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a b s t r a c t 

We propose an innovative approach to model the probability of interlinkages in an interbank network 

with the use of Machine Learning techniques. More precisely we forecast the probability of a pair of 

banks entering into an interbank market borrower - lender relationship considering their financial char- 

acteristics and their past observed behavior. In this framework we examine a new method that employs 

machine learning in order to increase the accuracy of agnostic algorithms in reconstructing a financial 

network. The XGBOOST method is combined with both Maximum Entropy (MAXE) and Minimum Den- 

sity (ANAN). The main contribution of this paper is that we enrich the information generally available 

for financial networks with variables that are available for the publication of banks financial statements 

(ensemble method). A set of agnostic models, i.e. models that the exposure allocation algorithm does not 

include prior information, are used as a benchmark to measure the additional benefit for applying ma- 

chine learning in estimating prior network probabilities. By comparing the results between the agnostic 

algorithms and the ensemble method we see an increase in the accuracy and a decrease in the MAE of 

the financial networks on average. Our purpose is to depart from agnostic assumptions usually employed 

in interbank matrix allocation algorithms and take into account the financial features of the banks when 

assigning prior link probabilities. Our main finding is that machine learning algorithms outperforms the 

benchmark Logistic Regression model in interbank link forecasting and this is also reflected in the en- 

hanced performance when overall network similarity measures are performed. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction – motivation 

System wide stress testing is one of the most challenging tasks 

or supervisory authorities across the world. Addressing in a proper 

anner the secondary contagion effects caused by an initial per- 

urbation in a financial system through the network of institutions 

ipeline is an important goal for banking supervisors and central 

anks responsible for micro- and macro-prudential policy. How- 

ver, this attempt is often (when not always) limited by the par- 

ial information about the structure of the underlying networks. 

specially in the case of financial networks the information on 

he interconnections among institutions is privacy-protected, dra- 
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atically reducing the possibility of correctly estimating crucial 

ystemic properties such as the resilience to the propagation of 

hocks. The need to compensate for the scarcity of data, while op- 

imally employing the available information, has led to the birth of 

 research field known as network reconstruction. 

This paper presents an innovative approach to model the proba- 

ility of interlinkages in an interbank network with the use of ma- 

hine learning techniques. More specifically we employ an Extreme 

radient Boosting algorithm (XGBOOST) to forecast the probability 

f 2 banks entering into an interbank market borrower-lender rela- 

ionship taking into account their financial characteristics and their 

ast observed behavior. In this way we depart from past studies of 

andom generation of interbank networks which are either agnos- 

ic in the way probabilities of bilateral relationships are calculated 

r make ad-hoc assumptions i.e. small banks are more probable to 

e borrowed from large banks. 

We propose a new method that employs machine learning 

n order to increase the accuracy of agnostic algorithms in re- 

onstructing a financial network. The XGBOOST method is com- 
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ined with both Maximum Entropy (MAXE) and Minimum Den- 

ity (ANAN). The main contribution of this paper is that we en- 

ich the information generally available for financial networks with 

ariables that are available for the publication of banks financial 

tatements (ensemble method). A set of agnostic models, i.e. mod- 

ls that the exposure allocation algorithm does not include prior 

nformation, are used as a benchmark to measure the additional 

enefit for applying machine learning in estimating prior network 

robabilities. By comparing the results between the agnostic algo- 

ithms and the ensemble method we see an increase in the accu- 

acy and a decrease in the MAE of the financial networks on aver- 

ge. 

The main point of the paper is not to provide an alternative in 

he literature to the agnostic network construction algorithms. The 

urpose of the paper is to show the value of developing a formal- 

zed method for estimating the prior linkage probabilities based 

n the particular characteristics of the agents involved in the net- 

ork in a similar way to Musmeci et al. (2013) . It is recognizable

hat agnostic algorithms employ a different information set, as it 

s also evident that the inclusion of extra information can improve 

he utility of agnostic models especially in stressed situations and 

arge interbank networks. In total, the accuracy increase is more 

izable in periods where a shock hits the network making it more 

seful for quantification of risk. In addition, the improvement will 

e more sizable as the number of participants increases since ag- 

ostic measures will lose their forecasting ability 

In order to allocate the bilateral exposures amounts and re- 

onstruct the matrix, estimated probabilities are fed as priors 

n the Minimum Density algorithm developed by Anand et al. 

2015) whereas we benchmark our results with a variate of allo- 

ation algorithms provided in the literature. We employ the Min- 

mum Density algorithm instead of the equally well known in the 

iterature Maximum Entropy algorithm (Upper and Worms, 2014) 

ecause the latter has the shortcoming that tends to create com- 

lete networks which obscure the true structure of linkages in the 

riginal network. We calibrate our model in the Greek banking sys- 

em which is far from a complete network and the interbank activ- 

ty is based on long term relationships where smaller banks tend 

o use a limited set of money center banks as intermediaries. In- 

eed, most banks would find it prohibitively costly in terms of in- 

ormation processing and risk management to lend funds to every 

ctive bank in the system. 

Our model can be used to simulate and assess interbank con- 

agion effects on banking sector soundness and resilience. The ap- 

roach furthermore enables to rank the institutions belonging in 

he network, considering which bank failure would have the most 

etrimental contagion effects on the system. In this sense the cor- 

ect representation of the network is crucial for the outcome of a 

ystem wide stress test. When someone overestimates the num- 

er of links in an interbank system, the results may underestimate 

he extent of contagion. For instance, if a default takes place, to a 

etwork that spreads the exposures widely, then the impact will 

e allocated to a greater number of institutions with limited ex- 

osures whereas in the opposite case the same aggregated impact 

ill be allocated to a limited number of institutions with a signif- 

cantly greater amount of exposures. . 

