
  

  
Abstract—Adaptivity to non-stationary contexts is a very 

important property for intelligent systems in general, as well as to 
a variety of applications of knowledge based systems in the area 
of Electric Power Systems. In this paper we present an innovative 
Neural-Fuzzy architecture that exhibits three important 
properties: online adaptation, knowledge (rule) modeling, and 
knowledge extraction from numerical data. The ARANFIS 
(Adaptive Resource Allocating Neural Fuzzy Inference System) 
has an adaptive structure, which is formed during the training 
process. We show that the resource allocating methodology 
enables both online adaptation and rule extraction; the latter 
differentiates it from the majority of Neurofuzzy systems with 
fixed structure which perform mainly rule modification/ 
adaptation rather that rule extraction. The efficiency of the 
system has been tested on both publicly available data, as well as 
on a real generated dataset of a 120 MW power plant. 
 

Index Terms-- Knowledge based systems, online adaptation, 
data-driven knowledge extraction, resource allocation. 
 

I.  INTRODUCTION 
n the era of ambient intelligence, which is rapidly 
approaching, if not started, data capture and sensor 

technologies will be generating enormous amounts of data. 
Applications and interfaces that will be able to automatically 
analyze these data, exchange knowledge and make decisions in 
a given context are strongly desirable. Natural and enjoyable 
user interactions with such applications will be based on 
autonomy, avoiding the need for the user to control every 
action, and adaptivity, so that they are contextualised and 
personalized, delivering the right information/decision at the 
right moment. 

Information sources contain: (a) raw numerical data 
obtained through sensors and devices which collect and pre-
process data, and (b) knowledge bases (such as rule-based 
systems, ontologies) for specific tasks; these are in the form of 
rules, concepts and symbols. This category may also contain 
databases and databanks, such as data repositories which have 
been examined and annotated /characterized by experts. What 
is missing is the appropriate technology for effectively linking 
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these two different types of symbolic and subsymbolic 
information, in real life situations.  

Integrated fuzzy neural models demonstrate the ability to 
operate and adapt in both numeric and linguistic environments. 
Many of such hybrid systems have been proposed in the 
literature [1], including models for embedding a priori 
knowledge, handling numeric and linguistic features 
simultaneously, extracting data driven knowledge and 
interpreting rules [2-8].  

When functioning in an environment with non-stationary 
contexts both online training and adaptation are critical issues. 
Online adaptation during normal operation is a very complex 
problem because target outputs are not available. The problem 
is handled either by using reinforcement learning or semi-
supervised techniques [9].       

Resource Allocating Network (RAN) architectures [10], 
were found to be suitable for online modeling of non-
stationary processes. In this sequential learning method the 
network initially contains no hidden nodes. On incoming 
training examples, based on two criteria, the RAN is either 
grown or the existing network parameters are adjusted using a 
least mean square gradient descent. The first criterion is based 
on the prediction error while the second is the novelty 
criterion, which states that the distance between the 
observation and the winning rule should be greater than a 
threshold. If both the criteria are satisfied, then the data is 
memorized and a new hidden node is added to the network. 
Online adaptation and rule extraction from numerical data is 
the key properties of ARANFIS. Our model combines a 
modified RAN structure with a fuzzy neural inference system 
[11], to exhibit data-driven knowledge extraction and online 
adaptation. This novel combination addresses adequately the 
low efficiency presented in fixed neural fuzzy networks. 
The basic characteristics of ARANFIS are: 

(a) It has a resource allocating architecture through 
which it exhibits dynamic behavior, necessary in non-
stationary contexts 

(b) It uses a tunable input fuzzifier that is responsible for 
fuzzification of numeric data. In other words, numeric 
inputs are fuzzified using a feature-specific Gaussian 
spread. 

(c) All information that propagates from the input layer 
is fuzzy. The model therefore uses a composition 
mechanism that employs a fuzzy mutual subsethood 
measure to define the activation that propagates to a 
rule node along a fuzzy connection. 
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(d) It aggregates activities at a rule node using a fuzzy 
inner product: a product of mutual subsethoods, 
which is different from the most common approach to 
use a fuzzy min conjunction operator. 

