases.

Although significance progress in designing ST has been made,
there are still concerns that this type of exercises cannot be used as
early warning systems for financial distress [30]. We have already
outlined the series of weaknesses and inefficiencies regarding ST
exercises performed by either regulators or individuals banks.

In this work, we aim to address the various deficits of current
frameworks by introducing a novel modeling paradigm, dubbed
Deep Stress. The core innovation of our proposed approach is the
amalgamation of advanced statistical techniques, i.e., Deep Neural
Networks, and meticulous analysis and incorporation of financial
and economic variables towards dynamic balance sheet stress testing.

We identify the main channels of risk propagation in a recurrent
form to account for all existing evidence of feedback effects in a
financial institutions’ balance sheet. Current architectures are con-
strained by the use classical econometric techniques which offer
limited capabilities for simulating complex systems. Our approach
accounts for non-linear and temporal patterns in banks’ balance
sheets, providing a dynamic modeling approach. We achieve this by
taking account the dynamic nature of banks’ metrics and the whole
structure of each bank’s balance sheet. We bypass the commonly
employed uni-variate modeling and combination restriction since
DNNss are able to capture the cross-correlation between balance
sheet items and the macro economy. The non-linear relationships
that materialize under adverse macroeconomic conditions can be
more efficiently be captured due to the structure and capacity of
DNNs. Our proposed framework envisages the effective capturing
of such underlying dynamics inherent in a financial distress. Simul-
taneously, it will allow for determining the amplification channels
leading to structural breaks.

Our modeling approach strikes a balance between capturing
the determinants that strongly affect the health of a financial in-
stitution, while at the same time, developing a dynamic balance
sheet simulator engine for establishing an early warning system
to predict bank failures under an adverse scenario. The modeling
framework that we implement, captures temporal dependencies in
a bank’s financial indicators and the macro economy.

We apply our methodology on a newly collected dataset (from
publicly available data) that we describe next. All models are devel-
oped in a uniform manner, thus making the process of validation
and error correction more feasible to be performed centrally.
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Figure 2: US Financial Institutions: Historical overview of
the 2008-2014 period of failed entities (source: FDIC)

3 DATA COLLECTION AND PROCESSING

The dataset introduced in this is study, concerns the United States
banking system. Specifically, we have collected information on non-
failed, failed and assisted entities from the database of the Federal
Deposit Insurance Corporation (FDIC); an independent agency cre-
ated by the US Congress in order to maintain the stability and the
public confidence in the financial system. The collected informa-
tion is related to all US banks, while the adopted definition of a
default event in this dataset includes all bank failures and assistance
transactions of all FDIC-insured institutions. Under the proposed
framework, each entity is categorized either as solvent or as in-
solvent based on the indicators provided by FDIC. Observations
referring to failed banks are excluded from the analysis since ST is
performed on healthy financial entities.

The dataset covers 2007 — 2015: a 9-year period with quarterly
information resulting in more than 175, 000 records. The selected
time period, approximates a full economic cycle, in terms of the
Default Rate evolution. Fig. 2, shows the number of records included
in each observation quarter and the corresponding default rate.
From a supervisory perspective, most of the financial institutions
in the sample, apply the standardized approach for measuring the
Credit risk weights assets based on the United States adaptation of
the Basel regulatory framework [11].

The dataset was split into three parts: (i) an in-sample training
set, comprising data pertaining to the 80% of the examined banks
over the observation period 2008 — 2013, and amounting to 101, 641
observations, (ii) an out-of-sample validation set that facilitates
hyper-parameter tuning of deep neural networks that allows for
increased generalization capabilities, and included the remaining
20% of the observations for the period 2008 — 2013, amounting to
25,252 observations, and (iii) an out-of-time test set that spans over
the 2014 — 2015 observations period, comprising 48, 756 records
that is used for the final performance evaluation.

In all splits, the dependent (target) variable is the Capital Ade-
quacy Ratio (CAR) of each bank in the end of the one year forecast
horizon. We perform model fitting using exclusively the constructed
training sample. For model selection, we employed five-fold cross-
validation, using predictive accuracy as our model selection crite-
rion, i.e., the CAR prediction error. Performance evaluation results
are finally assessed on the available test set, to allow for evaluating
the generalization capacity of the developed models.
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To capture the complex relationships between banks and macro-
economic metrics, we consider an extended set of variables that
comprise: (i) variables that fully described the financial status of
each bank in the samples, and (ii) quarterly observations of the
most commonly used macro-economic variables. Macro variables
are the main input in the models developed, since they are important
for scenario analysis under an ST framework. The current model
setup includes contemporaneous macro variables along with 3 year
lags. The intuition for this approach is to build models for scenario
prediction which is the main methodology for ST modeling.

