

Abstract—Adaptivity to non-stationary contexts is a very

important property for intelligent systems in general, as well as to
a variety of applications of knowledge based systems in the area
of Electric Power Systems. In this paper we present an innovative
Neural-Fuzzy architecture that exhibits three important
properties: online adaptation, knowledge (rule) modeling, and
knowledge extraction from numerical data. The ARANFIS
(Adaptive Resource Allocating Neural Fuzzy Inference System)
has an adaptive structure, which is formed during the training
process. We show that the resource allocating methodology
enables both online adaptation and rule extraction; the latter
differentiates it from the majority of Neurofuzzy systems with
fixed structure which perform mainly rule modification/
adaptation rather that rule extraction. The efficiency of the
system has been tested on both publicly available data, as well as
on a real generated dataset of a 120 MW power plant.

Index Terms-- Knowledge based systems, online adaptation,
data-driven knowledge extraction, resource allocation.

I. INTRODUCTION
n the era of ambient intelligence, which is rapidly
approaching, if not started, data capture and sensor

technologies will be generating enormous amounts of data.
Applications and interfaces that will be able to automatically
analyze these data, exchange knowledge and make decisions in
a given context are strongly desirable. Natural and enjoyable
user interactions with such applications will be based on
autonomy, avoiding the need for the user to control every
action, and adaptivity, so that they are contextualised and
personalized, delivering the right information/decision at the
right moment.

Information sources contain: (a) raw numerical data
obtained through sensors and devices which collect and pre-
process data, and (b) knowledge bases (such as rule-based
systems, ontologies) for specific tasks; these are in the form of
rules, concepts and symbols. This category may also contain
databases and databanks, such as data repositories which have
been examined and annotated /characterized by experts. What
is missing is the appropriate technology for effectively linking

The authors belong to the Department of Electrical and Computer
Engineering, NTUA, Athens, Greece.
Corresponding author: Minas Pertselakis (e-mail: mper@cslab.ntua.gr).

This work is partially funded by the European IST project “ORESTEIA-
Modular Hybrid Systems with Adaptive Functionality”, IST- 2000-26091,
http://www.image.ntua.gr/oresteia

these two different types of symbolic and subsymbolic
information, in real life situations.

Integrated fuzzy neural models demonstrate the ability to
operate and adapt in both numeric and linguistic environments.
Many of such hybrid systems have been proposed in the
literature [1], including models for embedding a priori
knowledge, handling numeric and linguistic features
simultaneously, extracting data driven knowledge and
interpreting rules [2-8].

When functioning in an environment with non-stationary
contexts both online training and adaptation are critical issues.
Online adaptation during normal operation is a very complex
problem because target outputs are not available. The problem
is handled either by using reinforcement learning or semi-
supervised techniques [9].

Resource Allocating Network (RAN) architectures [10],
were found to be suitable for online modeling of non-
stationary processes. In this sequential learning method the
network initially contains no hidden nodes. On incoming
training examples, based on two criteria, the RAN is either
grown or the existing network parameters are adjusted using a
least mean square gradient descent. The first criterion is based
on the prediction error while the second is the novelty
criterion, which states that the distance between the
observation and the winning rule should be greater than a
threshold. If both the criteria are satisfied, then the data is
memorized and a new hidden node is added to the network.
Online adaptation and rule extraction from numerical data is
the key properties of ARANFIS. Our model combines a
modified RAN structure with a fuzzy neural inference system
[11], to exhibit data-driven knowledge extraction and online
adaptation. This novel combination addresses adequately the
low efficiency presented in fixed neural fuzzy networks.
The basic characteristics of ARANFIS are:

(a) It has a resource allocating architecture through
which it exhibits dynamic behavior, necessary in non-
stationary contexts

(b) It uses a tunable input fuzzifier that is responsible for
fuzzification of numeric data. In other words, numeric
inputs are fuzzified using a feature-specific Gaussian
spread.

