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ABSTRACT 
The safety of gas cylinders in domestic applications is of 
utmost importance. A crucial stage in the appraisal of the 
risk for failures and possible faults is occurring during the 
filling process. In Cyprus, this task is currently done by 
specialized workers who monitor the cylinders during 
filling. In order to explore the possibility for an automated 
risk appraisal and consequent screening, a system of fault 
identification using vibrational time series and neural 
network classification has been used. Two systems have 
been attempted. One using a multi-slab feedforward neu-
ral structure employing backpropagation-type learning, 
and a Kohonen self-organizing map. The results were also 
compared with different simple statistical methods. The 
feedforward net, proved to be slightly better responding 
than the Kohonen map for this particular problem. 
 
KEY WORDS 
Feedforward neural networks, Kohonen network, gas cyl-
inder safety. 
 
1.  Introduction
 
The monitoring and appraisal of gas cylinder condition in 
Cyprus, is currently done by dedicated workers who visu-
ally observe the moving cylinders in a filling process line. 
This approach is costly, and sometimes unreliable, espe-
cially when it comes to identifying the general corrosion 
on the underside of the highly corroded cylinders. The 
cylinders are pressure tested during manufacture and ma-
jor maintenance, but during the filling process they need 
to go through a systematic and thorough inspection for 
any serious faults. 
 

The present study involves the examination of vibrational 
signatures of individual cylinders in order to appraise their 
general condition and thus classify them as acceptable or 
not. The unacceptable ones are properly maintained, pro-
vided that this is economically feasible. 
 
The paradigm of neural networks has been used in differ-
ent attempts for applications in fault classification of dif-
ferent machinery and systems ([1], [2], [3], [4], [5], [6], 
[7], [8]) Lee et al., 2004). Since, though, in many times, 
the identification of faults has to do with crucial safety 
issues, there is a need for a highly reliable identifier sys-
tem. 
 
For the analysis of the signals, both statistical and non-
parametric neural techniques have been used. For the neu-
ral network classification, two major systems have been 
attempted. In each of the two major paradigms a number 
of special cases involving different architectures and 
learning procedures have been explored. 
 
The most successful structure found, is that of a multi-slab 
feedforward neural network employing backpropagation 
type learning. A Kohonen self-organizing map has also 
been tried but it was slightly less successful compared to 
the feedforward structure. 
 
Such systems could also be used as support mechanisms 
to a larger fault identification system that possibly em-
ploys human observers. The system studied and presented 
in this paper is of such a type 
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2. Instrumentation and data collection
 
2.1. Instrumentation set-up
 
A total of 63 empty gas cylinders that had their relief 
valves removed, were excited by a suitable hammer and 
the response was recorded via a Bruel and Kjaer (B+K) 
set of instruments as will be explained further on. The 
experimental set-up is shown in Figure 1. 

 

 
 

 
 

Figure 1. The gas cylinder experimental set-up. 
 
The cylinders were provided by the INTERGAZ FILL-
ING Co in Cyprus. They were manufactured as per the 
BS5045 Part 2.2A specification, being of 24 liter capacity. 
They were pressure tested at 30 bar and the working pres-
sure is limited to 20 bars. The tare weight varied between 
13.1 kgf to 13.4 kgf. 
 
51 of the tested cylinders were brand new, while 5 had a 
small artificially produced horizontal dent. 3 more cylin-
ders were given a small, artificially produced, vertical 
dent. Finally, 4 more cylinders were selected to have a 
general severe corrosion at the bottom. 
 
The instrumentation used was based on the B+K multi-
channel analyzer type 3550. The analyzer had many capa-
bilities for signal processing, such as for spectrum averag-

ing, 1/n octave spectrum averaging, zero pad, time captur-
ing, time history, amplitude probability. The associated 
units that were used in the measurements were a charge 
amplifier type 2635, a noise generator type 1405, a power 
amplifier type 2706, an accelerometer type 4370, a vibra-
tion exciter type 4809, and an impact hammer type 8202, 
all from the B+K group. 
 
Table 1. Set-up parameters 
 

PARAMETERS SET-UP 
Mode of measurement Frequency response 
Estimator of measurement H2 
Averaging of measurements Every Peak 10 
Trigger Signal X1 
Frequency span (kHz) 
∆f (Hz) 
T (ms) 
∆t (us) 

6.4 kHz 
8 Hz 
125 ms 
61.0 

Weighting of signal Y1 Rectangular 
 
A typical measurement and the associated settings are 
shown in Figure 2, while the values for the different pa-
rameters of the set-up are shown in Table 1. 
 