Specifically, the macro variables are (i) GDP: Gross Domestic
Product growth, (ii) EXPORT: US Total Exports growth, (iii) GOV-
CREDIT: Government Credit to GDP, (iv) DEBT: US public debt
to GDP, (v) GOVEXP: US government expenditure to GDP, (vi)
INFLAT: US inflation, (vii) RRE: House Price Index growth, (viii)
UNR: Unemployment Rate, (ix) YIELD10Y: 10Y US sovereign bonds
yields, and (x) STOCKS: US Stock index — S&P 500 returns.

The relevant stress financial variables for simulating the prof-
itability and the risk weighted assets of each financial institution
are: (i) NLOAN: Net loans exposure, (ii) DEP: Total Deposits, (iii)
DDEP: Total domestic deposits, (iv) ASSET: Average Total Assets,
(v) EASSET: Average Total Earning Assets, (vi) EQUITY: Average
Total Equity, (vii) LOAN: Average total loans, (viii) CFD: Deposits
Cost of funding, (ix) YEA: Yield on earning assets, (x) NFIA: Non-
interest income to average assets, (xi) RW: Risk Weight Density,
(xii) LOSS_LOAN: Loss allowance to loans, (xiii) RWA: Total risk
weighted assets, and (xiv) CAR%: Total Risk-based Capital Ratio.

Modeling for the evolution of the balance sheet is performed
on the growth rate of 4 key financial items: Deposits, Total Earn-
ing Assets, Total Loans and Total Assets. In order to capture the
idiosyncratic characteristics of each financial entity, 3-year lags are
included in the training process for each financial variable. In the
final model setup, the use of multiple years financial and macroe-
conomic variables allows for capturing internal trends of key items
of a bank’ balance sheet and also the degree each entity is affected
by the status of the US economy.

4 MODEL DEVELOPMENT

To investigate the capabilities and efficacy of the proposed frame-
work for ST, we further implement and compare our results to two
real-world methods for balance sheet forecasting. Specifically, we
develop (i) a Constant Balance Sheet approach, following the frame-
work adopted by EBA to perform EU wide ST [2] and (ii) a dynamic
balance sheet approach, supported by a group of satellite models
to forecast individual financial variables used by other regulatory
authorities like ECB for macro prudential ST. Next, we provide an
overview of the overall setup of the study and the technical details
of the three individual implementing methods.

4.1 General Setup of the Study

The main aim of a micro prudential solvency ST framework is
the projection of a financial institution’s CAR or the more recent
Core Equity Tier (CET)-1 ratio. To this end, we develop a DNN
structure which receives as input the Macro variables and Balance
sheet components described in the previous section. The produced
output corresponds to the balance sheet and profitability structure
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of the bank on one year horizon, as measured by 9 core variables,
namely: Net loans, Deposits, Assets, Earning Assets, Cost of funding,
Yield on earning assets, Noninterest income to assets, Risk Weight
Density and Cost of Risk (loss allowance to loans).

We focus on forecasting of CAR, since CET-1 ratio was intro-
duced under Basel IIT and is not available throughout our dataset.
Our aim is to project the in a one-year-ahead the CAR ratio of each
financial institution in the sample. CAR, by definition, is the ratio
of a bank’s Capital over the Risk Weighted Assets at each time point
t. In order to simulate the core mechanics of an ST framework,
we simulate the evolution of the key financial variables of a finan-
cial institution’s balance sheet. Specifically, we project one-year
ahead, the evolution of the capital and the risk weighted assets to
forecast the one-year ahead CAR. The approach followed to adjust
the capital at time ¢ reads:

Capital, =Earnings from Assets, — Loans Loss Provisions;
+ Net Fees and Commissions;

— Cost of Funding from Deposits; + Capital,_;

To adjust the capital of each entity, we model 8 key financial vari-
ables. The first four concern the dynamic evolution of a balance
sheet, i.e., the growth of the asset and liability side: the growth
rate of Deposits, Total loans, Total Assets, Total Earning Assets. The
remaining 4, the yield in the next year of each item from the asset
or liability side: cost of risk of loans, yield on earning assets, yield on
deposits and yield of net fees and commissions of total assets.

