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1  Introduction
The	 green	 revolution	 was	 driven	 by	 agricultural	 intensification	 resulting	 in	
increased productivity and incomes, but also a dependence on chemical 
substances	in	many	developing	countries	of	the	world	(Aeron	et	al.,	2020).	The	
uncontrolled	application	of	 synthetic	agrochemicals	 imposes	 serious	negative	
impacts on the environment and human and animal health, leading to a 
reduction	in	soil	fertility	and	microbial	diversity,	soil	pollution	and	environmental	
degradation	and	the	development	of	 resistance	 in	phytopathogens	and	pests	
(Aeron	et	al.,	2020).	However,	global	demand	for	agricultural	crops	is	increasing	
with	yields	still	insufficient	to	face	the	ever-growing	food	demand	(Timmusk	et	al.,	
2017).	In	this	context,	unsustainable	agricultural	intensification	has	often	led	to	
pollution,	overexploitation	of	natural	areas	and	resources,	loss	of	soil	fertility,	soil	
erosion,	salinization,	runoff	and	in	some	cases	desertification	(IPCC,	2019,	special	
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report;	 https://www.ipcc.ch/srccl/).	 Drought	 and	 land	 degradation	 following	
the	salinization	of	soil	are	considerably	increasing	worldwide,	and	the	ongoing	
climate	change	could	amplify	the	negative	effects	of	this	scenario	(Corwin,	2021).	
For	these	reasons,	together	with	the	increasing	awareness	of	consumers	about	
healthy	food,	sustainable	agricultural	practices	are	encouraged	as	alternatives	to	
mineral	fertilizers	and	synthetic	pesticides	(Brodt	et	al.,	2011).

Sustainable	 agricultural	 management	 practices	 include	 the	 use	 of	
beneficial	microorganisms,	such	as	mycorrhizal	fungi,	rhizobia	and	other	plant	
growth-promoting	bacteria	 (PGPB)	 or	 rhizobacteria	 (PGPR),	 to	 support	 plant	
protection	and	nutrition	and	assist	water	conservation.	Today,	these	beneficial	
microorganisms	 (i.e.	 arbuscular	 mycorrhizal	 fungi	 (AMF),	 PGPB	 or	 PGPR)	
are	 considered	 a	 key	 factor	 for	managing	 crop	 productions	 (Schlaeppi	 and	
Bulgarelli,	 2015).	However,	 their	 application	 in	agriculture	 is	 still	 a	 challenge	
due	 to	 inconsistent	 and	 unpredictable	 results,	 which	 often	 are	 context-
dependent	 (dos	 Santos	 et	 al.,	 2020;	Compant	 et	 al.,	 2019).	There	 are	many	
aspects	 that	need	 to	be	considered	 for	a	successful	 implementation	of	AMF	
and	PGPB/PGPR	as	microbial	inoculants	with	desired	outputs	in	different	crop	
genotypes	and	upon	different	(and	combined)	stress	conditions	(Pascale	et	al.,	
2020).	These	microbial	inoculants	are	living	microorganisms	that	colonize	the	
rhizosphere	(i.e.	the	zone	surrounding	the	roots	that	 is	directly	 influenced	by	
plant	 root	 secretions)	and/or	 the	 inner	 regions	of	plant	 tissues	and	promote	
plant	growth	or	act	as	biological	control	agents	(BCAs)	against	soilborne	and	
seedborne	plant	pathogens	(Aeron	et	al.,	2020;	Khatoon	et	al.,	2020;	Raj	et	al.,	
2020;	Tsolakidou	et	al.,	2019;	Orozco-Mosqueda	et	al.,	2018;	Bhattacharyya	and	
Jha,	2012).	Additionally,	understanding	the	effect	of	cropland	management	on	
soil	microorganism	dynamics	is	fundamental	for	designing	better	management	
practices	 to	 restore	soil	 function	 in	 intensively	managed	agricultural	 systems	
(Baritz	et	al.,	2018;	http://www	.fao	.org	/3	/a	-bl813e	.pdf).