(c) All information that propagates from the input layer
is fuzzy. The model therefore uses a composition
mechanism that employs a fuzzy mutual subsethood
measure to define the activation that propagates to a
rule node along a fuzzy connection.

An Adaptive Resource Allocating Neural Fuzzy
Inference System

Minas Pertselakis, Nicolas Tsapatsoulis, Stefanos Kollias and Andreas Stafylopatis

I

(d) It aggregates activities at a rule node using a fuzzy
inner product: a product of mutual subsethoods,
which is different from the most common approach to
use a fuzzy min conjunction operator.

II. THE PROPOSED ARCHITECTURE
ARANFIS uses the architecture shown in Fig. 1. This

architecture has the flexibility to handle both numeric and
linguistic inputs simultaneously. Numeric inputs are fuzzified
by input nodes, which act as tunable feature fuzzifiers, while
connections in the network are represented by Gaussian
membership functions specified by a center and a spread. Rule
based knowledge is easily translated directly into the network
architecture in the form of fuzzy if-then rules that are
embedded as hidden nodes; rule antecedents as input to hidden
connections and rule consequents as hidden to output
connections. Knowledge in the form of if-then rules can be
either derived from clustering numeric data or be embedded
directly as a priori knowledge.

Fig. 1. The ARANFIS architecture

During the sequential learning procedure more hidden nodes
can be added in case that the existing ones cannot represent the
numerical data. This is clearly the case when functioning in
non-stationary contexts. On the other hand proper initialization
of the hidden layer is required in order to avoid creating
hidden nodes that do not represent meaningful rules. In setting
a priori knowledge it is easy to create the appropriate
antecedent part of rule by forming connections between the
input layer and the hidden nodes. However, when inserting
new hidden nodes all connections between inputs and the
newly created node should be made and pruned as the learning
process evolves.

III. ARANFIS LEARNING
Learning is incorporated into ARANFIS using the gradient

descent method. A squared error criterion is used as a training
performance parameter. The squared error)(te at iteration t is
computed in the standard way:

∑
=

−=

p

k
kk tytdte

1

2))()((
2
1)((1) (1)

where)(tdk is the desired output and)(tyk the defuzzified
output at node k given by (14). The error is evaluated over all
p outputs for a specific pattern input x(t).
Fuzzy weights wij from input nodes i to rule nodes j are
modeled by the center c

ijw and spread σ

ijw of a Gaussian fuzzy
set and denoted by wij=(c

ijw , σ

ijw). In a similar fashion,
consequent fuzzy weights from rule nodes j to output nodes k
are denoted by vjk = (c

ijv , σ

ijv). The spread of the i-th fuzzified

input element is denoted as σ

ix while c
ix is obtained as the

crisp value of the i-th input feature element.
The free parameters of the system, meaning both the centers

and spreads of antecedent and consequent connections as well
as the spreads of the input features, are modified on the basis
of update equations taking the following forms:

)(
)()()()1(
tw

teattwtw c
ij

j
c
ij

c
ij

∂

∂
⋅−=+ η (2)

)(
)()()()1(
tv

teattvtv c
jk

j
c
jk

c
jk

∂

∂
⋅−=+ η (3)

)(
)()()()1(
tw

teattwtw
ij

jijij
σ

σσ

η

∂

∂
⋅−=+ (4)

)(
)()()()1(
tv

teattvtv
jk

jjkjk
σ

σσ

η

∂

∂
⋅−=+ (5)

)(
)()()()1(
tx

teattxtx
i

jii
σ

σσ

η

∂

∂
⋅−=+ (6)

where)(tη is the online computed learning rate (see Section
II.B.2) and ja is a parameter related with j-th hidden node,
accounting for soft competitive learning (see Section II.B.3).