The remainder of the paper is structured as follows. In Section 

 , we focus on the related literature review on interbank matrix 

llocation algorithms and applications to banking systems across 

he world. Section 3 , describes the data collection and processing. 

n Section 4 , we provide details regarding the estimation process of 

he various alternative models developed. In Section 5 , we compare 

he employed methodologies whereas in the concluding Section 6 , 

e summarize our findings, we identify any potential weaknesses 

nd limitations, while we also discuss areas for future research ex- 

ensions. 
2 
. Literature review 

There is large number of network reconstruction algorithms in 

he current literature. These algorithms take as input the aggre- 

ated assets and liabilities of the participating banks in the in- 

erbank market and allocate them on bilateral exposures either 

hrough an iterative process where from an initial “guess” of the 

etwork entries are re-scaled until aggregate positions satisfy the 

sset – liabilities constraints or through a Monte-Carlo sampling 

rocess. Anand et al. (2018) conduct a horse race of network re- 

onstruction methods using network data obtained from 25 differ- 

nt markets spanning 13 jurisdictions and ranked the methods in 

erms of their ability to reconstruct the structures of links and ex- 

osures in networks. 

Upper and Worms (2004) developed a Maximum Entropy al- 

orithm so as to estimate the matrix of bilateral credit relation- 

hips for the German banking system. The method entails maxi- 

izing an entropy function subject to a set of constraints (usually 

he bank’s total asset and liabilities to counterparties). In the ini- 

ial guess network, institution i’s exposure to institution j is the 

roduct of i’s aggregate interbank asset position and institution 

’s aggregate interbank liability position. This network is subse- 

uently re-scaled by the aggregate positions, first along the rows 

nd then the columns, until the aggregate position constraints are 

atisfied. 

Baral and Fique (2012) enrich the Maximum Entropy method 

ith a bivariate copula to estimate adjacency matrices. Since a 

opula is a cumulative distribution function, it generates the prob- 

bilities of bilateral connections, which can then be used to sim- 

late stochastic matrices or adjacency matrices by imposition of a 

ut-off rule. Those probabilities of bilateral connections are fed into 

he Maximum Entropy method to produce the interbank network. 

rehmann and Tarashev (2013) propose an alternative method 

hat generates a series of high-concentration networks by per- 

urbing the network produced by the Maximum Entropy method. 

he Maximum Entropy based algorithms performs well when large 

raction of the links are of an equal size and the average link size is

oughly similar to the aggregate exposure divided by the number 

f financial institutions. 

Anand et al. (2015) propose the Minimum Density method 

anan) that combines information-theoretic arguments with eco- 

omic incentives to produce more realistic interbank networks that 

reserve important characteristics of the original interbank market. 

he method is an iterative algorithm that loads the most proba- 

le links with the largest exposures consistent with the total lend- 

ng and borrowing of each bank, yielding networks with minimum 

ensity. This algorithm performs well when the interbank network 

s sparse. 

Halaj and Kok (2013) introduce an additional iterative algorithm 

o simulate and assess interbank contagion effects on banking sec- 

or soundness and resilience. Through and iterative assignment 

rocess links are drawn at random with an equal probability, so 

he stock of interbank liabilities and assets reduces as the volume 

f the assigned (matched) placements increases. The procedure is 

epeated until no more interbank liabilities are left to be assigned 

s placements from one bank to another. 

Musmeci et al. (2013) present a method to reconstruct complex 

etwork from partial information. They assume to know the links 

nly for a subset of the nodes and to know some non-topological 

uantity (fitness) characterizing every node. The missing links are 

enerated on the basis of the latter quantity according to a fitness 

odel calibrated on the subset of nodes for which links are known. 

imini et al. (2015) also employ a fitness model that determines 

he likelihood both of directed linkages and exposures. Their model 

s similar to the Musmeci et al. (2013) , with the difference that for 

he latter matrices are undirected and the assignment algorithm is 
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aximum Entropy whereas the Cimini et al. (2015) has directed 

inkages and the exposure assignment also follows a fitness model. 

Interbank market structure is a very important topic for regu- 

ators and academics since it is the cornerstone in the building up 

f system wide stress testing framework. Therefore a large relevant 

mpirical literature has been developed across many countries and 

anking systems. 

Duarte and Jones (2017) constructed an empirical measure of 

xpected network spillovers that arise through default cascades for 

he U.S. financial system for the period 2002–16 including a large 

ross section of U.S. financial firms that comprises all bank hold- 

ng companies, all broker-dealers, and all insurance companies, and 

onsider their entire empirical balance sheet exposures. They find 

egligible expected spillovers from 2002 to 2007 and from 2013 

o 2016. However, between 2008 and 2012, they find that default 

pillovers can amplify expected losses by up to 25 percent, a sig- 

ificantly higher estimate than previously found in the literature. 

Mistrulli (2011) analyze how contagion propagates within the 

talian interbank market using a unique data set including actual 

ilateral exposures. Based on the availability of information on ac- 

ual bilateral exposures for all Italian banks, the results obtained 

y assuming the maximum entropy are compared with those re- 

ecting the observed structure of interbank claims. Bargigli et al. 

2016) also focus on the Italian interbank market investigating two 

ifferent centrality measures in multiplex networks and finding 

hat there are several medium sized banks which are central in 

ome links and peripheral in others. 

Van Lelyveld and Liedorp (2006) investigate interlinkages and 

ontagion risks in the Dutch interbank market. Based on several 

ata sources, including survey data, they estimate the exposures in 

he interbank market at bank level and perform a scenario analysis 

o measure contagion risks. We find that the bankruptcy of one of 

he large banks will put a considerable burden on the other banks 

ut will not lead to a complete collapse of the interbank market. 

inally Amundsen and Arnt (2012) used records of payments in 

he Danish large value payment system to compute a unique, high- 

requency data set on bilateral exposures between banks and they 

ound that the risk of contagion in the Danish interbank market 

ue to an unexpected failure of a major bank is very limited. 

Luitgard (2020) developed a new model for solvency contagion 

hat it allows for the spread of contagion already before the point 

f default and hence can account for contagion due to distress and 

ark-to-market losses. Cinelli et al. (2021) developed a model of 

nancial contagion set up to estimate the width and length of 

he cascades in the interbank markets, incorporating incomplete 

nformation by considering a worst-case scenario in which unob- 

erved links were assumed to be present. Cao et al. (2021) mea- 

ure systemic risk capturing spillovers arising from deleveraging 

nd price impact in financial systems and calculate the ampli- 

cation of losses during the contagion process. Maringer et al. 

2021) develop a new network reconstruction algorithm inspired 

y the transportation planning literature and research in stochastic 

earch heuristics. 

