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A B S T R A C T   

Background: Exposure to pesticides has been associated with oxidative stress in animals and humans. Previously, 
we showed that an organic food intervention reduced pesticide exposure and oxidative damage (OD) biomarkers 
over time; however associated metabolic changes are not fully understood yet. 
Objectives: We assessed perturbations of the urine metabolome in response to an organic food intervention for 
children and its association with pesticides biomarkers [3-phenoxybenzoic acid (3-PBA) and 6-chloronicotinic 
acid (6-CN)]. We also evaluated the molecular signatures of metabolites associated with biomarkers of OD (8- 
iso-PGF2a and 8-OHdG) and related biological pathways. 
Methods: We used data from the ORGANIKO LIFE + trial (NCT02998203), a cluster-randomized cross-over trial 
conducted among primary school children in Cyprus. Participants (n = 149) were asked to follow an organic food 
intervention for 40 days and their usual food habits for another 40 days, providing up to six first morning urine 
samples (>850 samples in total). Untargeted GC–MS metabolomics analysis was performed. Metabolites with 
RSD ≤ 20% and D-ratio ≤ 50% were retained for analysis. Associations were examined using mixed-effect 
regression models and corrected for false-discovery rate of 0.05. Pathway analysis followed. 
Results: Following strict quality checks, 156 features remained out of a total of 610. D-glucose was associated 
with the organic food intervention (β = − 0.23, 95% CI: − 0.37,− 0.10), aminomalonic acid showed a time- 
dependent increase during the intervention period (βint = 0.012; 95% CI:0.002, 0.022) and was associated 
with the two OD biomarkers (β = − 0.27, 95% CI:− 0.34,− 0.20 for 8-iso-PGF2a and β = 0.19, 95% CI:0.11,0.28 
for 8-OHdG) and uric acid with 8-OHdG (β = 0.19, 95% CI:0.11,0.26). Metabolites were involved in pathways 
such as the starch and sucrose metabolism and pentose and glucuronate interconversions. 
Discussion: This is the first metabolomics study providing evidence of differential expression of metabolites by an 
organic food intervention, corroborating the reduction in biomarkers of OD. Further mechanistic evidence is 
warranted to better understand the biological plausibility of an organic food treatment on children’s health 
outcomes.   

1. Introduction 

The organic food market is growing and the recent European farm to 
fork strategy set a target for increasing organic food production, as it is 
considered a sustainable agriculture system, by positively affecting 
biodiversity and by reducing pesticides dependency (European Com-
mision, 2020). Exposure to pesticides has been associated with oxidative 

stress and inflammatory response in animals (Ge et al., 2015; Gargouri 
et al., 2018) and humans (Prakasam et al., 2001; Lee et al., 2007, 2017). 

Untargeted metabolomics offer a dynamic overview of the metabolic 
features within a system and may provide insight how the metabolome 
responds to external stimuli (Gertsman and Barshop, 2018). Gas- 
chromatography mass-spectrometry (GC–MS) is considered a “gold 
standard” in metabolomics with many advantages like high 
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chromatographic resolution, large databases of identified peaks and 
good sensitivity (Lu et al., 2008; Papadimitropoulos et al., 2018). As 
such, to better understand the metabolic changes associated with an 
organic food intervention, GC–MS metabolomic profiling may prove an 
important tool to gain new insights into the biochemistry of underlying 
alterations for people consuming systematically organic food. However, 
the use of metabolomics technologies in disentangling exposure 
outcome associations has only recently begun to aid in improving cau-
sality inference in environmental health sciences (Cadiou et al., 2021). 
Some have used the metabolome as an intermediary biological layer that 
improves estimates of causality in an exposome-outcome context 
(Cadiou et al., 2021). 