 1) Evaluation of partial derivatives
In the following we consider that the network consists of n
inputs, p outputs, and q(t) hidden nodes at iteration t (since
ARANFIS has a resource allocating structure).
Computing the partial derivatives required in the above update
equations, we get the following results:
For the error derivative with respect to consequent centers:

∑
=

−−=
∂

∂

)(

1

)(
)(

)(
tq

j
jkj

jkj
kkc

jk vz

vz
yd

tv
te

σ

σ

 (7)

where ∏
=

=

n

i
ijj Ez

1

 and Eij is given by (15),

and the error derivative with respect to the consequent spreads:

2
)(

1

)(

1

)(

1)(
)(

)(

−

−−=
∂

∂

∑

∑∑

=

==

tq

j
jkj

tq

j
jk

c
jkjj

tq

j
jkj

c
jkj

kk
jk

vz

vvzzvzvz

yd
tv

te

σ

σσ

σ

 (8)

The error derivatives with respect to antecedent centers and
spreads involve subsethood derivatives in the chain and are
somewhat more complex to evaluate. Specifically, the error
derivative chains with respect to antecedent centers and
spreads are, respectively:

c
ij

ij

ij

j
p

k j

k
kkc

ij w

z
z
yyd

w
e

∂

Ε∂

Ε∂

∂

∂

∂
−−=

∂

∂

∑
=1

)((9)

σσ

ij

ij

ij

j
p

k j

k
kk

ij w

z
z
yyd

w
e

∂

Ε∂

Ε∂

∂

∂

∂
−−=

∂

∂

∑
=1

)((10)

With respect to input feature spreads, the error derivative
chains are:

∑∑
= =

∂

Ε∂

Ε∂

∂

∂

∂
−−=

∂

∂
)(

1 1

)(
)(

)(tq

j i

ij

ij

j
p

k j

k
kk

i x

z
z
yyd

tx
te

σσ

 (11)

where

σ

σ

jk

tq

j
j

k
c
jkjk

j

k

vz

yvv
tz
ty

∑
=

−
=

∂

∂

)(

1

)(
)(
)((12)

and

ij

n

i
ij

ij

j

E

E

E
z ∏

=

=
∂

∂ 1 (13)

∏

∏

=

=

=)(

1

)(

1)(tq

j

s
jkj

tq

j

s
jk

c
jkj

k

vz

vvz

ty (14)

The expressions for antecedent connection mutual subsethood
partial derivatives with respect to antecedent centers and
spreads, as also to input feature spreads, are obtained by
differentiating the expression of the mutual subsethood
definition:

)()()(
)(

),(
ijiiji

iji
ijiij wsCwCsC

wsC
wsEE

h

h

−+

== (15)

where is is the fuzzy input signal),()(σ

i
c
ii xxxS = , and

∫
+∞

∞−

= dxxaAC)()(is the cardinality of a fuzzy set A described

by the membership function a(x) and thus)(BAC � is the
intersection surface between A and B membership functions .

 2) Online learning rate
Selection of a value for the learning rate, η, has a significant
effect on the network performance since it is related to the rate
of convergence. It was discovered that the appropriate
manipulation of η during the training process can lead to very
good results and, hence a large number of different methods
for its adaptation have been proposed in the literature
[12],[13].

In ARANFIS learning rate is computed based on the
assumption that the training data set can be divided into
subsets with similar patterns. Since the proposed network has
clusters at the hidden layer, the learning rate can be set as:

1)(...)()(
)(

2
)(

2
2

2
1 +Ν++Ν+Ν

=

ttt
t

tq

β
η (16)

where β is an empirically selected constant and Nj(t) is the
number of input patterns for which the j-th hidden node was
the winning node, up to iteration t.

 3) Soft competitive learning parameter
In sequential learning, updating the weights of the antecedent
and consequent connections for all rules may lead to
inefficient weight updating for the low activated rules.
The parameter aj in (2)-(7) indicates the similarity between the
j-th hidden node and the input pattern x(t). Let us define µj as
the vector of the centers of fuzzy weights of the antecedent
part of j-th rule denoted as Tc

nj
c

j
c
jj

www] ... [21=µ

Due to the smaller steps taken for the adaptation process, soft
competitive learning (winner-take-most) will lead quickly to a
nearby optimum, while hard competitive learning (winner-
take-all) will have more possibilities to get stuck into well-
separated local optima [14]. So in addition to the winner, the
proposed network also updates the antecedent and consequent
connections of some other hidden nodes depending on their
similarity with x(t):

nearestfarthest

nearestj
j

txtx

txtx
a

µµ

µµ

−−−

−−−

−=

)()(

)()(
1 (17)

where µfarthest and µnearest are the farthest and nearest hidden
nodes from x(t) respectively.