. Data collection 

The international interbank market is a global network used by 

nancial institutions in order to exchange funds in various curren- 

ies. The aforementioned transfer of funds is among others related 

o the institutions’ “needs”. One typical example is when an in- 

titution A has an excess in funds and at the same time an insti-

ution B has an increase need to cover its deficit. The two insti- 

utions through the network of interbank markets are able to ex- 

hange an amount of funds by matching their excess and deficit 

elated liquidity. Another category of interbank transactions is the 

ne related to the Over the Counter Derivative markets. For exam- 
3 
le, swap rate receivers are transacting with swap rate borrowers 

r institutions exchange United States Dollars for Euros. 

The transfer of liquidity can occur by using secured or unse- 

ured transactions. In a secured transaction the lender requests 

ollateral to guarantee the loan provided. The collateral is usually 

 liquid financial instrument (e.g. bond or stock). At the other end 

f the spectrum, when institutions lend each other via unsecured 

ransactions, no exchange of collateral is required. In our analysis, 

e focus on transactions entail transfer of liquidity via a borrower 

 lender relationship, covering both secured and unsecured trans- 

ctions. More specifically we concentrate our interest in the Greek 

anking network and we include in our analysis unsecured loan 

nd deposit transactions regardless of their seniority, repurchase 

nd reverse repurchase transactions as well as sell by back and buy 

ell back transactions. 

The Greek Banking network is composed by Other Systemic In- 

titutions, Less Systemic Commercial Banks and Less Systemic Co- 

perative Banks. Although the number of institution became lim- 

ted (around 20) due to the Greek Sovereign crisis, the Greek bank- 

ng institutions carry different characteristics in terms of business 

odels, balance sheet size and liquidity capacity. 

The network constitutes the exchange of liquidity funds be- 

ween different institutions operating in Greece from 2014Q3 to 

019Q3 on a weekly basis. Transactions conducted with institu- 

ions not operating in Greece are excluded. The interbank network 

s well as the liquidity and solvency metrics are derived directly 

rom Bank of Greece Regulatory Database. The time period covers 

 few different instances of liquidity conditions in Greece such as 

olitical uncertainty that ended up to a referendum and the intro- 

uction of capital controls in 2015 as well as political stable peri- 

ds in which institutions were able to operate normally and build 

igh liquidity buffers. For each data point two institutions are con- 

ider connected if and only if at that date they have at least one 

pen interbank transaction. 

The dataset consist of a series of matrices with open interbank 

ransaction between institutions operating in Greece in specific ref- 

rence dates. Each matrix, referring to a specific reference date and 

he frequency of the selected dates, is weekly covering the whole 

ime span. For each reference date (each matrix) two institutions 

re consider connected if and only if at that date they have at least 

ne open interbank transaction. In order to analyze the network in 

 coherent econometric way interbank matrices are transposed to 

ata format as illustrated in Table 1 . In t1 Bank A has lent to Bank

 (amount 10), Bank B has lent to Bank C (amount 20) and Bank C

as lent to Bank A (amount 5). In this case, the dependent variable 

akes the value of 1 (irrespectively from the lent amount) whereas 

n the rest of the relations between the 3 banks the dependent 

ariable takes the value zero. The matrices in the sample are end 

f week point in time data, so the next week ( t + 1) the same allo-

ation of interbank link presence ( y = 1) and non-presence ( y = 0)

s performed. Finally, for each reference date we retrieve the most 

ecent lagged independent variable value. For instance, capital ad- 

quacy ratios are updated every month, thus for all weekly obser- 

ation within the whole month this independent variable remains 

onstant. 

In this way one can easily apply an econometric approach by 

atching each time stamp with Lender Borrower characteristics 

nd predict either the exposure measures or the link indicator. In 

ur case we focus on the link indicator setting up a classification 

roblem with a binary dependent variable taking the value of 1 

f a bilateral interbank relationship is observed between bank L 

lender)) and bank B (borrower). Our initial matrix dataset con- 

ists of weekly observations from 2/8/2013 to 20/9/2019 and the 

ize of the matrix is 16 ×16 including 16 banks which were fully 

perative during that period. Taking out the diagonal elements our 

ransposed matrix has around 70.0 0 0 observations. 
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Table 1 

Illustrative example of bilateral interbank exposure matrix transposition. 
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The structure of the Greek Interbank Market has taken different 

orms before, during and after the crisis years. 

We acknowledge the limitation paused by a small network of 

anks similar to the Greek banking system but on the other hand, 

he time series of the interbank matrices investigated in this study 

s long and includes both Crisis and Non-Crisis periods. During 

on-crisis periods Greek Interbank market is one of the alterna- 

ives through which banks manage their liquidity deficits and sur- 

luses. When the crisis peaked in 2015 and with the imposition 

f capital controls in June 2015 the interbank market shrunk to 

 significant degree since questions relevant to the viability of the 

anking system increased substantially the risk profile of the coun- 

erparties involved. In addition the deposit drain eroded the fund- 

ng surpluses which could be lent whereas banks resorted to the 

mergency Liquidity Assistance of the European Central Bank in or- 

er to cover their funding needs. The different structure and size 

f the interbank market during crisis and non-crisis times is evi- 

ent in Fig. 1 from which we observe that both size of exposures 

nd complexity of linkages are very different when compare a cri- 

is date (22/1/2016)) with a non - crisis one (23/11/2018). 

. Model development 

We depart from previous studies which usually employ ag- 

ostic approaches in the specification of prior for the probability 

f bilateral relationships across banks i.e. small banks are more 

robable to be borrowed from large banks so large banks exhibit 

igher probability of entering the market as lenders and small 

anks have lower probability to enter the market as borrowers. 

e base the estimation of prior interconnected probability to a 

et of indicators that reflect the liquidity and capital solvency 
4 
f the banks as well as their size. The indicators we are using 

re the Loan to Deposit ratios of lenders and borrowers (LTD_L 

nd LTD_B) to capture liquidity solvency (lower LTD means bet- 

er liquidity capacity) and the respective Capital Adequacy ratios 

CAR_L and CAR_B) to cover for capital solvency. We additionally 

nclude the yield on deposits of lenders and borrower (YIELD_L and 

IELD_B), calculated as interest expense to deposits, along with a 

ummy variable taking value of 1 if the bank is classified as sig- 

ificant institution based on the assessment of the single supervi- 

ory mechanism (SSM). Finally we include as covariate the spread 

f the Greek 10 year bond over the German bond in order to ac- 

ount for the Greek macroeconomic status as perceived by the 

arket. 