Several human and animal metabolomic studies on pesticide expo-
sures and their associated metabolic perturbations have already been 
published (Yang et al., 2011, 2020; Bonvallot et al., 2013; Liang et al., 
2013, 2020; Du et al., 2014; Maitre et al., 2018; Yan et al., 2021). 
Moreover, targeted and untargeted metabolomics studies have been 
performed to elucidate the association between various dietary patterns 
and metabolic signatures (Altmaier et al., 2011; O’Sullivan et al., 2011; 
Andersen et al., 2014; Playdon et al., 2017; Acar et al., 2019). The use of 
metabolomics tools has been limited to facilitating the discrimination of 
organic food products from conventional foods (Vallverdú-Queralt et al., 
2011; Novotná et al., 2012; Mie et al., 2014; Shepherd et al., 2014; 
Cubero-Leon et al., 2018; Xiao et al., 2018; Zhang et al., 2020) and they 
have not yet been used to examine the association between organic food 
consumption and metabolites. 

We have previously shown that a 40-day organic food intervention 
was effective in lowering biomarkers of exposure to pesticides, as well as 
biomarkers of oxidative damage (OD) in primary school children in 
Cyprus (Makris et al., 2019). Specifically, a cluster-randomized cross- 
over trial was conducted in 2017 and it was shown that an organic food 
intervention program followed for up to 40 days by 149 healthy children 
with mean age of 11 years old, reduced the body burden of biomarkers 
of exposure to pyrethroids [3-phenoxybenzoic acid (3-PBA)] and 
neonicotinoids [6-chloronicotinic acid (6-CN)] and reduced the levels of 
OD biomarkers, 8-OHdG and 8-iso-PGF2a. However, knowledge about 
possible changes in the human metabolome and response to organic 
food treatment (lower exposure to pesticides) and concomitant effects 
on outcomes of OD, is currently lacking. 

In this study, we applied untargeted GC–MS metabolomics to better 
understand the effect of an organic food intervention on biomarkers of 
exposure to pesticides and oxidative lipid and DNA damage in primary 
school children participating in the ORGANIKO trial (NCT02998203). 
To our knowledge, this is the first study investigating the metabolomic 
profiles associated with an organic food intervention and OD bio-
markers. The objectives of this study were to (i) assess the urinary 
metabolome changes in response to an organic food intervention of 
children and its association with biomarkers of exposure to pesticides (3- 
PBA and 6-CN), and to (ii) evaluate the molecular signatures of specific 
metabolites associated with biomarkers of OD (8-iso-PGF2a and 8- 
OHdG) and their downstream biological pathways. 

2. Methods 

2.1. Population study 

This study involved participants from the ORGANIKO LIFE+ cluster- 
randomized crossover trial (NCT02998203). The primary and secondary 
objectives of this non-pharmacological trial were assessed previously 
(Makris et al., 2019); these were to evaluate the effect of an organic food 
intervention on pyrethroid and neonicotinoid pesticide metabolites and 
on OD biomarkers, respectively, in primary school children in Cyprus. 
The trial protocol was approved by the Cyprus National Bioethics 
Committee (EEBK/EΠ/2016/25) and the Cyprus Ministry of Education 
and Culture (7.15.06.15/2). Informed consent was provided by the 
school headmasters and children’s parents or legal guardians, and a 

verbal assent was obtained from the children. The trial was performed in 
accordance with the principles of the Declaration of Helsinki. The trial 
included 191 healthy 10–12-year-old children, recruited from 6 schools 
in Limassol, in January 2017, for an 80-day intervention trial with two 
periods (40 days of organic diet and 40 days of conventional diet). 

Briefly, six public primary schools in Limassol were randomized a 
priori to two groups that differed in the sequence of the treatments; 
organic food period followed by the conventional food period (Group 1) 
or the opposite (Group 2) (Fig. 1). During the conventional food period, 
participants were asked to maintain their usual dietary choices (>80% 
conventional diet) for a total of 40 days. During the organic food period, 
participants were asked to follow strictly the two ~20-day sequential 
organic dietary menus provided to them for 40 ± 3 days. Participants 
crossed over to the other treatment on the day after the first period was 
completed. 

Each participant provided up to six first-morning urine samples 
during the whole duration of the study; one baseline sample and two 
samples in the conventional period, and three samples in the organic 
food period. Urine samples were collected in polypropylene vials and 
were temporarily stored in a school/home fridge (4 ◦C) until transferred 
to laboratory facilities for storage at − 80 ◦C. Anthropometric measure-
ments (weight, height, and waist circumference) were taken at the 
beginning of the study, at the end of the organic food period, and at the 
end of the study (for Group 2, the end of study and end of organic food 
period was the same time point) by trained researchers. 