The RWA are adjusted in 3 different ways depending on the ST
methodology: (i) for DL, we project the growth of the RWA, (ii) for
satellite modelling, a dedicated model is trained to project the RW
density of each financial institution in the sample, while (iii) for the
constant balance sheet approach, we assume RWA remain constant
for one year.

4.2 Constant Balance Sheet Modelling Setup

In this approach, all balance sheet items are assumed constant,
along with the RWA metric for one year. To project yields of assets
and liabilities, we combine the respective uni-variate satellite BMA
models, while assuming zero growth in the balance sheet in order to
project the CAR ratio one year ahead.

4.3 Satellite Modeling - Bayesian Model
Averaging

Satellite models are used for uni-variate estimation of the impact of
standalone balance sheet items in current ST frameworks [13]. A
commonly employed technique by both regulators and the banking
industry is Bayesian Model Averaging (BMA). The main intuition
for its employment is to account for the uncertainty surrounding
the core determinants of risk dynamics, especially in a period of re-
cession. This way, short time-series of balance sheet realizations for
ST can be handled. BMA offers the ability to perform multivariate
modeling, including all potential predictors with different weights,
while the output of each trained model remains uni-variate.

In BMA, a pool of equations is generated using a randomly
selected subgroup of determinants, and an appropriate weight is as-
signed to each model, reflecting its relative forecasting performance.
The posterior model probability is then formed by aggregating all
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equations using their corresponding weights. In the first step, the
number of equations estimated is large enough to capture all possi-
ble combinations of a predetermined number of independent variables.
BMA addresses model uncertainty and mis-specification via selected
explanatory variables in a simple linear regression problem.

Let Y; be the dependent variable and X; the explanatory variables.
Then, assuming a linear model structure with error €;:

Y = ay + ﬁyXy,t + €¢, €r ~ N(O, CTZI)

where « is a constant and f are the regression coefficients. When
several potential explanatory variables are present, selecting a cor-
rect combinations becomes quite complex. A simple linear model
that includes all variables is inefficient or even infeasible with a
limited number of observations. It can result to overfitting, multi-
collinearity and increased necessity for manual re-estimations to
account for non-significant determinants. BMA tackles the problem
by estimating models for all possible combinations of {X} and
constructing a weighted average over all of them.

Under the assumption that X contains K potential explanatory
variables, BMA estimates 2X combinations, and thus, 2K models.
Applying Bayes’ Theorem, model averaging is based on the poste-
rior model probabilities:

p(Y U My, X)p(My) _ p(Y U My, X)p(My)
p(YUX) 2 p(Y UM, X)p(M;)

(M, UY,X) =

The denominator is common in all models; thus, the posterior model
probability is proportional to p(Y U M, X) which reflects the prob-
ability of the data given the model M. Thus, the corresponding
weight assigned to each model is measured by using p(My U Y, X).
p(M) denotes the prior belief of how probable model M is before an-
alyzing the data. We can then infer the model’s weighted posterior
distribution for the coefficients g, yielding:

ZK
PBUY,X) =" p(BUM,, Y, X)p(My UX,Y)
y=1
We assume a uniform prior for each model. Regarding the mar-
ginal likelihoods and the posterior distributions, we use the g prior

[38], while the prior for the coefficients is assumed to be a normal
distribution with pre-specified mean and variance.

4.4 Deep Learning

Deep learning is a highly active field of research, having recently
achieved significant breakthroughs in the fields of computer vi-
sion and language understanding. They have been extremely suc-
cessful in diverse time-series modeling tasks, including machine
translation [37] and recommendation engines [35]. However, their
application in the field of finance is rather limited. To the best of
knowledge, our work constitutes one of the first in the literature
that considers DL to address the challenging financial modeling
task of dynamic financial balance sheet stress testing.

Let us consider input data X € RNXD, containing N observa-
tions, with D features each. In a traditional DNN hidden layer, we
compute an inner product between the input and a weight matrix
W € RPXK The resulting activation is then passed through a non-

linear function o(-), yielding the final output ¥ € RNVXK of each
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layer:

1

d
Ynk =0 (Z dexnd)

d=1

Each DNN comprises multiple such layers, connected in an hierar-
chical manner. The most widely used non-linear activation function
is the Rectified Linear Unit (ReLU): relu(x) = max(0, x).