A lot has changed in the banking regulation (with the adop- 

ion of Basel III); capital adequacy and liquidity are measured in a 

tandardized way and investors (including banks themselves) look 

t indicators like LCR, CET1 ratio and ratings. We focus only on 

TD and CAR ratio as some regulatory ratios have been introduced 

ater in the time span we cover (such as LCR) whereas others have 

hanged due to redesigning of regulatory framework (such as CET1 

omposition). 

From Fig. 2 we notice that no multi-collinearity effects exist 

mong the dependent variables, as the pairwise correlation does 

ot surpass 35% in the more extreme cases. In addition based on 

ugmented Dickey Fuller test ( Table 2 ) the null of no stationarity 

s rejected for all the dependent variables implying no significant 

hanges in trend during the observation period. 

The abovementioned factors are used as independent variables 

hereas the dependent variable is a binary factor taking the value 

f 1 if a bilateral interbank relationship is observed between bank 

 (lender)) and bank B (borrower) based on the observed interbank 
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Fig. 1. Greek interbank market structure during non-crisis (upper chart) and crisis period (lower chart). Assets refer to lending in the market (amounts in millions). 

Table 2 

Augmented Dickey Fuller stationarity 

test of the independent variates in- 

cluded in the XGBOOST and Logit 

model probability specifications. 

ADF P-VALUE% 

LTD_L −5.14 0.00 

CAR_L −9.74 0.00 

YIELD_L −5.43 0.00 

LTD_B −29.56 0.00 

CAR_B −28.97 0.00 

YIELD_B −28.94 0.00 

Gr_Spread −3.69 2.369 

m

e

m

t

i

β

X

b

S

atrix and zero otherwise. In order to assess the relevance and the 

ffect of the factors employed we estimate a Logistic Regression 

odel the relevant estimates of which are shown in Table 2 using 
5 
he formula P ( Y i = 1 ) = 

exp( βi 
′ x i ) 

1+ exp( βi 
′ x i ) 

. Betas are provided in Table 3 

n column estimate. In particular, we define the following vectors 

= 

⎡ 

⎢ ⎣ 

β0 

β1 

. . . 

βp−1 

⎤ 

⎥ ⎦ 

p× 1 

X = 

⎡ 

⎢ ⎣ 

1 

X 1 

. . . 

X P−1 

⎤ 

⎥ ⎦ 

P× 1 

X i = 

⎡ 

⎢ ⎣ 

1 

x i 1 
. . . 

x i,p−1 

⎤ 

⎥ ⎦ 

p× 1 

 i 
′ β = β0 + β1 x i 1 + . . . + βp−1 x i,p−1 

So the interbank link probability between lender and borrower 

ank is defined as 

o E { Y i } = πi = 

exp 
(
X i 

′ β
)

1 + exp ( X i 
′ β) 
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Fig. 2. Correlation matrix of independent variates included in the XGBOOST and Logit model probability specifications. 

Table 3 

Logistic Regression estimates for the probability of bilateral relationship. 

Coefficients: Estimate Std.Error z-value Pr( > |z|) 

LTD_L −0.016 0.001 −15.897 < 2e-16 ∗∗∗

CAR_L 0.002 0.002 0.810 0.418 

YIELD_L −0.551 0.043 −12.747 < 2e-16 ∗∗∗

LTD_B −0.018 0.001 −15.597 < 2e-16 ∗∗∗

CAR_B −0.056 0.003 −17.149 < 2e-16 ∗∗∗

YIELD_B −0.092 0.031 −2.943 0.003 ∗∗

Rank_L 2.435 0.057 42.674 < 2e-16 ∗∗∗

Rank_B 2.171 0.055 39.321 < 2e-16 ∗∗∗

Gr_Spread 0.016 0.010 1.627 0.104 

—

Signif. codes: 0 ‘ ∗∗∗ ’ 0.001 ‘ ∗∗ ’ 0.01 ‘ ∗ ’ 0.05 ‘.’ 0.1 ‘ ’ 1 

AIC: 17,695 
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In our case based on the covariates employed, the form of Lo- 

istic regression employed is 

og 

(
p 

1 − p 

)
= LT D L + CA R L + YIEL D L + LT D B + CA R B + YIEL D B 

+ Ran k L + Ran k B + Gr _ Spread 

From the Logit model we deduce that significant institutions 

ave higher probability of using the interbank market either as 

enders (RANK-L) or as borrowers (RANK_B). This partially justi- 

es the ad-hoc assumption that many allocation algorithms use 

ssuming that larger institutions are more active in the interbank 

arket. In addition banks with a solvent liquidity status, as ex- 

ressed by low Loan to Deposit ratios (LTD_L and LTD_B), have an 
6 
ncreased probability to engage into an interbank transaction. In 

 similar vein banks with lower deposit yields enter more prob- 

bly in an interbank transaction both as lenders and borrowers 

YIELD_L and YIELD_B). The behavior observed in Loan to Deposit 

nd Yield ratios is more pronounced in the Greek case where dur- 

ng the sovereign crisis banks suffered from deposit outflows and 

ncreased cost of funding accompanied by a shrunk in the Greek 

nterbank market. Also the negative sign in the capital adequacy 

f the borrower (CAR_B) may seem as counterintuitive given that 

apital solvent banks are usually treated as sovereign counterpar- 

ies, but in the Greek case during the crisis and the narrowing of 

he interbank market, banks had proceed in share capital increases 

trengthening their capital ratios. Finally, the sovereign status of 

he Greek economy expressed via the spread of Greek government 

ond vs the German Bond may was relevant on the size of the 

nterbank market but it does not seems to affect significantly the 

ilateral relationships among Greek banks. For each reference date 

e retrieve the most recent lagged independent variable value. For 

nstance, capital adequacy ratios are updated every month, thus for 

ll weekly observation within the same the whole month this in- 

ependent variable remains constant. 