Two pesticide metabolites were measured in urine samples: 3-PBA, a 
metabolite of pyrethroid pesticides, and 6-CN, a metabolite of neon-
icotinoid pesticides using a gas-chromatographic-tandem mass spec-
trometric (GC–MS/MS) (Charisiadis et al., 2019). Competitive ELISA 
kits were used to determine urinary concentrations of 8-iso-PGF2α 
(Catalog no: STA-337; Cell Biolabs, Inc, California, USA) and 8-OHdG 
(Catalog no: ABIN2964843; antibodies-online, Aachen, Germany). 
Creatinine was measured using the colorimetric Jaffé method (Angerer 
and Hartwig, 2010). More information about the methodology can be 
found in the original article (Makris et al., 2019). 

2.2. Untargeted GC–MS metabolomics analysis 

Urine samples were subjected to untargeted GC–MS metabolomics 
analysis (Chan et al., 2011). Details about GC–MS data acquisition and 
sample processing are described in S2 and have been previously pub-
lished (Andrianou, Charisiadis and Makris, 2017). Briefly, analysis was 
performed in an Agilent INTUVO 9000 GC coupled to an Agilent 5977B 
mass spectrometer and urine samples, were subject to urea depletion, 
metabolite extraction and derivatization. Quality-control (QC) samples 
were prepared by pooling all study samples and by adding fatty acid 
methyl esters (FAME) markers. Five to seven QCs and one blank sample 
(absence of urine sample) were used in each batch. 

2.3. Data pre-processing 

Deconvolution of samples, QCs and blanks (n = 1310) was done 
automatically with Global Natural Products Social Molecular 
Networking (GNPS) (Aksenov et al., 2021) using the default settings of 
the GC–MS EI method (cluster_spectra = no; RT_tolerance = 2.0). 
Following the generation of the feature table, we kept only features with 
balance score > 60% (Aksenov et al., 2021) and excluded features 
missing in > 20% of samples. 

We normalized data with the systematical error removal using 
random forest algorithm (SERRF - version 9.1.2020) (Fan et al., 2019) 
and included features with relative standard deviation (RSD) ≤ 20% and 
D-ratio ≤ 50% (Broadhurst et al., 2018). To assess the quality of the data 
(biological vs technical variability), clustering of the QCs in principal 
component analysis (PCA) was used. Following log-transformation, 
scaling and centering of features, we excluded outlier samples using 
PCA (contribution ≥ 4 SD). Only samples that were included in the 
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initial ORGANIKO LIFE + analysis (samples from participants with ≥ 11 
days in the organic food period) were included in this analysis (n = 853). 

In order to assess blank contribution, we flagged features with me-
dian peak area in blank samples >15% of median peak area of the same 
feature in the samples, as “potentially contaminated” (Broadhurst et al., 
2018). 

2.4. Data analysis 

Step 1: Exposome-wide association study (ExWAS) 

We performed an ExWAS to examine associations of each feature 
with the organic food intervention, the pesticide metabolites (3-PBA and 
6-CN) and the OD biomarkers (8-iso-PGF2a and 8-OHdG). 

Linear mixed-effect regression models with an unstructured covari-
ance matrix and a random intercept for participant were used. Contin-
uous variables, other than time, were scaled and centered. Features and 
biomarkers (OD biomarkers and PBA) were additionally log trans-
formed. Three sets of models were prepared, as described in the next 
paragraphs. The models were adjusted for sex, baseline BMI (z-scores), 
creatinine and time (days of treatment), where time = 0 was used for the 
start of the treatment. The second and third set of models were further 
adjusted for the treatment condition (organic food vs conventional food 

as reference). The threshold for the significance of the association for the 
three sets of models (p-value ≤ 0.05) was adjusted for multiple testing 
by controlling the false-discovery rate (FDR) (Benjamini and Hochberg, 
1995). 

Statistical analysis was conducted in R (version 4.0.4) (R Core Team, 
2017) with RStudio (version 1.4.1106) (RStudio Team, 2015). The input 
data, scripts, and output are available in S4. 

