
1 VERA parameters for lutein

ωS0 ,ωS1 ,ωS2 ,ωSn 0 cm−1, 14,050 cm−1, 20300cm−1, 31950cm−1

ωC-C,ωC=C 1156cm−1, 1523 cm−1

λS0 , λS1 , λS2 15cm−1, 100 cm−1, 150cm−1

λS0–S1 31cm−1

λS1–S2 860cm−1

γi,γij 163.6 fs

d
S0–S1
C-C ,dS0–S1C=C 0.82, 0.82

d
S0–S2
C-C ,dS0–S2C=C 0.70, 0.84

d
S1–S2
C-C ,dS1–S2C=C 0.80, 0.80

d
S1–Sn
C-C ,dS1–SnC=C 0.55, 0.0

∆ωS0–S1 ,∆ωS0–S2 ,∆ωS1–Sn 1070cm−1, 1190cm−1, 1090cm−1

|µS1–Sn |
2

|µS0–S2 |
2 1.22

S2 Stokes shift 150cm−1

Table 1: The total parameter set for out vibronic model of Lut in pyridine,
as described in the main text

2 Secular Redfield model of the Chl manifold

As outlined briefly in the main text we use secular Redfield theory for the
modelling of energy relaxation on Chl exciton manifold. The starting point
is the spectral density of energy gap fluctuations for the uncoupled Chls for
which we assume the ansatz spectral density proposed by Novoderezhkin
et al [1].

C′′n(ω) =
N=48∑
j=1

2Sjωj
ωω2

j
γj

(ω2 −ω2
j
)2 +ω2γ2

j

+ 2λ0
ωγ0

ω2 + γ20
(1)

Here ωi are the frequencies of the 48 under-damped modes, Si are the
associated Huang-Rhys factors and γi are the damping times. The over-
damped (Drude) term is characterized by is own damping time, γ0, and a
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reorganization energy λ0. The effective reorganisation energy is given by

λn =
1
π

∫∞
0

C′′n(ω)
ω

dω (2)

and the energy-gap correlation function (in the frequency domain) is given
by the fluctuation-dissipation theorem,

Cn(ω) =
(
1 + coth

(
 hω

kBT

))
C′′n(ω) (3)

Switching to the exciton basis, the transition dipole moments, reorganiza-
tion energies, relaxation rates and correlation functions (in the timedomain)
mix according to,

µi(tk) =
∑
n

cin(tk)µn(tk) (4)

λi(tk) =
∑
n

��cin(tk)��4λn (5)

Γi =
∑
n

��cin(tk)��2Γn (6)

Ci(t; tk) =
∑
n

��cin(tk)��2Cn(t) (7)

with the participation coefficients {cin(tk)} and uncoupled (site) transition
dipoles, µn(tk) varying from snapshot to snapshot. Γ−1n are the excitation
lifetimes of the uncoupled Chls which are all assinged the typical experi-
mental value of 4ns. The exciton line-broadening functions are expressed
in terms of C′′

i
(ω; tk)

gii(t; tk) =
1
π

∫∞
0
dω

C′′
i
(ω; tk)
ω2

[
coth

(
 hω

2kbT

)
(1 − cos(ωt)) + i (sin(ωt) −ωt)

]
(8)

which in turn gives the instantaneous (snapshot) exciton LA,

χi(ω; tk) ∝ |µi(tk)|2<
∫∞
0
dτ exp

[
−i(ω −ωi(tk))τ − gii(τ; tk) −

Γi(tk)
2 τ

]
(9)

and FL,

χ̃i(ω; tk) ∝ |µi |2<
∫∞
0
dτ exp

[
−i(ω −ωi(tk) + 2λi(tk))τ − g∗ii(τ; tk) −

Γi(tk)
2 τ

]
(10)

line-shapes respectively. These are used to calculate the LA and FL spectra
as in the main text. Finally, the population dynamics, {Pi(t; tk)}, of a single
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MD snap-shot are given by a set of Master Equations,

dPi(t; tk)
dt

= −
(∑
j≠i

kj←i(tk) + Γi(tk)
)
Pi(t; tk) +

∑
j≠i

ki←j(tk)Pj(t; tk) (11)

with the rate constants defined in the main text. Note we completely ignore
the coherences as they are not relevant to the timescales being probed.

3 TheVibrationalEnergyRelaxationApproach (VERA)
to the Lut dynamics interaction

We use the VERA approach developed by Balevičius et al. [2] the basic
assumptions of which are discussed in the main text. The time-evolution of
the vibronic populations are given by,

dnia1a2

dt
=

(
dnia1a2

dt

)
IVR

+
(
dnia1a2

dt

)
IC

+
(
dnia1a2

dt

)
pump

(12)

where the three terms correspond to the vibrational relaxation on the elec-
tronic states (IVR), interconversion (IC) between electronic states, and the
initial resonant excitation by the pump pulse. The IVR is determined by(

dnia1a2

dt

)
IVR

= −
(
a1k

−
1 + a2k

−
2 + (a1 + 1)k+1 + (a2 + 1)k

+
2
)
nia1a2 (13)

+ (a1 + 1)k−1n
i
a1+1a2

+ (a2 + 1)k−2nia1a2+1 (14)

+ a1k+1n
i
a1−1a2

+ a2k+2nia1a2−1 (15)
where thefirst linedenotes loss of population toupper and lower vibrational
states on mode 1 and 2 and the second set of four terms denote incoming
population from those states. We define upward, k+, and downward, k−,
vibrational relaxation rates as

k±α = C′′c (∓ |ωα |)
[
coth

(
∓β

 h |ωα |
2

)
+ 1

]
(16)

Note that in the harmonic approximation we neglect overtone (∆aα > aα ±
1) transitions or couplings between the twomodes. For the IC dynamics we
have(
dnia1a2

dt

)
IC

=

∑
b1,b2

( ∏
α=1,2

���Fαiaα ,i+1bα ���2
) [
−ki+1,i
b1,b2,a1,a2

nia1a2 + k
i,i+1
a1a2,b1b2

ni+1b1b2

]
(17)

+
∑
b1,b2

( ∏
α=1,2

���Fαiaα ,i+1bα ���2
) [
−ki−1,i
b1,b2,a1,a2

nia1a2 + k
i,i−1
a1a2,b1b2

ni−1b1b2

]
(18)
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where the first pair of terms describe the upward and downward transitions
between |ia1a2〉 ↔ |i + 1b1b2〉 respectively and the second pair describe the
upward and downward transitions between |ia1a2〉 ↔ |i − 1b1b2〉 respec-
tively. Here the rate constants kij

a1a2,b1b2
are defined as

k
i>j

a1a2,b1b2
= C′′f

(
−∆ij

a1a2,b1b2

) [
coth

(
−
β h∆

ij

a1a2,b1b2

2

)
+ 1

]
(19)

k
i<j

a1a2,b1b2
= C′′f

(
∆
ji

a1a2,b1b2

) [
coth

(
β h∆

ji

a1a2,b1b2

2

)
+ 1

]
(20)

with ∆ij
a1a2,b1b2

defined as in the main text.
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