In the current study we depart from the traditional econometric 

echniques, such as Logistic regression, and we apply a method- 

logy from the general domain of Machine Learning techniques 

alled Extreme Gradient Boosting (XGBoost). The supervisory mo- 

ivation for employing such types of methodologies rests on the 

vailability of large scale supervisory data upon which the capa- 

ility of pattern detection by traditional statistical methodologies 
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s limited due to multicollinearity, dimensionality and convergence 

ssues. In particular interbank systems have many interrelations 

nd participants whereas the collection of high frequency data on 

he transactions from supervisory authorities produces large size 

atasets where non – linear relationships are prominent. In this 

omain Machine Learning techniques may provide value added in 

omparison to classical econometric techniques which cannot cap- 

ure complicated non-linear structures. 

Extreme Gradient Boosting has been proposed by Friedman 

1999) and has the advantage of reducing both variance and bias. 

t reduces variance because multiple models are used and it addi- 

ionally reduces bias in training the subsequent model by inform- 

ng it what errors the previous models made. The algorithm sup- 

orts the fitting of various types of objective functions, including 

egression, classification, and ranking whereas it offers increased 

exibility, since optimization is performed on an extended set of 

yper-parameters. We implemented XGBOOST in our study by uti- 

izing the XGBOOST R package. 

We employed in the classification algorithm the variables 

hown in Table 1 along with 3 additional variables defined as the 

atio of Loan to Deposit, Capital Adequacy and deposit yield be- 

ween Borrower and Lender (LTD_R, CAR_R and Yield_R) which al- 

ow us to account for the inter-relationship effects between coun- 

erparties. We also tried inserting those variables in the Logistic 

egression but they led to singular fitted probabilities. An advan- 

age of the bagging and boosting techniques is that they built mul- 

iple models based on subsamples of variables and average among 

hem. In this way they do not suffer from frequent issues in tradi- 

ional econometrics such as singularities and multicollinearity. 

In the Logit case the parameters are estimated via the maxi- 

ization of the associated, standard in literature, likelihood func- 

ion. The XGBOOST is an algorithm where random subsets of the 

ample are drawn from which a set of models are estimated which 

n turn are combined into a boosted estimator. The information 

pace required under both methods (Logit - XGBOOST) is the same 

hereas they are used to determine solely the link prior probabil- 

ty. This estimated linkage prior probability filters the exposure al- 

ocations of agnostic methods such as MAXE and ANAN (ensemble 

ethod). For example, the Logit-ANAN (Logit-MD) and XGBOOST- 

NAN (XGB OOST-MD) use the Logit/XGB OOST estimated interbank 

ink probability as a prior linkage probability and employ the Anan 

MD) reconstruction algorithm for exposure allocation. By compar- 

ng the results between the agnostic algorithms and the ensemble 

ethods, we see an increase in the accuracy and a decrease in the 

AE of the financial networks on average. The agnostic models are 

sed, as a benchmark to measure the additional benefit for apply- 

ng machine learning in estimating prior network probabilities. 

The actual network is not usually available because it involves 

d hoc data collection form regulatory authorities to monitor in 

ore closely the financial system. The models developed can be 

sed for other future periods when the actual network is not avail- 

ble. Another use of this analysis is that we describe variables 

hat influence the a priori probabilities of two banks engaging in a 

ransaction. The variables are generally available to the public and 

an be used along with the MAXE or Anan (MD) algorithms. Al- 

ernatively, only publicly available accounting information such as 

oan to Deposit ratios of the two banks can also be used stan- 

alone in order to adjust the probabilities in case where other vari- 

bles are not accessible. 

Boosting algorithms have the relative advantage that they are 

ot “black boxes” regarding the factors affecting the final re- 

ult, since they provide a module for calculating variable impor- 

ance measures through reshuffling. Randomizing means randomly 

eshuffling the values of the independent variable. If the indepen- 

ent variable has significant explanatory power, this will be gone 

hen the reshuffled variable is imported back into the estima- 
7 
ion process leading to loss in model predictive power. If the vari- 

ble does not have explanatory power the loss of predictive power 

ill be marginal. By comparing, the loss of predictive power on 

an generate an importance ranking of the employed variables. We 

un the variable importance algorithm and we show in Fig. 3 the 

anked list of more important variables 

We notice that the size of the Borrower and the relationship in 

he liquidity status between lender and borrower determine sig- 

ificantly as expected the probability of a bilateral relationship 

mong them. In addition the variables which were not statisti- 

ally significant in the Logistic Regression receive lower risk weight 

n the XGBoost estimation. In all it seems that the variables de- 

cribing the economic solvency of the borrower rank higher, as ex- 

ected, in the decision of whether to engage in a bilateral inter- 

ank relationship. 

In addition in order to verify the added value of using Machine 

earning Technique vs a traditional statistical technique in mod- 

ling interconnectedness we benchmark our results, besides cur- 

ent methods described in the relevant literature, with the results 

btained based on the estimated probability of interconnectedness 

s calculated from the Logistic regression estimates of Table 1 and 

mploy in the same vein as XGBoost the Minimum Density algo- 

ithm of Anand et al. (2015) in order to allocate the exposures in 

he interbank matrix. 

. Model validation 

In order to assess the robustness of our approach we perform a 

horough validation procedure. More precisely, we report the per- 

ormance results obtained from the experimental evaluation of our 

ethod, in terms of out-of-sample performance. The in sample and 

ut of sample periods refer to stress and non-stress periods. i.e. 5 

ear of data 2014–2019 broken down to non-crisis 3.5 years (70%) 

nd crisis 1.5 years (30%). The crisis period is from March 2015 

Grexit fears peaked) to September 2016 (Greek banks recapital- 

zed). In the case of ensemble models, the in-sample information 

n prior probability determining factors is used to predict prior 

robabilities in the out of sample. In the case of agnostic models 

o prior information of the in-sample is used in the out of sample 

rojection. 

Note that in order to train the machine learning algorithm in 

he current study the 70% in-sample dataset is further split ran- 

omly in train and validation set using 55–15 rule. The valida- 

ion dataset is used to find the best set of hyper-parameters of the 

odels and select the best candidate model for performing out of 

ample evaluation. 

Classification accuracy, is the main criterion to assess the effi- 

acy of XGBoost against the Logistic regression model in correctly 

redicting the bilateral links in the interbank market, in terms 

f discriminatory power and performance misinterpretation. We 

ested a series of metrics that are broadly used for quantitatively 

stimating the discriminatory power of each scoring model, such 

s the Area under the ROC curve metric, as well as the Kolmogorov 

mirnov (KS) statistic as performance measures. 