2  Mechanisms mediated by plant growth-promoting 
bacteria/rhizobacteria

Generally,	about	2–5%	of	the	total	rhizospheric	bacteria	are	PGPB/PGPR	(Antoun	
and	Prévost,	2006).	Features	that	allow	bacterial	survival	in	the	rhizosphere	and	
plant tissue colonization are motility, chemotaxis, attachment, growth and stress 
resistance	(Bulgarelli	et	al.,	2013).	Some	PGPB/PGPR	are	considered	biofertilizers	
that	augment	the	availability	of	nutrients	in	a	form	that	can	be	easily	assimilated	
by plants, while others act as biocontrol agents or biopesticides that suppress 
or	control	plant	disease	(Timmusk	et	al.,	2017).	Many	PGPB/PGPR	can	solubilize	
insoluble soil phosphate to release soluble phosphorus and making it available 
to	plants.	This	 trait	 is	 very	 interesting	 since	 the	phosphorus	 content	of	 soil	 is	
about	0.05%	(w/w)	but	only	0.1%	of	this	fraction	is	available	to	plants.	Phosphorus	
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is an essential element involved in many important metabolic pathways, 
such	 as	 photosynthesis,	 respiration,	 electron	 transport	 chain,	 biosynthesis	 of	
macromolecules	and	signal	 transduction	(Khan	et	al.,	2010).	 It	also	 influences	
root	growth,	seed	development	and	normal	crop	maturity	(Heydari	et	al.,	2019).	
Many	bacterial	and	fungal	strains,	such	as	Bacillus, Pseudomonas or Penicillium, 
that release organic acids or phosphatases are capable to solubilize phosphorus 
and	are,	 therefore,	promising	as	PGPR	 (Khatoon	et	al.,	2020;	Bulgarelli	et	al.,	
2013).	Apart	from	phosphate	solubilisation	(Figure	1),	many	other	mechanisms	
mediated	by	PGPB/PGPR	can	lead	to	plant-growth	promotion	and	improve	plant	
tolerance/resistance	to	abiotic	and	biotic	stresses	(Glick,	2012),	such	as	synthesis	
of	hormones	(abscisic	acid	(ABA),	gibberellic	acid,	cytokinins	and	auxins)	(Pérez-
Flores	et	al.,	2017;	Bhattacharyya	et	al.,	2015),	nitrogen	fixation	 (Ashraf	et	al.,	
2011),	 solubilization	 of	 other	 nutrients	 (Zn,	 K)	 (Vikram	 and	 Hamzehzarghani,	
2008;	 Etesami	 et	 al.,	 2017;	 Zaheer	 et	 al.,	 2019),	 production	 of	 siderophores	
(Sinha	 and	Parli,	 2020;	Calvo	 et	 al.,	 2017),	 ethylene	 (ET)	 control	 in	 emerging	
plants	under	stress	conditions	through	the	production	of	aminocyclopropane-1-
carboxylate	(ACC)	deaminase	(Ravanbakhsh	et	al.,	2018;	Glick,	2012),	secretion	
of	 several	 molecules,	 including	 antibiotics,	 hydrolytic	 enzymes	 and	 volatile	
organic	compounds,	alleviating	biotic	stress	effects	and	contributing	to	systemic	
resistance	(Meena	et	al.,	2020;	Kour	et	al.,	2019;	Orozco-Mosqueda	et	al.,	2018),	
production	of	exopolysaccharides	 (EPS)	and	biofilm	formation	(Dimkpa	et	al.,	
2009),	heavy	metal	detoxification	(Sharma	and	Archana,	2016;	Tak	et	al.,	2013;	
Ma	et	al.,	2011)	and	pest	management	(Subbanna	et	al.,	2018).

An	increasing	number	of	plants	have	been	reported	to	benefit	from	PGPB/
PGPR	presence	(Santos	et	al.,	2019),	including	the	model	plant	Arabidopsis thaliana 
(Lee	et	al.,	2020)	and	several	crops,	such	as	winter	wheat	(Triticum aestivum)	(Awan	
et	al.,	2020;	Turan	et	al.,	2012)	and	wheat	(Triticum durum)	(Bechtaoui	et	al.,	2019),	
rice	(Oryza sativa)	(Xiao	et	al.,	2020;	Andreozzi	et	al.,	2019;),	sunflower	(Helianthus 
annuus)	(Ambrosini	et	al.,	2012),	rape	(Brassica napus)	(Farina	et	al.,	2012),	runner	
bean	 (Phaseolus coccineus)	 (Stefan	 et	 al.,	 2013)	 and	 faba	 bean	 (Vicia faba)	
(Bechtaoui	et	al.,	2019),	corn	(Zea mays)	(Batista	et	al.,	2018;	Tchuisseu	Tchakounté	
et	al.,	2018;	Arruda	et	al.,	2013),	soybean	(Glycine max)	(Batista	et	al.,	2018),	chickpea	
(Cicer arietinum)	 (Bisht	 et	 al.,	 2019),	 tomato	 (Solanum lycopersicum)	 (Kalam	
et	al.,	2020;	Pellegrini	et	al.,	2020),	potato	(Solanum tuberosum)	(Pellegrini	et	al.,	
2020),	flax	 (Linum usitatissimum)	 (Planchon	et	al.,	2021),	 coriander	 (Coriandrum 
sativum)	(Jiménez-Gómez,	et	al.,	2020)	and	spinach	(Spinacia oleracea)	(Zafar-Ul-
Hye	et	al.,	2020).	Apart	from	increased	plant	biomass,	PGPR	have	demonstrated	
positive	effects	on	total	oil	content	and	lipid	composition	in	G. max, B. napus and 
Buglossoides arvensis	that	are	important	sources	of	oleic,	linoleic,	α-linolenic	and	
omega-3	 stearidonic	 acids	 (Jiménez	et	 al.,	 2020).	 In	 addition,	 PGPR	have	been	
reported	to	improve	carotenoids,	tocopherols,	and	folate	content	in	horseradish	
(Moringa oleifera)	(Sonbarse	et	al,	2020).
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PGPR	have	also	been	known	to	mediate	biotic	stress	 tolerance	 in	plants	
through	the	production	of	antimicrobial	compounds	and	the	induction	of	plant	
defence	responses.	Ali	et al.	(2020)	recently	isolated	bacteria	from	maize,	rice,	
wheat,	potato,	sunflower	and	soybean	rhizosphere	and	verified	the	antifungal	
activity against Fusarium oxysporum, Fusarium moniliforme, Rhizoctonia solani, 
Colletotrichum gloeosporioides, Colletotrichum falcatum, Aspergillus niger 
and Aspergillus flavus.	 The	 PGPR	 showing	 the	 highest	 antagonistic	 activity	
belonged to Pseudomonas and Bacillus	 species	 (Ali	 et	 al.,	 2020).	 The	 same	

Figure 1  (a)	 In vitro	 screening	of	plant	growth	promotion	 traits;	 (b)	Tomato	plants	not	
inoculated	(left)	and	inoculated	(right)	with	a	microbial	synthetic	community	(SynCom).	
[Photographs	by	I.	S.	Pantelides,	Cyprus	University	of	Technology].
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genera have also suppressed Phytophthora capsici	 infections	in	chilli	pepper	
(Hyder	et	al.,	2020).	Multiple	strains	of	Bacillus	 spp.	 together	with	a	strain	of	
Stenotrophomonas rhizophila	 were	 also	 effective	 in	 reducing	 Meloidogyne 
incognita	 population	 density	 and	 improving	 turfgrass	 root	 growth	 (Groover	
et	al.,	2020).	In	addition,	Bacillus amyloliquefaciens strain S1 exhibited high in 
vitro antagonistic activity against Clavibacter michiganensis ssp. michiganensis, 
suggesting its possible employment in controlling bacterial canker in tomato 
plants	(Gautam	et	al.,	2019).