In this work, we additionally consider a radically different par-
adigm of latent unit operation, based on the biologically-inspired
Local Winner-Takes-All (LWTA) mechanism. In this context, hid-
den units compete for their outputs; the winner gets to pass its
output to the next layer, while the rest are zeroed out. LWTA ac-
tivations have been shown to exhibit significant properties such
as noise suppression, adversarial robustness, compression capabilities
and facilitate learning of diversified representations[31-34]. Thus,
we explore their potency in the financial domain.

In our setup, multivariate DL networks will learn the balance
sheet of financial institutions, and separately generate yearly fore-
casts after receiving historical values of banks’ previous economic
states. The hierarchical transmission of observed data between
cascading layers of abstraction can decompose the structure of a
bank balance sheet and foster the multivariate representation of
the financial variables for better capturing the correlations between
various assets and liabilities. Thus, we can simultaneously model
the balance sheet as a whole instead of using satellite models of
regular ST frameworks. DNNs further facilitate dynamic balance
sheet projection through their non-linear nature, offering a more
realistic approach for ST. Information flows through the system as a
vector of macro and financial variables describing the state of both
the bank and the macro economy at any time stamp during the
forecast period. The input vector contains around 60 variables and
the output 9 variables. The considered DNN is capable to model the
lead lag relationships between macro, banks’, financial, and sover-
eign variables. Finally, through this multivariate forecasting setup
on individual balance sheet, we simultaneously model the RWA
evolution of each bank and connect it to the macro environment.

4.4.1 Bayesian Deep Learning. Conventional DNN architectures
compute point estimates of the unknown values, i.e., each layer’s
weights, without taking into consideration any prior information
and without any uncertainty estimation of the produced values. The
Bayesian framework offers a flexible and mathematically founded
approach to incorporate prior information and uncertainty esti-
mation by explicitly employing model averaging. The Bayesian
treatment of particular model has been shown to increase its ca-
pacity and potential, while offering a natural way to assess the
uncertainty of the resulting estimates. To this end, we addition-
ally assess the performance of such Bayesian Neural Networks
(BNNis). Specifically, we impose a prior Normal distribution over
network weights, seeking to infer their posterior distribution given
the data. Since the marginal likelihood is intractable for the con-
sidered architectures, from the existing Bayesian methods, we rely
on approximate inference and specifically on Stochastic Gradient
Variational Bayes (SGVB)[27] and optimize the resulting Evidence
Lower Bound (ELBO) expression [8].
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Table 1: Comparison of the predicted one year ahead CAR
by ST approach for all banks and only for Large financial
institutions (more than 200 billion in assets).

All banks in the dataset Out of Sample CAR | In Sample CAR
Satellite Modelling (BMS) 20.61 17.07
Deep Learning (MXNET) 18.01 17.89

Deep Learning (Bayesian ReLU) 18.80 17.83
Deep Learning (Bayesian LWTA) 19.23 18.53
Constant Balance Sheet 20.03 17.49
Actual 19.33 18.73

Large Banks (> 200 bl) Out of Sample CAR | In Sample CAR
Satellite Modelling (BMS) 15.07 11.04
Deep Learning (MXNET) 12.7 11.12

Deep Learning (Bayesian ReLU) 13.2 11.72
Deep Learning (Bayesian LWTA) 13.43 12.13
Constant Balance Sheet 15.11 11.48
Actual 13.75 14.16

5 EXPERIMENTAL EVALUATION

BMA: Before applying BMA, we remove and linearly interpolate
the outliers. We employ a unit information prior (UIP), which sets
g=N commonly for all estimation models, and rely on a birth/death
MCMC algorithm (20000 draws) due to the large number of included
covariates. We fix the number of burn-in draws for the MCMC sam-
pler to 10000. A “random theta” prior [29] is employed, comprising
a binomial-beta hyper prior on the a-priori inclusion probability.
This prior has the advantage of being less “tight” around a-priori
expected model size, i.e., the average number of included regressors.
Thus, it reflects prior uncertainty about model size more efficiently.
For robustness purposes, we also considered varying the prior using
the Fernandez propositions [18]; however, the results were not sub-
stantially different. We develop all satellite models using the BMS
R package!. After training, 9 BMS models are developed: 4 for the
growth of balance sheet items, 4 models are forecasting the yields
of a various assets and liabilities and one model for forecasting the
RW assets density.