In addition we estimate a Probability of Interbank relationship 

ut-off point according to which we distinguish the forecasted in- 

erbank. After thoroughly examining different values for this pa- 

ameter, and based on the performance of the classification in the 

n-sample dataset used for model development, we set the cut off

riterion with a cost profile function where we penalize a false 

ositive 5 times against a false negative. This means that we allo- 

ate more importance when predict correctly the interbank links. 

he penalization rate affects the results in Table 5 , which includes 

he metrics comparing Logit and XGBOOST model. This number 

as set as initial value close to the ratio of a fully connected net- 

ork versus the actual networks. In addition, after running a sen- 
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Fig. 3. Extreme Gradient Boosting Variable Importance plot. 
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Table 4 

Classification tables of candidate models. 

Logit pred 

TRUE 0 1 Signal Rate 

0 15.084 2.466 False Alarm 14% 

1 217 573 Hit Rate 73% 

XGBoost pred 

TRUE 0 1 Signal Rate 

0 14.379 3.171 False Alarm 18% 

1 6 784 Hit Rate 99% 

b

n

o

q

m

K

i

t

o

o

t

t

itivity analysis on the results after perturbing this number (3 to 7) 

he outcome does not change so the XGBOOST continue to outper- 

orm Logit model. In terms of out of sample classification accuracy 

f the XGBoost model clearly outperforms Logit model taking into 

ccount comparable false alarm rates ( Table 3 ). 

The penalization of false positive vs false negatives is directly 

elated with the focus of the analyst. In particular from a supervi- 

ory perspective it is more important to detect efficiently the fac- 

ors that affect the probability of occurrence of true positive inter- 

ank links i.e. penalize the false positive outcomes. This penaliza- 

ion ration is not taken into account in Table 6 but it is taken into

ccount in Table 5 metrics G-Mean, LR, Youden, and BA measures 

hich are cut-off dependent i.e. one has to define a probability 

hreshold above which the bank linkage event is expected to occur 

r not. 

For comparing the classification accuracy between Logistic Re- 

ression and XGBOOST algorithm we employ a set of standard 

easures for imbalanced datasets proposed by Bekkar et al. 

2013) ( Table 4 ) and described analytically in the Appendix. The 

lass imbalance in the Greek interbank system lies in the fact that 

ut of 16 banks only 5–6 of them have significant interbank activ- 

ty leading to an interbank matrix with a preponderance of zeros 

orresponding to the cases of not existent relationships. From the 

ensity of the network (graphically illustrated in Fig. 1 ) we deduce 

hat even in the non-crisis period the interbank relationships were 

imited among large banks and a restricted number of small finan- 

ial institutions so the network exhibits low density. The class im- 
t

8 
alance problem is translated in our case as sparse (low-density) 

etwork issue, which complicates the correct prediction of positive 

utcomes. 

We also employ a series of metrics that are broadly used for 

uantitatively estimating the discriminatory power of each scoring 

odel, such as the Area under the ROC curve metric, as well as the 

olmogorov Smirnov (KS) statistic. 

Furthermore, we present in Fig. 3 the ROC curves correspond- 

ng to the methodologies analysed. This curve is created by plot- 

ing the true positive rate against the false positive rate at vari- 

us threshold settings. As such, we illustrate the obtained trade- 

ffs between sensitivity and specificity, as any increase in sensi- 

ivity will be accompanied by a decrease in specificity. The closer 

he curve follows the left-hand border and then the top border of 

he ROC space, the more accurate the modeling approach. The cor- 
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Fig. 4. ROC curve for classifying the existence of interbank links (xgb: XGBoost, logit: Logistic regression). 
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esponding ROC curve of extreme gradient boosting (XGBoost) is 

igher over all the considered competitors supporting the high de- 

ree of efficacy and generalization capacity of the proposed em- 

loyed machine learning system. 

These measures are used to derive a full spectrum conclusion 

egarding the classification power of each model relative to the 

thers. Even though there could be an amount of correlation be- 

ween metrics, we incorporate them all, in order to classify cor- 

ectly the employed techniques based on their predictive perfor- 

ance. Based on the results ( Table 4 , Fig. 3 ) we note that XGBoost

utperforms the benchmark Logit model, along almost all mea- 

ures. 

In order to assess our method based on a widespread spectrum 

f different interbank matrix allocation techniques we benchmark 

ur results vs six different techniques 1 namely 

• Maximum Entropy (MAXE) algorithm of Upper and Worms 

(2004) 
• Minimum Density (MD) algorithm of Anand et al. (2015) 
• Baral and Fique (2012) algorithm (BARA) 
• Halaj and Kok (2013) algorithm (HALA) 
• Drehmann and Tarashev (2013) algorithm (DREH) 
• Cimini et al. (2015) algorithm (CIMI) 

We additionally employ for benchmarking purposes the ap- 

roach of estimating the prior probability of interconnectedness 
1 The relevant matlab code for estimating the interbank matrix 

ased on different techniques is available by Anand et al (2018) in 

ttps://www.sciencedirect.com/science/article/pii/S1572308917303649 

1

e

t

9 
hrough a Logistic regression model and then employ the Mini- 

um Density algorithm of Anand et al. (2015) in order to allocate 

he exposures in the interbank matrix. For comparing realized vs 

orecasted matrix accuracy we employ a set of similarity measures 

escribed in Anand et al. (2018) plus a Mean Absolute percentage 

rror (MAE). The first 2 measures (Hamming and Accuracy) focus 

n the capability of the methodology to allocate correctly the in- 

erbank links whereas the Jensen and Cosine measures assess the 

roper allocation of exposures in each detected link. The Mean Ab- 

olute Error measures both the Link and Exposure allocation capac- 

ty. 

More precisely in Hamming distance we sum over all links 

he difference between the original and reconstructed networks 

nd in accuracy measure the percentage of true-positive and true- 

egatives links in the reconstructed network are compared rela- 

ive to the original network. In the Jensen–Shannon divergence we 

easure the divergence between original and reconstructed net- 

orks, normalizing all entries in the networks to sum up to one 

nd in the Cosine similarity we compare the Cosine of the angle 

etween the original and reconstructed networks. 