II.   THE PROPOSED ARCHITECTURE 
ARANFIS uses the architecture shown in Fig. 1. This 

architecture has the flexibility to handle both numeric and 
linguistic inputs simultaneously. Numeric inputs are fuzzified 
by input nodes, which act as tunable feature fuzzifiers, while 
connections in the network are represented by Gaussian 
membership functions specified by a center and a spread. Rule 
based knowledge is easily translated directly into the network 
architecture in the form of fuzzy if-then rules that are 
embedded as hidden nodes; rule antecedents as input to hidden 
connections and rule consequents as hidden to output 
connections. Knowledge in the form of if-then rules can be 
either derived from clustering numeric data or be embedded 
directly as a priori knowledge.   
 

 
Fig. 1. The ARANFIS architecture 
 

During the sequential learning procedure more hidden nodes 
can be added in case that the existing ones cannot represent the 
numerical data. This is clearly the case when functioning in 
non-stationary contexts. On the other hand proper initialization 
of the hidden layer is required in order to avoid creating 
hidden nodes that do not represent meaningful rules. In setting 
a priori knowledge it is easy to create the appropriate 
antecedent part of rule by forming connections between the 
input layer and the hidden nodes. However, when inserting 
new hidden nodes all connections between inputs and the 
newly created node should be made and pruned as the learning 
process evolves.   

III.  ARANFIS LEARNING   
Learning is incorporated into ARANFIS using the gradient 

descent method. A squared error criterion is used as a training 
performance parameter. The squared error )(te  at iteration t is 
computed in the standard way: 
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where )(tdk  is the desired output and )(tyk the defuzzified 
output at node k given by (14). The error is evaluated over all 
p outputs for a specific pattern input x(t).  
Fuzzy weights wij from input nodes i to rule nodes j are 
modeled by the center c

ijw  and spread σ

ijw  of a Gaussian fuzzy 
set and denoted by wij=( c

ijw , σ

ijw ). In a similar fashion, 
consequent fuzzy weights from rule nodes j to output nodes k 
are denoted by vjk = ( c

ijv , σ

ijv ). The spread of the i-th fuzzified 

input element is denoted as σ

ix while c
ix  is obtained as the 

crisp value of the i-th input feature element. 
The free parameters of the system, meaning both the centers 

and spreads of antecedent and consequent connections as well 
as the spreads of the input features, are modified on the basis 
of update equations taking the following forms: 
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where )(tη  is the online computed learning rate (see Section 
II.B.2) and ja  is a parameter related with j-th hidden node, 
accounting for soft competitive learning (see Section II.B.3).  
 
    1)  Evaluation of partial derivatives 
In the following we consider that the network consists of n 
inputs, p outputs, and q(t) hidden nodes at iteration t (since 
ARANFIS has a resource allocating structure).  
Computing the partial derivatives required in the above update 
equations, we get the following results:  
For the error derivative with respect to consequent centers: 
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 and Eij  is given by (15), 

and the error derivative with respect to the consequent spreads: 
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The error derivatives with respect to antecedent centers and 
spreads involve subsethood derivatives in the chain and are 
somewhat more complex to evaluate. Specifically, the error 
derivative chains with respect to antecedent centers and 
spreads are, respectively: 
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With respect to input feature spreads, the error derivative 
chains are: 
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The expressions for antecedent connection mutual subsethood 
partial derivatives with respect to antecedent centers and 
spreads, as also to input feature spreads, are obtained by 
differentiating the expression of the mutual subsethood 
definition: 
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by the membership function a(x) and thus )( BAC �  is the 
intersection surface between A and B membership functions . 
 
    2)  Online learning rate 
Selection of a value for the learning rate, η, has a significant 
effect on the network performance since it is related to the rate 
of convergence. It was discovered that the appropriate 
manipulation of η during the training process can lead to very 
good results and, hence a large number of different methods 
for its adaptation have been proposed in the literature 
[12],[13]. 