Step 1A: Association of features with organic food intervention 

A first set of models included each feature as outcome and treatment 
condition (organic food vs conventional food as reference) as fixed ef-
fect. An interaction term for time and treatment was considered and 
subsequently dropped if it did not meet the threshold of p-value ≤ 0.05. 

Step 1B: Association of features with pesticide metabolites 

A second set of models included each feature as outcome, and 3-PBA 
(log-transformed) or 6-CN (binary; below and above LOD because of 
their high % of values < LOD) as fixed effect. An interaction term for 
time and 3-PBA or 6-CN, respectively, was considered and subsequently 
dropped if it did not meet the threshold of p-value ≤ 0.05. 

Fig. 1. Study timeline and data collection procedure for the two groups of the study. ”C” denotes that the sample was taken when the participant was following his/ 
her usual habits (conventional food consumption) whereas “O” when the participant was following the organic food intervention. 
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Step 1C: Association of features with OD biomarkers 

A third set of models included each OD biomarker as outcome, and 
each feature, and the baseline value (first urine sample for all children) 
of the outcome as fixed effects. These models were adjusted for the 
baseline value of the OD biomarker, to account for the background 
participant levels. An interaction term for time and feature was 
considered and subsequently dropped if it did not meet the threshold of 
p-value ≤ 0.05. 

Step 2: Identification of features 

The significantly altered urinary features derived from the three sets 
of models were identified initially, by comparing their spectra with 
spectra of metabolites from NIST14 library (level 2) and secondly, by 
using authenticated standard compounds in urine (level 1). For level 1 
identification, we acquired 13 out of the 20 differentially expressed 
metabolites. Following the exact same methodology as in the analysis of 
the study samples (QCs and participant samples), we analyzed urine 
samples spiked with each of the 13 differentially expressed compounds 
(13 samples in total) and one urine sample spiked with all the 13 
compounds (mix std). The samples with the standard compounds (STDs) 
were processed with the exact same way as the study samples (decon-
volution in GNPS and compound identification in NIST MS Search with 
NIST14 library). Metabolites were classified based on the metabolomics 
standards initiative (MSI) guidelines for metabolite identification 
(Sumner et al., 2007); level 1: Identified compounds with reference 
standards (m/z, and RT), level 2: putatively annotated compounds based 
on the use of spectral library (NIST14), and level 4: unknowns. 

Step 3: Pathway analysis 

The identified metabolites were processed for pathway analysis 
using the “Pathway Analysis” module and the KEGG pathway library in 
MetaboAnalyst 5.0 (Pang et al., 2021) in order to assess the biological 
pathways in which these metabolites are implicated. 

3. Results 

3.1. Demographics and other characteristics 

The demographics and other characteristics of the participants are 
presented in Table 1 of Makris et al. (2019). Children who followed the 
organic food intervention for at least 12 days and provided at least one 
urine sample during the organic food period were included in the 
analysis, hence a total of 149 children were included, with 43 children in 
Group 1 and 106 children in Group 2. Their mean age was 11 years old 
and 89% of the children completed 29–40 days of organic food inter-
vention. The majority of the participants’ parents had a high educational 
level with 82% of mothers and 65% of fathers holding at least a uni-
versity/college degree. At baseline, more than half of the children (61%) 
had a normal weight, 38% were overweight or obese and 1% belonged in 
the thinness group. 

3.2. Quality of untargeted metabolomics spectra 

Deconvolution of samples, QCs and blanks generated 610 features 
and of those, 229 features had balance score ≥ 60% (S1: Figure S1), 
while 64 features were excluded due to missing values. Following SERRF 
normalization, the RSDs of the features improved (S1: Table S1, 
Figure S2) and features with RSD > 20% and D-ratio > 50% were 
excluded (n = 9). QCs were adequately clustered (S1: Figure S3). A total 
of 156 features and 853 samples remained following pre-processing (S1: 
Figure S1). 