 4) Creating a hidden node
Training data are supplied to ARANFIS in the form of pairs
(x(t), d(t)) of input and target vectors. If a new input x(t) does
not significantly activate any rules and the prediction error is
significantly large, a new rule is created, having weight centers
of the antecedent part the crisp values of x(t), by allocating a
new hidden node and the number of rules is increased. The
weight spreads of the antecedent part are set proportionally to
the distance from the existing nearest hidden node to the new
node. In this way new inputs are more likely to match the
newly created hidden node.

In particular, a new hidden node is set according to the
following equations:

1)1()(+−= tqtq , increase the number of rules

1)(=tqN , set the number of clustered by the new

rule input patterns to one
T

n
Tc

tnq
c

tq
c

tqtq
txtxtxwww)](...)()([] ... [21)()(2)(1)(

==µ

nitxkw nearestii
s

tiq ,...,1 ,))((2
,)(=−= µ

where k is a constant (overlap factor) and µi,nearest is the center
of the antecedent connection weight, from the i-th input to
existing nearest hidden node from x(t).

pktytdv kk
c

ktq ,...,1),()()(=−=

(set the weight centers of the consequent connections of the
new rule to the difference between the desired and the
defuzzified output).
The weight spreads pkvs

ktq ,...,1 ,)(= of the consequent part
are set randomly to values lying in the range

}]{max},{min[
,,

s
jk

kj
s
jkkj

vv .

IV. EXPERIMENTAL RESULTS
ARANFIS is applicable to a variety of domains ranging

from inference systems to knowledge extraction schemes and
from classification problems to time series prediction. Four
experiments were performed in order to illustrate its efficiency
in the above cases. The first one deals with knowledge
extraction from numerical data, the second is a time series
prediction problem based on publicly available data (Mackey-
Glass), while the third is a pure classification problem based
on the iris data. The fourth one involves a real dataset of a
power plant in order to demonstrate ARANFIS applicability in
the field of power systems.

A. Rule Extraction from Numerical Data
In order to validate the rule extraction capability of ARANFIS
we created a 2-D synthetic dataset consisting of four classes as
shown in Fig.2. The basic aims of the experiment were:

(a) To identify the input partitions of the data
(b) To explore ARANFIS ability to infer if-then rules

given the input partitions
(c) To check the classification accuracy of ARANFIS

w.r.t to classic classification methods like LVQ, and
k-NN.

Starting from the third aim, which actually wasn’t the most
important for the particular experiment, we observe from
Table I that the classification accuracy of ARANFIS is
significantly higher than the other methods while at the same
time it creates less clusters (with the exception of the LVQ
method).

ARANFIS creates ten partitions in for the x1 dimension
(horizontal axis in Fig.2) and eleven partitions for the x2

dimension (vertical axis in Fig.2). It is clear that such kind of
partition is not typical for fuzzy sets where the linguistic terms
that are used rarely exceed five (for example very low, low,
medium, high, very high).

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

12

Fig. 2. Synthetically generated 2-Dimensional data for rule extraction
validation.