DNNSs: DNNGs typically comprise a massive amount of trainable
parameters; thus, it is essential to employ appropriate techniques
to prevent them from overfitting. Thus, we consider Dropout [36]
with ReLU activations for standard non-bayesian training, using
the Apache MXNET toolbox of R. We postulated deep networks
that are up to five hidden layers deep, comprising various numbers
of neurons. Increasing the number of layers did not result in any
significant improvement. Model selection using the validation set
was performed by maximizing the RMSE metric on the projected
CAR. For BNNs, we use Tensforflow [5], and develop our models
from scratch.

5.1 Evaluation

No thorough and consistent framework exists for validating the
results of an ST exercise, since the adverse scenario used in their
design never materializes. Thus, the success of the ST exercises
after the financial crises maybe be circumstantial [24], since no
robust methods are applied to quantify their estimation error. Back-
testing methods are important to recognize modeling inefficiencies

!https://cran.r-project.org/web/packages/BMS/index.html



A Deep Learning Approach for Dynamic Balance Sheet Stress Testing

Out-of-Sample Capital (Average over Samples)

--=Actual —— MXNET
BMS —— Constant

— DBayesian ReLU
—— DBayesian LWTA
400000

350000 4

300000 4

250000 4

200000 T

T T

LoF el LOF

o
S DA

>
E

@
SO

>
fa,\\\b‘

Figure 3: Out-of-sample results of the predicted Capital com-
pared to the actual figures (Whole Sample).

and fine-tune the estimations, considering specificities in the time-
series data that were not captured in the initial calibration and
development. To improve the quality of ST, rigorous validation
procedures of actual vs predicted financial variables are essential.

In this study, we perform a thorough validation procedure in
order to assess the robustness of our approach. We only use the
“in-sample” set, spanning from 2010 to 2013 (16 quarters), to develop
out ST frameworks. Then, we assess its performance under the “Out-
of-time” set; each model is evaluated over a two year (8 quarters)
out-of-sample time-period spanning from 2014 to 2015 to assess
their generalization capacity. Validation is performed with respect
the one year ahead forecast of the CAR ratio. Note that the last two
years of the dataset were not used for model development. Prediction
accuracy of the CAR ratio is the main criterion to assess the efficacy
of each method. We employ the usual forecast metrics of Root Mean
Square Error (RMSE), Mean Absolute Error (MAE) and the Mean
Absolute Percentage Error (MAPE).

In Table 1, the comparative results are depicted. We observe that
DL-based algorithms result in the best empirical fit both in-sample
and out-of sample sets. Specifically, the predicted average CAR is
closer to the actual value, when compared to the commonly em-
ployed approaches. Such performance hints to a more efficient and

Out-of-Sample Projected CAR (All Banks)
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Figure 4: Out-of-sample results of the predicted CAR com-
pared to the actual values (Whole Sample)
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Figure 5: In-sample results of the predicted CAR compared
to the actual values (Whole Sample).

holistic way to simulate the CAR under a specific set of macro
scenarios of key macroeconomic variables using DNNs. Turning to
the specific validation metrics, these are shown in Table 2. Once
again DNNs provide more accurate estimation of the CAR ratio,
exhibiting a significant decrease in the forecasting error. It it note-
worthy that, by moving from DNNs to BNNs, and when using
LWTA activations in particular, we are able to infer richer and sub-
tler dynamics from the data. This translates to increased capacity
in modeling nonlinearities and cross-correlations among balance
sheet P&L items. This is also evident from Figs. 3 and 4, where
the out-of-sample performance of constant balance sheet and satel-
lite modelling diverge significantly from the actual evolution of
Regulatory Capital (Fig. 3) and the CAR (Fig. 4), despite exhibiting
adequate fit for the in-sample set (Fig. 5). In stark contrast, average
CARs estimated using DL-based methods appropriately captured
the dynamics in the projection period.