3.3. Metabolome alterations 

A total of 42 features were significantly associated (FDR p-value ≤
0.05) with either organic food intervention or/and pesticide metabolites 
or/and OD biomarkers (Fig. 2, S1: Table S2). Five features were signif-
icantly associated with the organic food intervention, ten features with 
3-PBA, one feature with 6-CN and 15 features with 8-iso-PGF2a and 8- 
OHdG, respectively. Significant (p-value ≤ 0.05) interactions between 
variables of interest with duration of treatment (in days) can be found in 
the supplementary (S1: Table S2). Out of these 42 features, 20 (two of 
them were the same compound) were putatively annotated (level 2) 
based on spectra comparison (S1: Table S3, S3). Following acquisition of 
authenticated standard compounds for 13 metabolites, 11 were identi-
fied at level 1 (S1: Table S4). 

A significant positive interaction between days of treatment and the 
organic food intervention was observed for aminomalonic acid (βint =

0.012; 95% CI:0.002, 0.022; p = 0.019), indicating a time-dependent 
increase during the intervention period (S1: Table S2). Aminomalonic 
acid was also negatively associated with 8-iso-PGF2a (β = − 0.27, 95% 
CI:− 0.34, − 0.20; FDR p-value < 0.001) and positively associated with 8- 
OHdG (β = 0.19, 95% CI:0.11, 0.28; FDR p-value = 0.001) (Table 1). D- 
glucose was negatively associated with the organic food intervention (β 
= − 0.23, 95% CI:-0.37, − 0.10; FDR p-value = 0.019) and gluconic acid 
was negatively associated with 3-PBA (β = − 0.11, 95% CI:− 0.18, − 0.04; 
FDR p-value = 0.036) and positively associated with 8-OHdG (β = 0.18, 
95% CI:0.09, 0.26; FDR p-value = 0.003). Two metabolites - tartaric acid 
(β = − 0.12, 95% CI:-0.20, − 0.05; FDR p-value = 0.016) and D-psicose 
(β = − 0.18, 95% CI:− 0.25, − 0.11; FDR p-value < 0.001) were nega-
tively associated with 3-PBA. 

Six metabolites − 2,3-dihydroxybutanoic acid (β = 0.16, 95% 
CI:0.08, 0.23; FDR p-value = 0.003), erythritol (β = 0.11, 95% CI:0.04, 
0.18; FDR p-value = 0.049), threonic acid (β = 0.19, 95% CI:0.11, 0.27; 
FDR p-value < 0.001), 7-methylxanthine (β = 0.14, 95% CI:0.07, 0.21; 
FDR p-value = 0.005), N-acetyl-D-glucosamine (β = 0.11, 95% CI:0.04, 
0.18; FDR p-value = 0.040) and galactosylglycerol (β = 0.13, 95% 
CI:0.05, 0.20; FDR p-value = 0.017) were positively associated with 8- 
iso-PGF2a, while phosphoric acid (β = − 0.12, 95% CI:-0.20, − 0.05; FDR 
p-value = 0.036) and cellobiose (β = − 0.13, 95% CI:− 0.20, − 0.06; FDR 
p-value = 0.009) were negatively associated with 8-iso-PGF2a. Seven 
metabolites -  1,2,3-butanetriol (β = 0.20, 95% CI:0.11, 0.28; FDR p- 

Fig. 2. FDR-adjusted significant associations (FDR p-value ≤ 0:05) based on 
the three sets of linear mixed effect models (one association with 6-CN not 
shown) – unknowns features (Level 4) are included (S1: Table S2). 
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value = 0.001), succinic acid (β = 0.17, 95% CI:0.09, 0.25; FDR p-value 
= 0.004), 2,4-dihydroxybutanoic acid (β = 0.22, 95% CI:0.11, 0.32; FDR 
p-value = 0.003), 3,4-dihydroxybutanoic acid (β = 0.14, 95% CI:0.05, 
0.23; FDR p-value = 0.039), D-xylitol (β = 0.17, 95% CI:0.08, 0.26; FDR 
p-value = 0.005), ribonic acid (β = 0.15, 95% CI:0.045, 0.24; FDR p- 
value = 0.047) and uric acid (β = 0.19, 95% CI:0.11, 0.26; FDR p-value 
< 0.001) - were positively associated with 8-OHdG. The masses and the 
retention times (RT) of the unidentified compounds (level 4) are pre-
sented in the supplementary (S1: Table S5). 