Following	 a	 transcriptomics	 approach,	 Gamez	 et  al.	 (2019)	 highlighted	
that	PGPR	inoculation	in	banana	(Musa acuminata	Colla)	cv.	Williams	resulted	
in	differential	expression	of	genes	related	to	growth	promotion	and	regulation	
of	specific	 functions	 (flowering,	photosynthesis,	glucose	catabolism	and	root	
growth)	 as	well	 as	 genes	 involved	 in	 plant	 defence.	 Jiang	 et  al.	 (2019)	 also	
demonstrated	that	the	watermelon	gene	expression	profile	was	altered	in	the	
presence	of	a	Bacillus strain in combination with F. oxysporum	 f.	 sp.	niveum. 
The Bacillus strain enhanced plant disease resistance against the pathogen 
through	activation	of	defence-related	genes	and	phytohormone	signal	factors	
(Jiang	et	 al.,	 2019).	 Recently,	 Bertani	 et  al.	 (2021)	 showed	 the	expression	of	
rice	 genes	 involved	 in	 ET	 and	 auxin	 pathways	 together	 with	 genes	 coding	
for	a	metallothionein-like	protein	and	a	multiple	stress-responsive	zinc-finger	
protein when the plants are inoculated with Pseudomonas chlororaphis ST9.

3  Tolerance to abiotic stresses
Over	 the	 past	 years,	 several	 studies	 indicated	 that	 PGPB/PGPR	 inoculation	
can	 induce	 plant	 tolerance	 against	 different	 abiotic	 stresses	 (Alagna	
et	al.,	2020;	Gamalero	et	al.,	2020;	Sangiorgio	et	al.,	2020;	Meena	et	al.,	2017).	
Nevertheless,	 the	 level	 of	 tolerance	 depends	 on	 the	microbial	 capability	 to	
induce	the	expression	of	stress-responsive	transcription	factors	in	plants	as	well	
as	the	production	of	enzymes	involved	in	the	detoxification	of	reactive	oxygen	
species	(ROS),	synthesizing	proline	and	EPS	and	biomass	stabilization	(Aeron	
et	al.,	2020).

Salt	stress	is	one	of	the	major	threats	to	agriculture,	negatively	affecting	
crop	yield	and	growth	(Shrivastava	and	Kumar,	2015).	It	induces	osmotic	and	
ionic stress in plants, causing nutritional imbalance, morphological damages, 
less	photosynthetic	 capacity	and	death	 (Ahmad	et	 al.,	 2013).	Unfortunately,	
high	salinity	areas	are	increasing	every	year,	and	agriculture	has	therefore	to	
manage	 salt	 stress	maintaining	 a	 sufficient	 crop	 production	 to	 satisfy	 food	
demand	(Panwar	et	al.,	2016).	PGPR	can	alleviate	the	negative	effects	of	salt	
by	incrementing	seed	germination	rate	and	leaf	area,	improving	chlorophyll	
and protein content, increasing plant growth, productivity, and nutrient 
availability,	 delaying	 leaf	 senescence	 and	 enhancing	 tolerance	 to	 stresses	
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(Saghafi	et	al.,	2019;	Habib	et	al.,	2016).	PGPR	ameliorate	salt	stress	tolerance	
through	 several	 mechanisms,	 for	 example,	 accumulation	 of	 osmolytes	
operating	in	ion	homeostasis,	improvement	of	nutrient	uptake	(N,	P,	K,	Zn	and	
Si),	production	of	ACC	deaminase,	indole	acetic	acid	(IAA),	sideropheres	and	
EPS,	and	alteration	of	the	antioxidant	defence	system	(Saghafi	et	al.,	2019	and	
reference	therein).	Upadhyay	and	Singh	(2015)	have	demonstrated	that	salt-
tolerant	PGPR	improved	both	growth	and	dry	mass	of	wheat	grown	in	pots,	as	
well	as	root	dry	weight	and	shoot	biomass	in	field	conditions.	Palaniyandi	et al.	
(2014)	demonstrated	that	inoculation	of	tomato	plants	with	Streptomyces sp. 
strain	 PGPA39A	 under	 salt	 stress	 increased	 plant	 biomass	 and	 chlorophyll	
content,	while	leaf	proline	content	decreased.	In	another	study,	it	was	shown	
that strains belonging to Streptomyces ameliorated salt stress tolerance in 
Stevia	 crops	 (Tolba	 et	 al.,	 2019).	 Panwar	 et  al.	 (2016)	 suggested	 that	 using	
a	 combination	 of	 two	 PGPR	 (bacterial	 strains	 belonging	 to	 genus	 Pantoea 
and Enterococcus)	on	mung	bean	(Vigna radiate)	plants	resulted	in	enhanced	
growth	and	yield,	a	reduced	Na+ concentration, less membrane damage and 
more antioxidants, such as ascorbic acid and glutathione, under salt stress. 
In	 the	 study	 of	 Khan	 et  al.	 (2019),	 isolation	 and	 application	 of	 halotolerant	
PGPR	on	soybean	plants	grown	under	salt	stress	resulted	in	an	increase	in	the	
antioxidant level, K+ uptake, plant growth attributes and chlorophyll content 
and	 a	 reduction	 of	 the	Na+ ion concentration and the ABA level. Recently, 
Galicia-Campos	et al.	 (2020)	showed	that	 the	use	of	PGPR	strains	 improved	
stress	 tolerance	and	water	use	efficiency	 in	olive	plants	grown	under	saline	
stress.