In ARANFIS learning rate is computed based on the 
assumption that the training data set can be divided into 
subsets with similar patterns. Since the proposed network has 
clusters at the hidden layer, the learning rate can be set as: 
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where β is an empirically selected constant and Nj(t) is the 
number of input patterns for which the j-th hidden node was 
the winning node, up to iteration t. 
  
    3)  Soft competitive learning parameter 
In sequential learning, updating the weights of the antecedent 
and consequent connections for all rules may lead to 
inefficient weight updating for the low activated rules.  
The parameter aj in (2)-(7) indicates the similarity between the 
j-th hidden node and the input pattern x(t). Let us define µj as 
the vector of the centers of fuzzy weights of the antecedent 
part of j-th rule denoted as Tc

nj
c

j
c
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Due to the smaller steps taken for the adaptation process, soft 
competitive learning (winner-take-most) will lead quickly to a 
nearby optimum, while hard competitive learning (winner-
take-all) will have more possibilities to get stuck into well-
separated local optima [14]. So in addition to the winner, the 
proposed network also updates the antecedent and consequent 
connections of some other hidden nodes depending on their 
similarity with x(t): 
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where µfarthest and µnearest are the farthest and nearest hidden 
nodes from x(t) respectively. 
 
    4)  Creating a hidden node 
Training data are supplied to ARANFIS in the form of pairs 
(x(t), d(t)) of input and target vectors. If a new input x(t) does 
not significantly activate any rules and the prediction error is 
significantly large, a new rule is created, having weight centers  
of the antecedent part the crisp values of x(t), by allocating a 
new hidden node and the number of rules is increased. The 
weight spreads of the antecedent part are set proportionally to 
the distance from the existing nearest hidden node to the new 
node. In this way new inputs are more likely to match the 
newly created hidden node.  



  

In particular, a new hidden node is set according to the 
following equations: 
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where k is a constant (overlap factor) and µi,nearest is the center 
of the antecedent connection weight, from the i-th input to 
existing nearest hidden node from x(t). 
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IV.  EXPERIMENTAL RESULTS 
ARANFIS is applicable to a variety of domains ranging 

from inference systems to knowledge extraction schemes and 
from classification problems to time series prediction. Four 
experiments were performed in order to illustrate its efficiency 
in the above cases. The first one deals with knowledge 
extraction from numerical data, the second is a time series 
prediction problem based on publicly available data (Mackey-
Glass), while the third is a pure classification problem based 
on the iris data. The fourth one involves a real dataset of a 
power plant in order to demonstrate ARANFIS applicability in 
the field of power systems. 

A.  Rule Extraction from Numerical Data 
In order to validate the rule extraction capability of ARANFIS 
we created a 2-D synthetic dataset consisting of four classes as 
shown in Fig.2. The basic aims of the experiment were: 

(a) To identify the input partitions of the data 
(b) To explore ARANFIS ability to infer if-then rules 

given the input partitions 
(c) To check the classification accuracy of ARANFIS 

w.r.t to classic classification methods like LVQ, and 
k-NN. 

Starting from the third aim, which actually wasn’t the most 
important for the particular experiment, we observe from 
Table I that the classification accuracy of ARANFIS is 
significantly higher than the other methods while at the same 
time it creates less clusters (with the exception of the LVQ 
method). 

ARANFIS creates ten partitions in for the x1 dimension 
(horizontal axis in Fig.2) and eleven partitions for the x2 

dimension (vertical axis in Fig.2). It is clear that such kind of 
partition is not typical for fuzzy sets where the linguistic terms 
that are used rarely exceed five (for example very low, low, 
medium, high, very high). 
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Fig. 2. Synthetically generated 2-Dimensional data for rule extraction 
validation. 
 