To further investigate the performance of DeepStress, we further
focus on a subset of large financial institutions, where performance
of a robust ST methodology is more important due to their social-
economic impact. For the purpose of this investigation, large finan-
cial institutions are defined as entities with more than 200 billion in
assets. In Tables 1 and 2, we observe that the superiority of DNNs

Out-of-Sample Projected CAR (Banks > 200 billion assets)
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Figure 6: Out-of-sample results of the predicted CAR com-
pared to the actual values (Large Banks in the out-of-sample).
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Table 2: Comparison of the predicted one year ahead CAR
by ST approach for all banks and only for Large financial
institutions (more than 200billions in assets)

All banks Out of Sample (2014Q1-2015Q4)

RMSE | MAPE MAE

Satellite Modelling (BMS) 11.32 2.88 0.15
Deep Learning (MXNET) 11.18 2.36 0.12
Deep Learning (Bayesian ReLU) | 15.36 2.12 0.10
Deep Learning (Bayesian LWTA) | 10.75 1.77 0.09
Constant Balance Sheet 11.15 2.85 0.15

In Sample (2010Q1-2013Q4)
Satellite Modelling (BMS) 13.46 2.58 0.16
Deep Learning (MXNET) 13.49 2.55 0.15
Deep Learning (Bayesian ReLU) | 16.58 241 0.15
Deep Learning (Bayesian LWTA) | 18.70 2.16 0.14
Constant Balance Sheet 17.25 2.56 0.15
Large Banks (> 200 bl) Out of Sample (2014Q1-2015Q4)

RMSE | MAPE MAE

Satellite Modelling (BMS) 3.21 2.31 0.17
Deep Learning (MXNET) 2.28 1.97 0.15
Deep Learning (Bayesian ReLU) 1.96 1.56 0.12
Deep Learning (Bayesian LWTA) | 2.04 1.51 0.11
Constant Balance Sheet 3.56 2.58 0.19

In Sample (2010Q1-2013Q4)

Satellite Modelling (BMS) 3.44 3.14 0.23
Deep Learning (MXNET) 3.46 3.13 0.22
Deep Learning (Bayesian ReLU) 3.07 2.78 0.20
Deep Learning (Bayesian LWTA) | 2.76 2.42 0.18
Constant Balance Sheet 3.27 2.94 0.21

is further affirmed in all error metrics, exhibiting significant drops
in the forecasting error in the test sample. It is worth noting that,
even though satellite univariate modelling in the sample dataset
was expected to provide a better fitting against the DNN, this is not
the case. The considered DNNs are trained on a multivariate setup,
attempting to model 9 variables at the same time, and still exhibit
better in-sample error against the other two methods. The same
pattern also holds in Fig. 6, where the projected CAR is depicted
only for the large banks (more than 200 billion in assets).

The experimental results vouch for the efficacy of the proposed
paradigm. It is evident that DNNs exhibit higher predicting power
compared to all benchmark approaches. In contrast, the commonly
considered constant balance assumption, although easier to imple-
ment, exhibits the highest error. It is therefore crucial for super-
visory authorities to rethink current ST exercises that are based
on the constant balance sheet assumption and move towards an
advanced dynamic balance sheet approach.

6 CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel modeling paradigm for regulatory
stress testing exercises, namely DeepStress. Our main innovation
relative to the forecasting economic and financial crisis events
literature is that we explore new deep learning-based statistical
techniques to tackle the problem of dynamic balance stress test-
ing. DNNs (and BNNs) were utilized to provide a holistic modeling
approach for a bank’s key financial items and dominant macro
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variables. We performed thorough testing and validation of the pro-
posed approach and compared its performance against two broadly
accepted and employed stress testing frameworks: constant balance
sheet and satellite dynamic modeling. Our experimental results
provide strong empirical evidence for its efficacy. Our approach
consistently outperformed the benchmark methods, exhibiting con-
sistent improvement in the forecasting accuracy with respect to the
Capital Adequacy Ratio. The main driver for this higher forecasting
accuracy is the potential to model the balance sheet intercorrelation
of P&L items providing better simulation of the banks one-year-
ahead activities. DeepStress offers a better dynamic balance sheet
simulator, which is a major component in any stress testing frame-
work. Such simulation capacity will allow better capturing that
small macro and financial changes that can be amplified exponen-
tially under a crisis event.

We initially focused on the banking system, as it constitutes
the backbone of the global economy, but our paradigm is scalable
to other entities, corporate, insurances and shadow banking. We
strongly believe that DeepStress should be explored by regulators
and financial institutions in order to produce a new generation of
stress testing, increasing monitoring and awareness for possible
future financial shocks.
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