Drought	can	also	have	a	negative	impact	on	crops	causing	significant	yield	
reductions	(Zhang	et	al.,	2009;	Breitkreuz	et	al.,	2019).	Many	crops,	including	
rice	and	winter	wheat,	need	irrigation	with	big	quantities	of	water	in	order	to	
grow	and	produce	acceptable	yields.	The	research	carried	out	by	Zhang	et al.	
(2020)	showed	that	the	association	of	rice	roots	with	Enterobacter aerogenes is 
involved	in	rhizosheath	(i.e.	the	layer	of	soil	around	the	root	containing	a	mixture	
of	exudates,	mucilage	and	exopolymers,	which	 increases	 the	wettability	and	
water	use	efficiency	of	the	root	system)	formation	under	moderate	soil	drying.	
It has been proposed that root-bacteria associations substantially contribute 
to	 this	 process	 by	 mechanisms	 that	 involve	 the	 ET	 response,	 considering	
that	 an	ACC	 deaminase-deficient	mutant	 of	E. aerogenes	 failed	 to	 enhance	
rice	 rhizosheath	 formation.	 Breitkreuz	 et  al.	 (2019)	 showed	 the	 positive	 role	
of	Phyllobacterium in phosphate solubilization in rhizosphere under drought 
conditions.	Brilli	et al.	(2019)	demonstrated	that	tomato	plants	inoculated	with	
Pseudomonas chlororaphis subsp. aureofaciens strain M71 have more proline 
and an improved antioxidant activity under mild water stress, thus reducing 
ROS	presence	and	enhancing	stress	tolerance.	The	presence	of	the	M71	strain	
also had an impact on stomatal closure, increasing ABA level in leaves and 
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improving	water	use	efficiency	and	biomass	in	water-stressed	plants	(Brilli	et	al.,	
2019).	Rolli	et al.	 (2015)	demonstrated	that	PGPB	have	the	ability	to	increase	
grapevine	root	biomass	in	field	conditions	under	drought	stress,	while	Saleem	
et al.	(2018)	showed	that	two	PGPR	strains	improve	velvet	bean	growth	under	
drought	 conditions,	 by	 reducing	 ET	 production	 through	 ACC	 deaminase	
activity,	which	acts	on	the	ET	precursor	ACC.	Rubin	et al.	(2017)	using	a	meta-
analysis	reported	that	PGPR	can	contribute	to	drought	amelioration	and	water	
conservation, increasing shoot biomass and yield, especially under drought 
conditions.

Application	of	PGPR	in	combination	with	salicylic	acid	(SA)	on	maize	plants	
(Khan	 et	 al.,	 2020)	 resulted	 in	 significant	 increases	 in	 nutrients	 content	 (Ca,	
K,	Mg,	Zn	and	Fe)	 in	the	shoots	and	the	rhizosphere	of	plants	and	alleviated	
the	adverse	effects	of	 low	moisture	 stress	of	 soil.	Previously,	Khan	and	Bano	
(2019)	showed	that	the	combination	of	PGPR	and	SA	on	wheat	under	drought	
stress	led	to	a	significant	increase	in	leaf	protein	and	sugar	contents	and	higher	
chlorophyll	 content,	 chlorophyll	 fluorescence	 and	 performance	 index	 (Khan	
and	Bano,	2019),	suggesting	the	adoption	of	a	mixed	approach	including	both	
biological	and	chemical	priming	(Alagna	et	al.,	2020).

In	 natural	 conditions,	 abiotic	 stresses	 can	 occur	 simultaneously,	 for	
example,	salinity	and	phosphorous	deficiency.	It	has	been	demonstrated	that,	
under	phosphate	(Pi)	limitation	and	salt	stress,	PGPR	can	support	plant	growth	
in	plant	genotype-	and	bacterial	strain-dependent	way	(Tchuisseu	Tchakounté	
et	 al.,	 2018).	 Osmotic	 stress	 and	 limitation	 of	 resources	 can	 also	 affect	
ornamental	plants.	It	was	shown	that	inoculation	of	petunia	with	Pseudomonas 
strains	increased	plant	biomass	and	flowers	number	(Nordstedt	et	al.,	2019).	A	
study	by	Liu	et al.	(2019)	focused	on	the	physiological	features	and	growth	of	
North	China	red	elder	 (Sambucus williamsii)	under	drought	stress	and	 in	 the	
presence	 of	 PGPR.	Acinetobacter calcoaceticus	 X128	 significantly	 increased	
stomatal	 conductance	 (Liu	 et	 al.,	 2019).	The	bacterium	was	 able	 to	 increase	
cytokinins levels in the leaves that promote the stomatal opening, mitigating 
the	 inhibition	of	 the	photosynthetic	rate	 in	arid	 locations	 (Liu	et	al.,	2019).	 In	
addition,	 the	application	of	 the	PGPR	 strain	might	 increase	 the	permeability	
of	 roots	 to	 water	 or	 improve	 the	 transport	 of	 ions	 into	 the	 xylem,	 with	 an	
intensification	of	ABA	 transport,	 resulting	 in	a	decrease	or	 complete	 closure	
in	 the	stomatal	opening	 (Liu	et	al.,	2019).	Generally,	PGPR	 inoculation	under	
drought	conditions	 improved	 the	adaptability	of	 red	elder	plants	 to	 the	arid	
environment	by	affecting	phytohormones	content	in	plants	(Liu	et	al.,	2019).