In order to reduce the partitions that are created we should 
make the conditions that govern hidden rule creation more 
rigorous. The results shown in Table I were obtained by using 
the following conditions for creating a new hidden node: 

5.0)()( =>− εtytd kk ,(prediction error)           (18) 

and 
5.0}{max =< δj

j
z , (rule activation)           (19) 

  
TABLE I 

COMPARISON OF ARANFIS WITH OTHER CLASSIFICATION METHODS FOR THE 
2-D SYNTHETICALLY GENERATED DATA 

Method Created Clusters Accuracy (%) 
LVQ 24 83.3 
1-NN 36 85.7 

k-NN, k=5 36 88.2 
ARANFIS 29 90.4 

 
Setting more rigorous conditions implies higher ε and lower 

δ. In Table II it is shown that the reduction of the number of 
hidden nodes does not significantly depreciate the 
classification performance of the network. In the case of 16 
hidden nodes five partitions per dimension were created (it 
should be noted here that the number of clusters is less than 
the product of the number of partitions per dimension since the 
created rules do no cover all combinations; for example the 
case of x1=low and x2=high may not be encountered).  
 

 TABLE ΙI 
TESTING ACCURACY AS A FUNCTION OF CREATED CLUSTERS 

Methods Created Clusters Accuracy (%) 
ARANFIS 16 87.9 
ARANFIS 29 90.4 

 
In order to explore ARANFIS ability of creating if-then rules 
we examine the case in which the partitions (per dimension) of 
the input pattern are a priori known. In the data shown in Fig. 



  

2 we consider five partitions per dimension corresponding to 
linguistic terms very low (VL), low (L), medium (M), high (H), 
very high (VH). The 15 rules that were created are shown in 
Table III. Rule based classification through the fuzzy rules 
shown in Table III (using Gaussian fuzzy sets as membership 
functions) reach a performance rate of 83.5% (similar to that 
of LVQ). 

TABLE ΙII 
FUZZY RULES GENERATED WITH FIVE PARTITIONS PER DIMENSION 

IF THEN Fuzzy Rule  
Number x1 x2 #Classy∈  

1 VL L 4 
2 VL M 1 
3 VL H 1 
4 L VL 4 
5 L H 1 
6 L VH 1 
7 M L 4 
8 M M 2 
9 H VL 3 

10 H L 3 
11 H M 3 
12 H VH 2 
13 VH L 3 
14 VH H 2 
15 VH VH 2 

 

B.  Time Series Prediction 
ARANFIS was tested in time prediction by considering a 

benchmark chaotic time series first investigated by Mackey 
and Glass [15]. The results when using several numbers of 
rules are shown in Table IV for both the training and testing 
sets. It should be noted that the resource allocation procedure 
was not activated during this experiment, due to the very small 
prediction error, thus, the number of rules remain the same by 
which ARANFIS was initialized.   

 
TABLE ΙV 

RMSE OF ARANFIS FOR MACKEY-GLASS TIME SERIES PREDICTION AFTER 50 
EPOCHS FOR DIFFERENT NUMBER OF RULES  

Number of 
Fuzzy Rules  

 
RMSE (training set) RMSE (testing set) 

3 0.0121 0.0267 
5 0.0098 0.0225 
7 0.0087 0.0198 

10 0.0085 0.0191 
 

TABLE V 
COMPARISON OF ARANFIS WITH OTHER TECHNIQUES FOR  TIME SERIES 
PREDICTION USING NRMSE (NORMALIZED MEAN SQUARE ERROR [16]) 

Method NRMSE 
GEFREX 0.0061 

ANFIS 0.0074 
EfuNN 0.056 

Auto Regressive Model 0.19 
Back-Propagation MLP model 0.02 

6th order polynomial 0.04 
Linear Predictive Model 0.55 

ARANFIS (7 rules) 0.017 
Comparison with other methods is given in Table V using the 
results of [17]. Two of the methods presented in Table V 
outperform ARANFIS (GEFREX, ANFIS). However, 
ARANFIS performs very well given that it is not optimized for 
time series prediction. 

C.  Classification Performance 
For measuring the classification performance of ARANFIS 

we used the iris data. Iris data involves classification of three 
subspecies of the Iris flower, namely Iris sestosa, Iris 
versicolor, and Iris virginica on the basis of four feature 
measurements of the Iris flower—sepal length, sepal width, 
petal length, and petal width [18]. The input pattern set 
comprises of 150 four-dimensional patterns. 
The obtained results (resubstitution accuracy) as well as 
comparisons with other methods (with the help of [19]) are 
given in Table VI. We observe that ARANFIS outperforms all 
listed soft computing techniques, with the exception of 
FuGeNeSys, creating as few as three rules. 
 