In order to reduce the partitions that are created we should
make the conditions that govern hidden rule creation more
rigorous. The results shown in Table I were obtained by using
the following conditions for creating a new hidden node:

5.0)()(=>− εtytd kk ,(prediction error) (18)

and
5.0}{max =< δj

j
z , (rule activation) (19)

TABLE I

COMPARISON OF ARANFIS WITH OTHER CLASSIFICATION METHODS FOR THE
2-D SYNTHETICALLY GENERATED DATA

Method Created Clusters Accuracy (%)
LVQ 24 83.3
1-NN 36 85.7

k-NN, k=5 36 88.2
ARANFIS 29 90.4

Setting more rigorous conditions implies higher ε and lower

δ. In Table II it is shown that the reduction of the number of
hidden nodes does not significantly depreciate the
classification performance of the network. In the case of 16
hidden nodes five partitions per dimension were created (it
should be noted here that the number of clusters is less than
the product of the number of partitions per dimension since the
created rules do no cover all combinations; for example the
case of x1=low and x2=high may not be encountered).

 TABLE ΙI
TESTING ACCURACY AS A FUNCTION OF CREATED CLUSTERS

Methods Created Clusters Accuracy (%)
ARANFIS 16 87.9
ARANFIS 29 90.4

In order to explore ARANFIS ability of creating if-then rules
we examine the case in which the partitions (per dimension) of
the input pattern are a priori known. In the data shown in Fig.

2 we consider five partitions per dimension corresponding to
linguistic terms very low (VL), low (L), medium (M), high (H),
very high (VH). The 15 rules that were created are shown in
Table III. Rule based classification through the fuzzy rules
shown in Table III (using Gaussian fuzzy sets as membership
functions) reach a performance rate of 83.5% (similar to that
of LVQ).

TABLE ΙII
FUZZY RULES GENERATED WITH FIVE PARTITIONS PER DIMENSION

IF THEN Fuzzy Rule
Number x1 x2 #Classy∈

1 VL L 4
2 VL M 1
3 VL H 1
4 L VL 4
5 L H 1
6 L VH 1
7 M L 4
8 M M 2
9 H VL 3

10 H L 3
11 H M 3
12 H VH 2
13 VH L 3
14 VH H 2
15 VH VH 2

B. Time Series Prediction
ARANFIS was tested in time prediction by considering a

benchmark chaotic time series first investigated by Mackey
and Glass [15]. The results when using several numbers of
rules are shown in Table IV for both the training and testing
sets. It should be noted that the resource allocation procedure
was not activated during this experiment, due to the very small
prediction error, thus, the number of rules remain the same by
which ARANFIS was initialized.

TABLE ΙV

RMSE OF ARANFIS FOR MACKEY-GLASS TIME SERIES PREDICTION AFTER 50
EPOCHS FOR DIFFERENT NUMBER OF RULES

Number of
Fuzzy Rules

RMSE (training set) RMSE (testing set)

3 0.0121 0.0267
5 0.0098 0.0225
7 0.0087 0.0198

10 0.0085 0.0191

TABLE V
COMPARISON OF ARANFIS WITH OTHER TECHNIQUES FOR TIME SERIES
PREDICTION USING NRMSE (NORMALIZED MEAN SQUARE ERROR [16])

Method NRMSE
GEFREX 0.0061

ANFIS 0.0074
EfuNN 0.056

Auto Regressive Model 0.19
Back-Propagation MLP model 0.02

6th order polynomial 0.04
Linear Predictive Model 0.55

ARANFIS (7 rules) 0.017
Comparison with other methods is given in Table V using the
results of [17]. Two of the methods presented in Table V
outperform ARANFIS (GEFREX, ANFIS). However,
ARANFIS performs very well given that it is not optimized for
time series prediction.

C. Classification Performance
For measuring the classification performance of ARANFIS

we used the iris data. Iris data involves classification of three
subspecies of the Iris flower, namely Iris sestosa, Iris
versicolor, and Iris virginica on the basis of four feature
measurements of the Iris flower—sepal length, sepal width,
petal length, and petal width [18]. The input pattern set
comprises of 150 four-dimensional patterns.
The obtained results (resubstitution accuracy) as well as
comparisons with other methods (with the help of [19]) are
given in Table VI. We observe that ARANFIS outperforms all
listed soft computing techniques, with the exception of
FuGeNeSys, creating as few as three rules.