4  Beneficial effects against biotic stresses
The	use	of	PGPB/PGPR	is	an	eco-friendly	tool	that	can	be	used	for	biocontrol	
of	plant	pathogens	either	by	suppressing	pathogenic	microorganisms	directly	
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or	by	improving	plant	defence	against	pathogens	(Lugtenberg	and	Kamilova,	
2009).	 Controlling	 plant	 diseases	 by	 microorganisms	 is	 a	 complex	 process	
involving the biocontrol agent, the pathogen and the host, but also the 
indigenous	microorganisms	of	 the	 rhizosphere,	other	native	macrobiota	and	
the	 plant	 growth	 substrate.	 To	 act	 efficiently,	 the	 biocontrol	microbe	 should	
remain	active	under	varying	conditions,	such	as	temperature,	moisture,	pH	and	
other soil properties.

Various	mechanisms	have	been	reported	to	be	involved	in	biocontrol.	The	
production	of	antibiotics	and	other	antimicrobial	metabolites	is	considered	as	
a	primary	mechanism	of	biocontrol	by	PGPB	and	PGPR	and	is	the	most	effective	
antagonistic	 activity	 to	 suppress	 phytopathogens.	 Diffusible	 antibiotics	
produced like phenazines, rhamnolipids, cyclic lipopeptides, zwittermycin 
A, kanosamine, oomycin A, ecomycins, butyrolactones and volatiles, such as 
hydrogen	cyanide,	ammonia,	2,3-butanediol	and	other	blends	of	aldehydes,	
alcohols, ketones and sulphides, are known to possess antimicrobial and 
growth-promoting	 activities	 (Kai	 et	 al.,	 2009;	 Fernando	 et	 al,	 2005).	 These	
compounds are toxic towards phytopathogens at concentrations depending 
on	 the	 compound	and	 the	 target.	Modes	of	 action	are	not	 fully	 understood	
for	many	antimicrobial	metabolites	yet.	 In	 fungal	pathogens,	 they	may	affect	
the	 cell	 membrane	 and	 zoospores	 (biosurfactants),	 inhibit	 the	 respiratory	
electron	 transport	 (phenazines,	 pyrrolnitrin)	 or	 cytochrome	 c	 oxidases	 and	
other	metalloenzymes	(hydrogen	cyanide)	(Raaijmakers,	et	al.,	2006;	Haas	and	
Défago,	2005).

Another	important	mechanism	in	biocontrol	is	the	production	of	hydrolytic	
enzymes	by	 PGPB/PGPR	directed	 against	 plant	 pathogens.	Many	biocontrol	
agents synthesize and secrete catabolic enzymes that can contribute to the 
suppression	 of	 phytopathogens	 through	 the	 hydrolysis	 of	 fungal	 cell	 wall	
components,	such	as	cellulose,	chitin,	β-glucans	and	proteins	(Abdullah	et	al.,	
2008;	Dunne	et	al.,	1997;	Chernin	et	al.,	1995).	Production	of	β-1,3-glucanase	by	
Streptomyces and Paenibacillus	strains	was	shown	to	have	an	inhibitory	effect	on	
F. oxysporum, while Bacillus cepacia with glucanase activity showed inhibitory 
effect	on	many	soilborne	pathogens,	 including	Rhizoctonia solani, Sclerotium 
rolfsii and Pythium ultimum	 (Compant	 et	 al.,	 2005).	 Several	microorganisms	
were reported to show chitinolytic activity, including many Bacillus, 
Streptomyces, Serratia and Pseudomonas	strains	(Tsolakidou	et	al.,	2019;	Felse	
and	 Panda,	 2000;).	 Co-cultivation	 of	 Rhizoctonia solani with the chitinolytic 
Serratia marcescens	B2	strain	led	to	several	abnormalities	of	the	mycelia	(e.g.	
swelling,	curling	or	bursting),	suggesting	degradation	of	the	hyphal	cell	wall	or	
hyphal	cell	death.	Moreover,	 the	application	of	Serratia marcescens B2 strain 
on cyclamen plants suppressed the diseases caused by Rhizoctonia solani and 
F. oxysporum	f.	sp.	cyclaminis	(Someya	et	al.,	2000).	Chitinases	and	cellulases	
are	also	involved	in	predation	and	parasitism,	the	major	biocontrol	mechanism	
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used by Trichoderma and Gliocladium	species	(Harman	et	al.,	2004a).	This	form	
of	antagonism	affects	various	fungal	pathogens,	such	as	Sclerotinia, Rhizoctonia, 
Verticillium and Gaeumannomyces	(Harman	et	al.,	2004b),	and	involves	tropic	
growth	of	the	BCA	towards	the	target	organism,	coiling	and	dissolution	of	the	
pathogen’s	cell	wall	or	membrane	through	enzymatic	activity	(Djonović	et	al.,	
2006;	Woo	et	al.,	2006;	Zeilinger	et	al.,	1999).

Apart	from	the	mechanisms	where	a	BCA	produces	substances	with	direct	
inhibitory	 effect	 for	 phytopathogens,	 it	 is	 possible	 for	 some	 PGPB/PGPR	 to	
outcompete	 the	phytopathogens,	 either	 for	 space	 at	 the	 root	 surface	 or	 for	
nutrients, especially those secreted by the roots. This competition excludes 
pathogens	 by	 the	 physical	 occupation	 of	 binding	 sites	 on	 the	 root	 or	 by	
the	 depletion	 of	 food.	 Competition	 can	 take	 place	 for	 organic	 compounds	
necessary	for	pathogen	proliferation	and	subsequent	root	colonization	and	for	
micronutrients	 that	are	essential	 for	 the	growth	and	activity	of	 the	pathogen	
(Raaijmakers	et	al.,	2009).	Biocontrol	based	on	competition	for	micronutrients	
has	long	been	recognized,	especially	for	nutrients	that	are	not	readily	available	
for	plants	and	microorganisms.	Iron	is	a	characteristic	example	of	a	micronutrient	
that	 is	 extremely	 limited	 in	 soils,	 and	 its	 availability	 depends	 on	 soil	 pH.	 In	
oxidized	soils,	iron	is	in	the	ferric	form	that	is	insoluble	in	water	(Lindsay,	1979),	
and	its	concentration	is	too	low	to	support	the	growth	of	microorganisms.	To	
survive,	 microorganisms	 produce	 and	 secrete	 high-affinity	 chelators	 called	
siderophores	 (Neilands,	 1995).	 Siderophore-producing	 PGPB/PGPR	 show	
increased	efficiency	in	iron	uptake	making	iron	unavailable	to	pathogens	and	
thus	preventing	their	proliferation	around	the	root,	especially	in	soils	with	high	
pH	(Kumar	et	al.,	2015).	Competition	for	iron	as	well	as	competition	for	carbon	
is	an	important	mode	of	action	of	many	biocontrol	agents	(Alabouvette	et	al.,	
2006;	Lemanceau	et	al.,	1992).