Assessment of the blank contribution showed that for two out of the 
20 metabolites (phosphoric acid and cellobiose) included in Table 1, 
their median peak area in blanks was higher compared to the corre-
sponding area in samples (S1: Table S6) and hence the peaks of these 
metabolites were flagged as “potentially contaminated”. For 7-methyl-
xanthine, the blank contribution was marginally higher (15.7%) than 
the criterion set (15%), so we did not flag it. 

3.4. Pathway analysis 

Out of the 20 annotated metabolites found statistically significant in 
the linear mixed-effect models, 16 of them had a KEGG ID and could be 
used for pathway analysis (S1: Table S3). Even though D-psicose had a 
KEGG ID (C06468), there was no match with the KEGG human pathway 
library, and it was excluded from the pathway analysis (S1: Table S7). 
Metabolites were found in 12 pathways with the impact in half of them 
being zero (S1: Table S8) and with a maximum number of 2 hits 
(matched number from the 15 uploaded metabolites). Metabolites were 
involved in pathways such as the starch and sucrose metabolism, the 
pentose and glucuronate interconversions, the galactose metabolism, 
the amino sugar and nucleotide sugar metabolism and the pentose 
phosphate pathway (S1: Table S8). 

4. Discussion 

In this study, we used untargeted metabolomics to investigate the 
associations between an organic food intervention, the endogenous 
response on the human metabolome and classical biomarkers of pesti-
cide exposure (3-PBA and 6-CN) and OD (8-iso-PGF2α and 8-OHdG); 
these specific biomarkers of exposure and effect were associated with 
the organic food intervention in the same study population, as shown 

earlier (Makris et al., 2019). In the present analysis, significant differ-
ences in the urinary metabolomics profile of primary school children 
following an organic food intervention were observed. Following 
annotation, pathway analysis of significantly altered metabolites 
showed that pathways relevant to the metabolites were the starch and 
sucrose metabolism and the pentose and glucuronate interconversions. 

Two metabolites were significantly associated with the organic food 
intervention, two with the pyrethroids’ metabolite (3-PBA) and nine 
with each of the OD biomarkers (8-OHdG and 8-iso-PGF2a). Amino-
malonic acid, which was positively associated with the organic food 
intervention has been associated with radical mediated protein oxida-
tion, as isolated from Escherichia coli cultures and from human athero-
sclerotic plaques (Dean et al., 1997). In a metabolomics study with 35 
neonates, the urine metabolite profiles of two nutrition regimens were 
examined for seven days and it was shown that aminomalonic acid was 
up-regulated in breast milk fed neonates (Dessì et al., 2016). A type II 
diabetes nested case-control study (n = 197) in China, showed that 
aminomalonic acid was among the metabolites with high potential to 
predict type 2 diabetes in high-risk individuals (Lu et al., 2016). 

Glucose, which was negatively associated with the organic food 
intervention, was previously inversely associated with vegetable, fruit 
and nut intake for 300 children aged 7–10 years from four primary 
schools in Verona, Italy (Giontella et al., 2019). D-glucose is involved in 
the pentose phosphate pathway (S1: Figure S4), which is the main 
contributor of NADPH, and has oxidative and non-oxidative branches 
(Ge et al., 2020). This pathway is considered to regulate cellular 
reduction–oxidation homeostasis and biosynthesis and has been asso-
ciated with metabolic diseases, such as type 2 diabetes. Also, D-glucose 
is involved in other pathways, like the starch and sucrose metabolism, 
along with cellobiose, which was negatively associated with 8-iso- 
PGF2a, and the galactose metabolism along with galactosylglycerol, 
which was positively associated with 8-iso-PGF2a. Moreover, gluconic 
acid, which was significantly associated with 8-OHdG and 3-PBA is the 
oxidation product of D-glucose (Bankar et al., 2009) and is a component 
of the pentose phosphate pathway. 

Uric acid, which was positively associated with 8-OHdG, is the final 
oxidation product of purine metabolism and can be produced in the 
body via two pathways with xanthine oxidase converting xanthine to 
uric acid (Maiuolo et al., 2016). Recent epidemiological studies in 
children have shown association of uric acid with hypertension starting 

Table 1 
Annotated features being statistically significantly associated (FDR p-value ≤ 0.05) in the linear mixed-effect models described under Data Analysis - Step 1. *In the 
model with aminomalonic acid as outcome and organic food intervention as predictor, the interaction term between organic food intervention and time was significant 
(βint = 0.012; 95% CI:0.002, 0.022; p = 0.019).  