2.2 Collected data 
 
For each cylinder a frequency response has been obtained. 
A total of 676 discrete values of frequencies have been 
collected and processed for each cylinder. Thus the data 
matrix had a size of 676x63. A typical plot of the meas-
ured data, showing the difference in response between 
“GOOD” and “BAD” cylinders of vertical dent is shown 
in Figure 3.  
 
 
3. Statistical fault classification 
 
Different attempts were made to identify simple statistical 
ways to screen the good cylinders from the bad ones. In 
one attempt, the measured frequency response signal for 
each gas cylinder was cut above 4 kHz. The remaining 
values were then divided into four frequency ranges, 
namely, 0 – 1 kHz, 1 – 2 kHz, 2 – 3 kHz, 3 – 4 kHz. For 
each one of these ranges, the peak values were identified.  
 
Following that, the ratio of peaks and the differences of 
minimum values were plotted in order to try to identify 
significant differences between the “GOOD” and “BAD” 
cylinders. Graphs of these results are shown in Figure 4 
and Figure 5. 
 
As it can be easily seen, the ratio of peak values was un-
able to distinguish between the ”GOOD’ and the “BAD” 
classes of cylinders. The differences of minimum values 
method, however, gave some reasonably good results as 
indicated in Figure 5, but definitely not acceptable for 
reliable fault identification. 
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Figure 2. Typical frequency response of an excited gas cylinder. 
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Figure 3. Frequency response of a typical “GOOD” and a typical “BAD” cylinder. 
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Figure 4. Ratio of peak values for the different frequency ranges. 

 
 

 
 

Figure 5. Differences of minimum values for the different frequency ranges. 
 
 
4. Neural network fault classification 
 
Two systems of neural structures have been attempted. A 
Kohonen self-organizing map and a multi-slab feedfor-
ward architecture using backpropagation-type learning. 
 
4.1 The Kohonen self-organizing map 
 
Standard Kohonen self-organizing maps of different 
structures and characteristics have been used to help in 
classifying the “GOOD” and the “BAD” cylinders. The 
parameters of the best responding network, that was fi-
nally used, are given below.  
  
The topology was of a 4x4 network (total of 16 neurons) 
and the learning of standard Kohonen type. The initial 
neighborhood size was 2.5 and the initial learning rate 

0.1. A total of 30,000 training presentations of 39 (out of 
64) representative selections of cylinders were done. Of 
the 39 cylinders, 30 were of the “GOOD” class and 9 
were of the “BAD” class. The “GOOD” and “BAD” sam-
ples had an equal exposure of 15,000 presentations each. 
The remaining 25 cylinders (19 “GOOD” and 6 “BAD”) 
were used only as a test set for verification. 
 
The best results obtained for the unknown test sample 
were 24 correctly classed (out of 25). Thus a success rate 
of 90% on the verification set was obtained. 
 
4.2 Multi-slab feedforward architecture 
 
The frequency response at 676 frequency values for the 
63 cylinders was first reduced to a smaller size matrix of 
67x63 in order to keep the size manageable by the Ward 
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System architecture. This was done by averaging the re-
sponse for every 10 raw measurements. With such modi-
fied data, a WARD 2 multi-slab feedforward neural net-
work structure as shown in Figure 6 was implemented. 

The selected architecture was based on extensive experi-
ence we had on using similar structures [9], and being 
able to identify the “best” for the problem at hand. 

 

 
 

Figure 6. The specific WARD 2 multi-slab feedforward neural architecture used for the simulations. 
 
 
The learning rate used was 0.1 for all the slabs, while the 
momentum rate was 0.1. All neurons were initialized at a 
value of 0.3. During the training of the architecture, 11 
representative cylinders (of a mixture of “GOOD” and 
“BAD” classes) were left out of the training sample to be 
used for verification. The best results obtained for this 
structure were 98% correct classifications based on all the 
cylinder samples and 91% based on the unknown sample 
of the 11 cylinders. 
 
5. Comparisons and discussion; Conclusion 
 
From the three methodologies used, the multi-slab feed-
forward structure proved to be slightly better than the 
Kohonen net. The statistical approaches, as used, were 
unable to yield a satisfactory screening of the two distinct 
classes of gas cylinders. Once the method is established 
and tested in a greater sample, it may also be feasible to 
test cylinders so that different individual faults may be 
discriminated. 
 
The research team is presently also examining the possi-
bility of using acoustic signals for fault identification 
through the use of suitable neural structures. Such an ap-
proach will be more economical in implementation. Re-
sults will be presented in a future article. 
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