Besides	functioning	as	BCAs,	several	PGPB	and	PGPR	can	induce	a	systemic	
response	 in	 the	plant,	 leading	 to	 the	activation	of	plant	defence	mechanisms	
against	 a	wide	 range	 of	 phytopathogens	 (Pieterse	 et	 al.,	 2014).	 This	 form	of	
resistance	is	referred	to	as	 induced	systemic	resistance	(ISR)	and	is	described	
as	 an	 enhanced	 defence	 capability	 of	 the	 plant	 against	 multiple	 pathogens	
(Conrath	et	al.,	2015).	ISR	is	induced	by	non-pathogenic	PGPR,	PGPB	and	fungi	
and	can	reduce	the	activity	of	pathogenic	microorganisms	via	a	complex	system	
mediated	by	jasmonic	acid	(JA)	and	ET	signalling	(Pieterse	et	al.,	2014;	Van	Loon,	
1997).	In	contrast	to	classical	biological	control,	in	which	the	BCA	is	active	against	
one	or	a	few	pathogens,	ISR	is	effective	against	a	broad	spectrum	of	pathogens	
(Hariprasad	 et	 al.,	 2014).	 Several	 cell	 surface	 components	 and	 compounds	
produced	by	 PGPR/PGPB	 can	 trigger	 ISR,	 including	 lipopolysaccharides	 and	
flagella,	(Pieterse	et	al.,	2003;	Haas	and	Défago;	2005),	siderophores	(Meziane	
et	al.,	2005),	volatiles	(Ryu	et	al.,	2004),	hydrogen	cyanide	(HCN)	(Defago	et	al.,	
1990),	diacetylphloroglucinol	(DAPG)	(Weller	et	al.,	2007)	and	cyclic	lipopeptide	
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surfactants	(Ongena	et	al.,	2007).	The	first	reports	of	ISR	were	published	back	in	
1991	and	provided	evidence	that	certain	PGPR	strains	can	stimulate	the	plant	
immune	system	and	promote	plant	health	(Alström,	1991;	Van	Peer	et	al.,	1991;	
Wei	 et	 al.,	 1991).	 Since	 then,	many	 studies	 have	 reported	 the	 ability	 of	 non-
pathogenic	microorganisms	to	trigger	ISR	including	bacteria	(e.g.	Pseudomonas, 
Serratia, Bacillus),	fungi	(F. oxysporum, Trichoderma, Piriformospora indica)	and	
symbiotic	 AMF	 (Pieterse	 et	 al.,	 2014).	 Enhancement	 in	 the	 plant’s	 defence	
capability	by	ISR	involves	the	activation	of	many	biochemical	pathways	leading	
to	 fortification	of	 structural	barriers,	 such	as	 thickened	cell	walls,	 suberization	
and	deposition	of	 lignin	and	callose	(Raj	et	al.,	2012;	Benhamou	et	al.,	1998).	
The	 phenomenon	 of	 ISR	 is	 also	 associated	 with	 increased	 expression	 of	
defence-related	enzymes,	such	as	phenylalanine	ammonia	lyases,	peroxidases,	
lipoxygenases,	polyphenol	oxidases	and	synthesis	of	antimicrobial	compounds,	
such as pathogenesis-related proteins, phytoalexins, phenolic compounds 
and	cell	wall	peroxidases	(Stringlis	et	al.,	2018;	van	Loon	et	al.,	1998;	Zdor	and	
Anderson,	1992;	van	Peer	et	al.,	1991;	Mauch	et	al.,	1988).

5  Interaction between plant growth-promoting bacteria/
rhizobacteria and arbuscular mycorrhizal fungi

The	 rhizosphere	 harbours	 a	 diverse	 community	 of	microorganisms,	 such	 as	
bacteria	 and	 fungi	 that	 can	 interact	with	 the	plant,	 influencing	plant	growth,	
nutrition	 and	health	 and	protecting	 them	 from	biotic	 and	abiotic	 stresses	 in	
agro-ecosystems	and	in	natural	ecosystems	(Philippot	et	al.,	2013).	AMF	are	one	
among	the	soilborne	fungi	that	form	symbiotic	interactions	with	the	majority	of	
terrestrial	plants.	AMF	are	actively	involved	in	the	uptake	of	water	and	nutrients	
(such	as	phosphorus,	nitrogen,	 zinc,	 copper,	etc.)	 and	 increase	 resistance	or	
tolerance	of	plants	to	biotic	and	abiotic	stresses	(Balestrini	and	Lumini,	2018).

AMF	may	 interact	 synergistically	 with	 PGPR,	 leading	 to	 enhanced	 plant	
growth	compared	to	single	inoculation	with	either	of	them	(Nanjundappa	et	al.,	
2019).