Feature Estimate CI (95%) Raw p-value FDR p-value Model 

Phosphoric acid  − 0.12 − 0.20, − 0.05  0.002  0.036 8-iso-PGF2a 
1,2,3-Butanetriol  0.20 0.11, 0.28  <0.001  0.001 8-OHdG 
Succinic acid  0.17 0.09, 0.25  <0.001  0.004 8-OHdG 
2,3-Dihydroxybutanoic acid  0.16 0.08, 0.23  <0.001  0.003 8-iso-PGF2a 
2,4-Dihydroxybutanoic acid  0.22 0.11, 0.32  <0.001  0.003 8-OHdG 
3,4-Dihydroxybutanoic acid  0.14 0.05, 0.23  0.002  0.039 8-OHdG 
Aminomalonic acid*  − 0.27 − 0.34, − 0.20  <0.001  <0.001 8-iso-PGF2a  

− 0.44 − 0.68, − 0.19  <0.001  0.013 Organic food  
0.19 0.11, 0.28  <0.001  0.001 8-OHdG 

Erythritol  0.11 0.04, 0.18  0.003  0.049 8-iso-PGF2a 
Threonic acid  0.19 0.11, 0.27  <0.001  <0.001 8-iso-PGF2a 
Tartaric acid  − 0.12 − 0.20, − 0.05  0.001  0.016 3-PBA 
D-Xylitol  0.17 0.08, 0.26  <0.001  0.005 8-OHdG 
Ribonic acid  0.15 0.05, 0.24  0.003  0.047 8-OHdG 
D-Psicose  − 0.18 − 0.25, − 0.11  <0.001  <0.001 3-PBA 
D-Glucose  − 0.23 − 0.37, − 0.10  0.001  0.019 Organic food 
Gluconic acid  0.18 0.09, 0.26  <0.001  0.003 8-OHdG  

− 0.11 − 0.18, − 0.04  0.002  0.036 3-PBA 
7-Methylxanthine  0.14 0.07, 0.21  <0.001  0.005 8-iso-PGF2a 
N-Acetyl-D-glucosamine  0.11 0.04, 0.18  0.002  0.040 8-iso-PGF2a 
Uric acid  0.19 0.11, 0.26  <0.001  <0.001 8-OHdG 
Galactosylglycerol  0.13 0.05, 0.20  0.001  0.017 8-iso-PGF2a 
Cellobiose  − 0.13 − 0.20, − 0.06  <0.001  0.009 8-iso-PGF2a  

C. Konstantinou et al.                                                                                                                                                                                                                          



Environment International 158 (2022) 107008

6

in childhood and continuing in adulthood (Jr et al., 2004; Kubota, 
2019), metabolic syndrome (Bussler et al., 2017; Kubota, 2019), chronic 
kidney disease, obesity, insulin resistance and dyslipidemia (Kubota, 
2019). 

Threonic acid, a catabolite of antioxidant ascorbic acid (vitamin C) 
(Chazot and Kopple, 2013) was found to be positively associated with 8- 
iso-PGF2a. Similar association was observed for 2,3-dihydroxybutanoic 
acid, which is a product of threonine catabolism (Appiah-Amponsah 
et al., 2009) and was previously associated with diabetes mellitus in rats 
(Jing and Chengji, 2019). Three metabolites that were positively asso-
ciated with 8-OHdG − 2,4-dihydroxybutanoic acid, 3,4-dihydroxybuta-
noic acid and ribonic acid - were previously associated with 
macroalbuminuria in an untargeted serum metabolomics analysis from 
637 persons with type 1 diabetes (Tofte et al., 2019). Succinic acid 
which was positively associated with the OD biomarker, 8-OHdG, has a 
significant role in innate immunity regulation via activation of the pro- 
inflammatory cytokine IL-1β, leading to inflammation (Martínez-Reyes 
and Chandel, 2020) and is a metabolite of the citrate cycle (S1: 
Figure S4), which is involved in energy-production. 