TABLE VI
COMPARISON OF ARANFIS WITH OTHER TECHNIUES FOR IRIS DATA

CLASSIFICATION
Method Rules Resubstitution Accuracy (%)

FuGeNeSys 5 100
NEFCLASS 7 96.7

ReFuNN 9 95.3
EFuNN 17 95.3
FuNe-I 7 96.0

ARANFIS 3 98.0

It should be noted that typically ARANFIS creates three

rules for the iris classification problem. In order to create more
rules the values of ε and δ in (18)-(19) were increased and
reduced respectively, deviating from 0.5, which is their default
value. In Table VII, though, it is shown that the classification
accuracy does not improve as new rules are created.

TABLE VII

RESUBSTITUTION ERROR FOR ARANFIS AS A FUNCTION OF RULES (IRIS
DATA)

Rules 3 5 6 7 9 10
Errors 3 3 3 2 2 2

D. Power System Regression Task
 This experiment utilizes real data from a power plant (Pont-
sur-Sambre (France)) of 120 MW, which can be obtained from
the DaISy database [20]. In this dataset there are 5 inputs,
defined as the gas flow, the turbines valves opening, the super
heater spray flow, the gas dampers and the air flow, while the
two outputs, in our case, are the steam pressure and the main
stem temperature. Using 200 samples with a total sampling
time of 1228.8 sec, we had the following results after 150
epochs, keeping ε and δ at 0.5. The two figures below (Fig. 3
and 4) show how well the system performs in order to
approximate the given function.

TABLE VIII
RESUBSTITUTION ROOTMEANSQUARE ERROR FOR ARANFIS IN A

REGRESSION TASK (POWER PLANT DATA)
Rules 7 8 10
RMSE 0.1061 0.1003 0.0989

Fig. 3. The steam pressure output. (the real output is colored red, while the
approximation function is the blue one).

Fig. 4. The main stem temperature output. (the real output is colored red,
while the approximation function is the blue one).

V. CONCLUSIONS
In this paper we propose an innovative neural fuzzy

architecture, which combines resource allocating procedures
and fuzzy sets in order to incorporate (a) inferencing
capabilities, (b) expert knowledge modeling, (c) knowledge
extraction from numerical data. ARANFIS employs tunable
feature fuzzifiers that convert numeric inputs to Gaussian
fuzzy sets; mutual subsethood based activation spread; and a
fuzzy inner product conjunction operator. ARANFIS embeds
rule-based knowledge directly into its architecture while its
resource allocating structure enables new rules to be created.
The latter is very important for two reasons: (a) there are
several domains in which no estimation about the number of
rules that are required to solve a particular problem is
available, (b) rules can be created to model a changing of a
context. Thus, the dynamically formed architecture of
ARANFIS is capable of providing the means to model non-
stationary phenomena.

ARANFIS knowledge extraction ability was tested on a
variety of applications. A synthetically generated dataset was
used to show that the performance of knowledge extraction via
if-then rules is promising, especially in the case where the
partition of the input space (per dimension) is a priori known.
In contrary, in cases where the partition of the input space is
unknown ARANFIS tends to over-partition the input

dimensions. The authors are working towards improving this
limitation.

The classification performance of ARANFIS turns out to be
excellent. By allocating as few as three rules outperforms the
majority of the soft-computing schemes that were tested on the
iris classification problem. On the other hand, Mackey-Glass
time-series prediction is not the favorite field for ARANFIS
since it does not require dynamic resource allocation.
However, in a real data environment of a power plant system
ARANFIS achieves satisfactory performance, in addition to
low normalized root mean squared error.

VI. REFERENCES
[1] S. Mitra, and Y. Hayashi, "Neuro-fuzzy rule generation: Survey in soft

computing framework," IEEE Trans. Neural Networks, vol. 11, pp.
748-768, May 2000.

[2] C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control
and decision system,” IEEE Trans. Comput, vol. 40, pp. 1320–1336,
Dec. 1991.