The Link measures (Hamming and Accuracy) are bounded by 

 and 1 with a value of 1 signifying perfect accuracy, whereas for 

ensen–Shannon divergence the metric is bounded by 0 and 1 with 

 value of 0 signifying non divergence between actual and esti- 

ated matrix. For Cosine similarity the metric is bounded by 0 and 

 with a value of 1 signifying non divergence between actual and 

stimated matrix. 

The similarity measures results (shown in Table 6 ) confirm that 

he Machine Learning based approach (XGBOOST-MD) has the low- 
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Fig. 5. Similarity measures assessment between actual and estimated interbank matrix based on the Maximum Entropy (MAXE) and Minimum Density (ANAN) algorithms, 

with and without the inclusion of an XGBOOST prior, during crisis and non-crisis period. 
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st Mean Absolute error which is the measure that captures both 

he proper allocation of exposures and accuracy of the interbank 

inks. In addition XGBOOST-MD performs better in Hamming and 

ccuracy measures which focus on the accuracy of bilateral link es- 

imation. More importantly when focusing on the classification ac- 

uracy of interbank links XGBOOST exhibits better distance metrics 

han the Logistic Regression approach signifying the value added 

f future application of machine learning techniques in interbank 
etwork construction. On the other hand in measures that concen- n

10 
rate on the proper allocation of the exposure amounts (Jensen and 

osine), the Maximum Entropy Algorithm ( Upper & Worms, 2004 ) 

nd Baral and Fique (2012) algorithm which is basically and en- 

iched Maximum Entropy version over-perform. 

Based on Anand et al. (2018) CIMI methodology is a clear win- 

er among probabilistic methods (DREH, CIMI) but not among all 

he methods (both probabilistic and deterministic). Overall based 

n the “horse race” performed in Anand et al. (2018) no clear win- 

er exists among the agnostic algorithms as the results are depen- 
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Table 5 

Results of the metrics for the out 

of sample performance of all can- 

didate models. 

Logit XGBOOST 

AUROC 0.845 0.987 

KS 0.599 0.918 

G-mean 0.789 0.902 

LR 0.320 0.009 

Youden 0.585 0.811 

BA 0.792 0.906 

d

u

r

m

h

e

p

o

o

i

l

s

f

t

T

d

n

n

t

o

a

b

f

u

‘

q

f

i

c

u

m

O

c

M

t

a

s

ent on the structure and density of the actual network. In partic- 

lar, as Anand et al. (2018) also points, in dense networks the algo- 

ithms of Bara, DREH and MAXE over-perform compared to other 

ethods because they build complete networks. On the other 

and, in low-density networks the algorithms of Anan (stated oth- 

rwise as Maximum Density - MD), CIMI, HALA and MUSM over- 

erform since they correctly identify which links are absenting the 

riginal networks. This stems from the fact that these three meth- 

ds tend to produce sparse networks. The class imbalance problem 

n the case of the Greek banking system is equivalent in having a 

ow-density network so among a large set of banks only a relative 

mall part of them has interbank relations. 

The main contribution of this paper is that we enrich the in- 

ormation generally available for financial networks with variables 
Table 6 

Similarity measures assessment between actual and estimated interbank mat

11 
hat are available for the publication of banks financial statements. 

he agnostic models are used as a benchmark to measure the ad- 

itional benefit for applying machine learning in estimating prior 

etwork probabilities. By comparing the results between the ag- 

ostic algorithms and the ensemble methods we see an increase in 

he accuracy and a decrease in the MAE of the financial networks 

n average. 

In order to complement our XGBOOST-Anan (XGBOOST-MD) we 

lso combine the MAXE entropy model with the XGBOOST model 

y filtering the MAXE matrix through a binary matrix deriving 

rom interbank linkages probability estimates (based on XGBOOST) 

sing bootstrapping. In particular, at the core of our method is a 

fitness’ model, which postulates that the probability of a bank ac- 

uiring links with counterparties in the interbank market. First, 

rom the banks characteristics, the lending – borrowing relation 

s estimated. Second, using those probabilities, a series of adja- 

ency matrices are sampled. Finally, the exposures are determined 

sing either the standard maximum entropy or minimum density 

ethod. This methodology is called hence after XGBOOST-MAXE. 

verall, the performance of MAXE coupled with the alternative 

onstruction of prior probabilities follows similar patterns with the 

inimum Density approach. 

Finally, take also into account that the accuracy metric is impor- 

ant in the central banks financial stability stress testing activities 

nd network simulation, as it describes actual relationships in the 

ystem. Furthermore for measuring the second round effects of a 
rix. Best performing models marked in gray. 2 
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Table 7 

Similarity measures assessment between actual and estimated interbank matrix averaging 

the Maximum Entropy (MAXE) and Minimum Density (ANAN) algorithms, with and with- 

out the inclusion of an XGBOOST prior, during crisis and non-crisis period. 

Accuracy MAXE ANAN MAXE XGBoost prior ANAN XGBoost prior 

Crisis Period 0.947 0.965 0.965 0.978 

MAE MAXE ANAN MAXE XGBoost prior ANAN XGBoost prior 

Crisis Period 99.30% 95.20% 84.10% 88.15% 

Table 8 

Similarity measures assessment between actual and estimated in- 

terbank matrix. Difference between the ANAN algorithm and the 

ANAN including an XGBOOST prior increases as Network increases. 

Accuracy 16 Banks 15 banks 14 banks 

Accuracy Crisis Period 1.5% 1.32% 1.15% 

MAE Crisis Period 10% 8% 6.4% 
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anks defaulting in the system and quantification of risk the MAE 

s very relevant metric. 

We did not included Musmeci methodology in the results be- 

ause both in our case, but also as indicated based on Anand et al.

2018) , is not superior to CIMI, which belongs also to the family of 

robabilistic methods. The reason we refer to it in the paper is for 

iterature completeness purposes. On the details of the implemen- 

ation of Musmeci algorithm, we followed Anand et al. (2018) . 

In order to complement our XGBOOST-Anan (XGBOOST-MD) 

e also combine the MAXE entropy model with the XGBOOST 

odel by filtering the MAXE matrix through a binary matrix de- 

iving from interbank linkages probability estimates (based on XG- 

OOST) using bootstrapping. This methodology is called hence af- 

er XGBOOST-MAXE ( Table 6 ). Overall, the performance of Maxe 

oupled with the alternative construction of prior probabilities fol- 

ows similar patterns with the Minimum Density approach. 