The	 review	 of	 Nanjundappa	 et  al.	 (2019)	 focusing	 on	 the	 interaction	
between AMF and Bacillus concluded that combined inoculation leads to 
enhanced	 growth	 of	 plants,	 such	 as	Medicago sativa	 (Medina	 et	 al.,	 2003),	
Lactuca sativa	 (Adriana	et	al.,	2007),	Calendula officinalis	 (Flores	et	al.,	2007),	
Artemisia annua	 (Awasthi	 et	 al.,	 2011),	Pelargonium graveolens	 (Alam	 et	 al.,	
2011),	and	Cucumis sativus	 (Rabab,	2014)	as	compared	to	single	 inoculation	
with	either	of	them.	Cely	et al.	(2016)	also	demonstrated	that	AMF	and	PGPR	
increased	wood	yield	of	Schizolobium parahyba var. amazonicum with respect 
to	 a	 fertilizer	 addition.	 Recently,	 Rocha	et  al.	 (2020)	 confirmed	by	 field	 trials	
the	 positive	 role	 of	 co-presence	 of	 Pseudomonas libanensis and multiple 
AM	fungal	 isolates	of	Rhizophagus irregularis	 in	cowpea	 (Vigna unguiculata).	
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The plants showed increased shoot dry weight, pods and seeds per plant 
and	grain	yield	 (Rocha	et	al.,	2020).	 In	another	study,	a	consortium	of	PGPR-
rhizobia-AMF	affected	positively	 fava	bean	 and	wheat,	 improving	 shoot	 and	
root	dry	weight,	 leaf	number,	productivity	and	sugar,	protein	N,	P,	Ca,	K	and	
Na	content	(Raklami	et	al.,	2019).	Bona	et al.	(2015,	2017)	demonstrated	that	
the	AMF-bacterium	combined	application	can	also	affect	fruit	crop	quality	and	
nutritional	value	of	strawberry	and	tomato	(increased	sugar	content,	fruit	size,	
quantity	and	flowers)	in	conditions	of	reduced	chemical	inputs.	The	interaction	
between	 fungi	 and	 bacteria	 can	 also	 protect	 plants,	 by	 inducing	 systemic	
resistance	 to	 soilborne	pathogens	 (Nanjundappa	 et	 al.,	 2019).	 For	 example,	
Jaizme-Vega	et al.	(2006)	demonstrated	a	reduction	of	Meloidogyne	infestation	
in	 AMF-PGPR-inoculated	 papaya	 plants,	 while	 Phirke	 et  al.	 (2008)	 showed	
reduced Fusarium wilt in addition to improved yield in mycorrhized banana 
inoculated	with	rhizobacteria.	The	co-presence	of	AMF	and	PGPB/PGPR	also	
improved tolerance to drought and salt stress in Lactuca sativa	 (Vivas	 et	 al.,	
2003),	 Retama sphaerocarpa	 (Marulanda	 et	 al.,	 46),	 Z. mays	 (Armada	 et	 al.,	
2015),	Trifolium repens	 (Ortiz	et	al.,	2015),	Lavandula dentate	 (Armada	et	al.,	
2016)	and	Acacia gerrardii	(Hashem	et	al.,	2016).	Recently,	Inculet	et al.	(2019)	
demonstrated	that	inoculation	of	an	irrigated	tomato	cultivar	with	AMF,	PGPR	
and Trichoderma-based	products	 increased	plant	 length,	 fruit	 number,	 yield	
and	quality	traits	based	on	lycopene	and	polyphenol	content.	Mannino	et al.	
(2020),	using	different	microbial	inocula	based	on	AM	fungi	or	PGPR	tolerant	
to salt, demonstrated that the tomato responses to water limitation depended 
on	the	inoculum	composition.	Balestrini	et al.	(2017)	showed	that	the	response	
of	 grapevine	 changed	 in	 the	 presence	 of	 a	 mixed	 inoculum	 composed	 by	
bacterial	 and	 fungal	 consortium	 compared	 to	 that	 with	 an	 inoculum	 based	
on Funneliformis mosseae only.	Thus,	 the	strategy	of	using	a	combination	of	
AMF	and	PGPR	in	agricultural	practice	may	improve	soil	health	management,	
aiding	 nutrient	 solubilization	 and	 uptake	 and	 reduce	 the	 necessary	 fertilizer	
quantity.	 Nevertheless,	more	 field	 studies	 are	 needed	 in	 order	 to	 verify	 the	
successful	 performance	 of	 the	 combined	 inoculations	 under	 real	 conditions	
(Nanjundappa	et	al.,	2019).