[3] H. Ishibuchi, "Neural network that learn from fuzzy if-then rules," IEEE
Trans. Fuzzy Syst., vol. 1, pp. 85-97, May 1993.

[4] L. M. Fu, “Learning capacity and sample complexity on expert
networks,” IEEE Trans. Neural Networks, vol. 7, pp. 1517-1520, 1996.

[5] D. Nauck and R. Kruse, “A neuro-fuzzy method to learn fuzzy
classification rules from data,” Fuzzy Sets and Systems, vol.89, pp. 277-
288, 1997.

[6] S. Mitra, R. K. De, and S. K. Pal, "Knowledge-based fuzzy MLP for
classification and rule generation," IEEE Trans. Neural Networks, vol.
8, pp. 1338-1350, Nov. 1997.

[7] Y. Lin, G. A. Cunningham, III, and S. V. Coggeshall, “Using fuzzy par-
tition to create fuzzy systems from input–output data and set the initial
weights in a fuzzy neural network,” IEEE Trans. Fuzzy Syst., vol. 5, pp.
614–621, Nov. 1997.

[8] Y. Jin, "Fuzzy modeling of high dimensional systems: Complexity
reduction and interpretability improvement,” IEEE Trans. Fuzzy Syst.,
vol. 8, pp. 212-221, Apr. 2000.

[9] V. Vapnik, Statistical Learning Theory, John Wiley and Sons, 1998.
[10] J. Platt, “A resource-allocating network for function interpolation,”

Neural Computing, vol. 3, no. 2, pp. 213-225, 1991.
[11] S. Paul, S. Kumar, “Subsethood-Product Fuzzy Neural Inference System

(SuPFuNIS)” IEEE Trans. On Neural Networks, vol. 13, No. 3, pp.
578-599, 2002

[12] M. Moreira and E. Fiesler, “Neural networks with adaptive learning rate
and momentum terms,” IDIAP, Martigny, Switzerland, Tech. Rep. 95-
04, 1995.

[13] M. V. Solodov and B. F. Svaiter. “A comparison of rates of convergence
of two inexact proximal point algorithms,” in Nonlinear optimisation
and related topics, G. D. Pillo and F. Giannesi,Ed. Applied
Optimization 36, , Kluwer Academic Publishers, 2000, pp. 415-427.

[14] P. Scheunders, “A comparison of clustering algorithms applied to color
image quantization,” Pattern Recognition Letters, vol. 18, pp. 1379-
1384, 1997.

[15] M. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,” Science, vol. 197, pp. 287–289, 1977.

[16] J. Kim and N. Kasabov, “HyFIS: Adaptive neuro-fuzzy inference sys-
tems and their application to nonlinear dynamical systems,” Neural
Networks, vol. 12, no. 9, pp. 1301–1321, 1999.

[17] D. Kim and C. Kim, “Forecasting time series with genetic fuzzy pre-
dictor ensemble,” IEEE Trans. Fuzzy Syst., vol. 5, pp. 523–535, Nov.
1997.

[18] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Ann. Eugenics, vol. 7, no. 2, pp. 179–188, 1936.
Available: http://www.ics.uci.edu/~mlearn/MLRepository.html

[19] L. I. Kuncheva and J. C. Bezdek, “Nearest prototype classification:
Clustering, genetic algorithms, or random search?” IEEE Trans. Syst.,
Man Cybern. C, vol. 28, pp. 160–164, Feb. 1998.

[20] B.L.R. De Moor (ed.), DaISy: Database for the Identification of
Systems, ESAT/SISTA, K.U. Leuven, Belgium [Online].
Available: http://www.esat.kuleuven.ac.be/sista/daisy/

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.esat.kuleuven.ac.be/sista/daisy/

	Introduction
	The Proposed Architecture
	ARANFIS Learning
	
	Evaluation of partial derivatives
	Online learning rate
	Soft competitive learning parameter
	Creating a hidden node

	Experimental Results
	Rule Extraction from Numerical Data
	Time Series Prediction
	Classification Performance
	Power System Regression Task

	Conclusions
	References