The in sample and out of sample periods refer to stress and 

on-stress periods i.e. 5 year of data 2014–2019 broken down to 

on-crisis 3.5 years (70%) and crisis 1.5 years (30%). The crisis pe- 

iod is from March 2015 (Grexit fears peaked) to September 2016 

Greek banks recapitalized). Investigating further the proposed ap- 

roach, we focus on a particular stress period for the Greek finan- 

ial system and compare the XGBOOST – MAXE, XGBOOST–ANAN 

XGBOOST–MD) vs the respective agnostic MAXE and ANAN recon- 

tructing methods. We focus on the accuracy and MAE as we deem 

hem more relevant for the quantification of risk under a stress 

esting setup. Table 7 below summarizes the two metrics between 

he two groups of algorithms. 

Our empirical results show a sizable improvement in the two 

easures against the benchmark, signaling that the proposed 

ethod of estimating more accurate prior probabilities, may lead 

o more accurate reconstruction of networks. The following charts 

epict the XGBOOST – ANAN vs ANAN during the crisis period Figs. 

 and 5 . 

Assessing the improvement in the reconstruction of network 

ased on our analysis we conclude that the accuracy increase is 

ore sizable in periods where a shock hits the network making it 

ore useful for quantification of risk. In addition, the improvement 

ill be more sizable as the number of participants increases since 

gnostic measures will lose their forecasting ability. To provide 

ore evidence on this front we run two simulations one where we 

xclude 1 bank and in the second one we exclude 2 banks from 

he network. So in the first case we have a network of 15 banks 

articipants and in the latter case 14 participants. Table 8 provides 

he marginal benefit in the MAE and the accuracy for the three 

etwork setups. The improvement is estimated as the difference 

etween ANAN and XGBoost – MD (XGBoost Priors in ANAN) 
12 
Based on this analysis increasing the number of banks partici- 

ants may lead to significant improvement using a more informed 

rior estimation method like XGBoost since agnostic method error 

ncreases with the size of the network. 

. Conclusions 

We propose an innovative approach to model the probability 

f interlinkages in an interbank network with the use of Extreme 

radient Boosting algorithm, i.e. forecast the probability of a pair 

f banks entering into an interbank market borrower - lender re- 

ationship taking into account their financial characteristics and 

heir past observed behavior. Our purpose is to depart from ag- 

ostic assumptions usually employed in interbank matrix alloca- 

ion algorithms and take into account the financial features of the 

anks when assigning prior link probabilities. The exposure alloca- 

ion follows the Minimum Density algorithm developed by Anand 

t al. (2015) . 

Our main finding is that machine learning algorithms outper- 

orms the benchmark Logistic Regression model in interbank link 

orecasting and this outperformance is also reflected when simi- 

arity measures on overall Greek interbank network are performed. 

n addition, the proposed machine learning technique achieves im- 

roved overall performance when compared to a wide range of in- 

erbank allocation matrix techniques already existing in the finan- 

ial literature. 

In particular, in this framework we propose a new method that 

mploys machine learning in order to increase the accuracy of ag- 

ostic algorithms in reconstructing a financial network. The XG- 

OOST method is combined with both Maximum Entropy (MAXE) 

nd Minimum Density (ANAN). The main contribution of this pa- 

er is that we enrich the information generally available for finan- 

ial networks with variables that are available for the publication 

f banks financial statements (ensemble method). A set of agnos- 

ic models, i.e. models that the exposure allocation algorithm does 

ot include prior information, are used as a benchmark to measure 

he additional benefit for applying machine learning in estimating 

rior network probabilities. By comparing the results between the 

gnostic algorithms and the ensemble method we see an increase 

n the accuracy and a decrease in the MAE of the financial net- 

orks on average 

Our findings provide valuable insight in the context of system 

ide stress test development where a misrepresentation of the 

gent interaction links could lead to understatement or overstate- 

ent of the final result. An additional innovation of our approach 

ies in the incorporation of financial indicators and balance sheet 

ata as determinants in the network structure production. This can 

llow supervisors and analysts to run specific scenarios and exam- 

ne their impact in the interbank market structure paving in this 

ay the road to a new category of network stress testing exercises. 

For future investigation one could easily depart from our ap- 

roach by applying a different allocation algorithm based on the 

tructure of the interbank market that interests him. Additionally 

he use of alternative machine learning techniques could be fur- 

her investigated, such as Neural Networks and or Support Vector 

achines since the granularity and regular reporting of interbank 
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xposures can lead to large size datasets prone to non-linear be- 

avior patterns. Furthermore interbank market allocation can be 

mported as a separate module in a holistic system wide stress 

ystems where in sequential steps under a given scenario the inter- 

ank matrix can be adjusted based on banks defaulting and exiting 

he market. 
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ppendix. Classification Evaluation Measures 

Translating sensitivity and specificity as the accuracy of positive 

i.e. solvent) and negative (i.e. insolvent) cases, respectively, we use 

 set of combined performance measures that aim to provide a 

ore credible evaluation. In particular, sensitivity and specificity 

re defined as follows: 

ensit i v it y = 

T P 

T P + F N 

, Speci f icity = 

T N 

T N + F P 

here: 

TP = True Positive, TN = True Negative, FN = False Negative and 

P = False Positive. 

We can define the following metrics ( Bekkar et al., 2013 ) which 

an be found in Table 5 and compare the Accuracy of the XGBOOST 

s the Logit model in modeling the information prior (interbank 

inkage probability) that is used in ensemble methods. 

Index Index Name Formula 

G-mean geometric 

mean 

√ 

(sensitivity ∗specificity) 

LM negative 

likelihood ratio 

(1-sensitivity)/specificity 

LP positive 

likelihood ratio 

sensitivity/(1-specificity) 

DP Discriminant 

power 

√ 

3/ π

[log(sensitivity/(1-sensitivity)) 

+ log(specificity/(1- 

specificity))] 

BA balanced 

accuracy 

1/2 (sensitivity + specificity) 

WBA weighted 

balanced 

accuracy 

0.75 ∗sensitivity + 0.25 ∗specificity 

� Youden’s index sensitivity-(1-specificity) 
13 
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