The	study	of	Todeschini	et al.	(2018)	highlighted	the	importance	of	selecting	
the	optimal	combination	of	AMF	and	PGPR	to	positively	influence	physiological	
parameters,	 yield	and	quality	 in	 strawberry.	The	 results	of	 this	 study	showed	
that	application	of	the	AMF	affected	the	parameters	associated	with	the	plant	
vegetative	portion,	while	application	of	 the	bacterium	affected	the	 fruit	yield	
and	quality.	Interestingly,	the	volatile	profile	and	elemental	composition	of	the	
strawberry	 fruit	 were	 affected	by	 the	 presence	 of	 a	 specific	 fungal–bacterial	
combination	(Todeschini	et	al.,	2018).	This	study	showed	for	the	first	time	that	
different	 soil	microorganisms	are	able	 to	 influence	 the	 fruit	 concentration	of	
some	elements	and/or	volatiles	(Todeschini	et	al.,	2018).
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Previous	 studies	 tested	 the	 ability	 of	 Pseudomonas fluorescens	 PGPR	
strains	 to	 form	 biofilm	 on	mycorrhized	 and	 non-	mycorrhized	 roots	 and	 on	
extraradical	 mycelium	 of	 an	 AM	 fungus	 (Bianciotto	 et	 al.,	 2001a,	 b).	 The	
nonmucoid wild-type strain Pseudomonas fluorescens	 CHA0	 adhered	 very	
little	on	all	surfaces,	whereas	two	mucoid	strains	with	increased	production	of	
acidic	extracellular	polysaccharides	formed	a	dense	and	patchy	bacterial	layer	
on	the	roots	and	fungal	structures	(Bianciotto	et	al.,	2001a).	The	results	of	this	
study	suggest	that	 increased	adhesive	properties	of	PGPR	may	lead	to	more	
stable interactions in mixed inocula and the rhizosphere. In another study, the 
bacterial	components	possibly	involved	in	the	attachment	of	two	other	PGPR	
(Azospirillum and Rhizobium)	 to	 AM	 roots	 and	 AM	 fungal	 structures	 were	
evaluated;	mutants	affected	in	EPS	were	tested	in	in vitro adhesion assays and 
shown	to	be	strongly	impaired	in	the	attachment	to	both	types	of	surfaces	as	
well	as	 to	quartz	fibres	 (Bianciotto	et	al.,	2001b).	Anchoring	of	PGPR	to	AMF	
seems	 to	 be	 a	 significant	 trait	 for	 a	 stable	 fungus–bacteria	 association	 that	
would	improve	the	development	of	mixed	inocula.

6  Conclusion and future trends in research
PGPB/PGPR	can	be	promising	economical	and	healthy	alternatives	to	chemical	
fertilizers,	antibiotics,	herbicides,	pesticides,	with	their	abilities	to	improve	agro-
ecological	sustainability.	However,	it	is	important	to	realize	that	PGPR	showing	
a	 positive	 effect	 on	 a	 plant	 species	may	 not	 have	 the	 same	 effect	 on	 others	
(Raj	et	al.,	2020;	Zeller	et	al.,	2007).	As	explained	by	Timm	et al.	(2016),	not	all	
the	microbes	present	 in	 the	 soil	 have	positive	 functions,	 so	 it	 is	 important	 to	
understand which microbial species should be employed to maximize plant 
growth,	development	and	health	 (Xiao	et	al.,	2020;	Yuan	et	al.,	2016;	Mueller	
and	 Sachs,	 2015).	 Recently,	 Finkel	 et  al.	 (2020)	 demonstrated	 that	 a	 single	
bacterial genus in a complex microbiome modulates root growth. Interestingly, 
Guerrieri	et al.	(2020)	suggested	that	using	a	consortium	of	native	PGPR	strains	
may represent a suitable solution in sustainable agriculture, to guarantee crop 
yield	 and	 quality,	 reducing	 the	 chemical	 input	 application.	 Apart	 from	 the	
studies	on	the	efficacy	of	microbial	inoculants	on	plants,	their	potential	risks	to	
other	plants,	 animals,	 and	humans	must	 also	be	evaluated	 (Martínez-Hidalgo	
et	al.,	2019).	Also,	isolation,	purification	and	characterization	of	microorganisms	
from	saline	habitats	and	inoculation	of	agricultural	plants	with	them	could	be	a	
successful	strategy	to	 increase	tolerance	and	productivity	of	 the	plants	grown	
under	stress	conditions	(Saghafi	et	al.,	2019).	Escudero-Martinez	and	Bulgarelli	
(2019)	highlighted	that	the	genetic	diversity	of	the	crop	microbiota	is	reduced	
compared	 to	 that	of	wild	plants	and	 that	 in	combination	with	 the	application	
of	 human	 inputs,	 the	 agroecosystem	 resilience	 and	 sustainability	 to	 various	
stressors	(e.g.	climate	change)	is	undermined.	It	is,	therefore,	desirable	to	carry	
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out	genetic	mapping	analyses,	crossing	interfertile	wild	and	modern	varieties,	
to	discover	host	traits	putatively	influencing	the	recruitment	and	maintenance	of	
the	microbiota	(Perez-Jaramillo	et	al.,	2016;	Schlaeppi	and	Bulgarelli,	2015).	A	
concept	named	‘breeding	for	the	plant	microbiota’	based	on	the	development	
of	 plant	 varieties	 able	 to	 recruit	 specific	 microbial	 taxa	 may	 result	 in	 future	
crops that are less dependent on external inputs to produce acceptable yields 
(Escudero-Martinez	and	Bulgarelli,	2019;	Bulgarelli	et	al.,	2013;	Wissuwa	et	al.,	
2009).	Moreover,	the	prospect	of	using	microbial	mixtures	as	inoculants	that	can	
positively	 affect	 plant	 performance	 is	 gaining	 research	 interest.	A	 substantial	
number	 of	 studies	 suggests	 that	 complex	microbial	 consortia	 provide	 plants	
with	increased	growth	and	health	as	compared	to	single	strains.	However,	our	
understanding	of	how	members	of	microbial	consortia	interact	with	one	another	
and	with	 their	 hosts	 in	 nature	 is	 critical	 for	 the	 successful	 implementation	 of	
microbial	synthetic	communities	(SynComs)	with	desired	host	outputs	(Pascale	
et	al.,	2020;	Tsolakidou	et	al.,	2019).	On	the	basis	of	 these	approaches,	 it	will	
be possible to deal with challenges that agriculture shall meet in the coming  
years.
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8  Where to look for further information
8.1  Special issues on plant growth promoting rhizobacteria

 • https://www.mdpi.com/journal/plants/special_issues/PGPB.	
 • https://www.sciencedirect.com/journal/microbiological-research/special- 
issue/10P22CLD85N.

8.2  Key research organizations

The	 Asian	 PGPR	 Society	 for	 Sustainable	 Agriculture	 (http://asianpgpr	.com	/
index	.php).
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