TABLE VI 
COMPARISON OF ARANFIS WITH OTHER TECHNIUES FOR IRIS DATA 

CLASSIFICATION 
Method Rules Resubstitution Accuracy (%) 

FuGeNeSys 5 100 
NEFCLASS 7 96.7 

ReFuNN 9 95.3 
EFuNN 17 95.3 
FuNe-I 7 96.0 

ARANFIS  3 98.0 
 
It should be noted that typically ARANFIS creates three 

rules for the iris classification problem. In order to create more 
rules the values of ε and δ in (18)-(19) were increased and 
reduced respectively, deviating from 0.5, which is their default 
value. In Table VII, though, it is shown that the classification 
accuracy does not improve as new rules are created.  

 
TABLE VII 

RESUBSTITUTION ERROR FOR ARANFIS AS A FUNCTION OF RULES (IRIS 
DATA) 

Rules 3 5 6 7 9 10 
Errors 3 3 3 2 2 2 

 
 

D.  Power System Regression Task 
  This experiment utilizes real data from a power plant (Pont-
sur-Sambre (France)) of 120 MW, which can be obtained from 
the DaISy database [20]. In this dataset there are 5 inputs, 
defined as the gas flow, the turbines valves opening, the super 
heater spray flow, the gas dampers and the air flow, while the 
two outputs, in our case, are the steam pressure and the main 
stem temperature. Using 200 samples with a total sampling 
time of 1228.8 sec, we had the following results after 150 
epochs, keeping ε and δ at 0.5. The two figures below (Fig. 3 
and 4) show how well the system performs in order to 
approximate the given function. 
 



  

TABLE VIII 
RESUBSTITUTION ROOTMEANSQUARE ERROR FOR ARANFIS IN A 

REGRESSION TASK (POWER PLANT DATA) 
Rules 7 8 10 
RMSE 0.1061 0.1003 0.0989 

 

 
Fig. 3. The steam pressure output. (the real output is colored red, while the 
approximation function is the blue one). 

 

 
Fig. 4. The main stem temperature output. (the real output is colored red, 
while the approximation function is the blue one). 

V.  CONCLUSIONS 
In this paper we propose an innovative neural fuzzy 

architecture, which combines resource allocating procedures 
and fuzzy sets in order to incorporate (a) inferencing 
capabilities, (b) expert knowledge modeling, (c) knowledge 
extraction from numerical data. ARANFIS employs tunable 
feature fuzzifiers that convert numeric inputs to Gaussian 
fuzzy sets; mutual subsethood based activation spread; and a 
fuzzy inner product conjunction operator. ARANFIS embeds 
rule-based knowledge directly into its architecture while its 
resource allocating structure enables new rules to be created. 
The latter is very important for two reasons: (a) there are 
several domains in which no estimation about the number of 
rules that are required to solve a particular problem is 
available, (b) rules can be created to model a changing of a 
context. Thus, the dynamically formed architecture of 
ARANFIS is capable of providing the means to model non-
stationary phenomena.  

ARANFIS knowledge extraction ability was tested on a 
variety of applications. A synthetically generated dataset was 
used to show that the performance of knowledge extraction via 
if-then rules is promising, especially in the case where the 
partition of the input space (per dimension) is a priori known. 
In contrary, in cases where the partition of the input space is 
unknown ARANFIS tends to over-partition the input 

dimensions. The authors are working towards improving this 
limitation.  

The classification performance of ARANFIS turns out to be 
excellent. By allocating as few as three rules outperforms the 
majority of the soft-computing schemes that were tested on the 
iris classification problem. On the other hand, Mackey-Glass 
time-series prediction is not the favorite field for ARANFIS 
since it does not require dynamic resource allocation. 
However, in a real data environment of a power plant system 
ARANFIS achieves satisfactory performance, in addition to 
low normalized root mean squared error.  
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