Erythritol and xylitol were positively associated with 8-iso-PGF2a 
and 8-OHdG, respectively; they are sugar alcohols that occur naturally 
in fruits, vegetables and fermented foods (only erythritol) (Bond and 
Dunning, 2006; Sreenath and Venkatesh, 2016). Moreover, erythritol 
and D-xylitol are used as sweeteners and have potential anti- 
hyperglycemic properties (Wölnerhanssen et al., 2020). Erythritol has 
been shown to act as an antioxidant in vivo by being a free radical 
scavenger (den Hartog et al., 2010; Regnat, Mach and Mach-Aigner, 
2018) and xylitol, to improve peripheral glucose utilization mainly 
based on animal models, a finding that needs to be investigated further 
in human studies (Regnat, Mach and Mach-Aigner, 2018; Salli et al., 
2019). In a cohort study of 246 young adults (18–19 years old), 
metabolomics analysis showed that meso-erythritol concentration was 
higher in the group of participants with incident central adiposity 
compared to the group with stable adiposity and in participants with 
higher glycemia compared to lower glycemia (Hootman et al., 2017). In 
the same study, further in-vivo analysis showed that erythritol is pro-
duced endogenously by glucose via the pentose phosphate pathway, 
contrary to previous studies reporting no erythritol synthesis in humans. 

As far as we know, this is the first study assessing children’s 
metabolomic profiles following a systematic consumption of organic 
food. The metabolomic profile is an integral part of the human expo-
some, the term used to describe the totality of exposures and associated 
endogenous response throughout a person’s lifetime (Wild, 2005; Miller 
and Jones, 2014). As suggested in a recent commentary (Dennis et al., 
2017), in order to effectively characterize the exposome, a combination 
of traditional biomonitoring approaches and untargeted discovery of 
metabolites should be used; in our study, we coupled data from targeted 
measurements of pesticide metabolites and OD biomarkers with untar-
geted metabolomics analysis with the aim to evaluate biological alter-
ations associated with organic food consumption. 

Strengths of this study include the prospective and randomized study 
design, including its decent sample size, high repeated measures sam-
pling frequency and the long intervention duration (40 days). Selection 
bias in this study was low, as all samples from the original study were 
included in this study (>850 samples). The quality of such exposome 
studies (selection bias or study design) and their issues are touched upon 
in a recent scoping review of all exposome studies (Haddad, Andrianou 
and Makris, 2019). About half of the exposome studies published until 
March 2019 used omics tools as part of their methodology and more 
specifically, metabolomics was used as an exposure assessment tool in 
22 out of 78 studies and as an outcome metric in 12 out of 48 studies 
(Haddad, Andrianou and Makris, 2019). Similarly, in our study, we used 
metabolomics as an a priori intermediary biological layer, based on a 
notion of biological plausibility. The temporality of exposures and 
metabolomics (intermediary data) should precede onset of disease 
outcome so prospective studies, like this work, should be always 

preferred, albeit not always feasible. Differences in the performance of 
these metabolomics-based approaches in unraveling associations be-
tween exposures and an outcome should be anticipated between studies 
with repeated measures and studies using only two time points for 
measurements. 

We acknowledge some limitations of the study. First, due to the 
repeated cross-over nature of the study, we could not perform routine 
analysis often performed in metabolomics studies, such as (ortho)partial 
least squares analyses - discriminatory analyses (PLS-DA) or pathway 
analysis using concentration data (peak area) since these types of 
analysis require that samples have discrete classification and samples 
may be paired as derivatives of two. In our study, each participant 
provided two to six urine samples in the form of repeated measures; such 
complex study designs require specialized biostatistical methods. The 
high dimensionality of exposome study designs and their datasets is a 
burden in the quest of causality inference in exposome studies. Also, the 
use of a single mass spectrometry platform for a single biospecimen 
matrix may only capture a small percentage of the total human metab-
olome (>110 K compounds). Moreover, some of the significantly asso-
ciated features were categorized as unknowns (level 4), meaning no 
knowledge about their role and the pathways involved could be derived. 
Due to the low number of metabolites used in pathway analysis (n = 15), 
the pathways impact values were low as the maximum number of hits 
observed in all pathways was two. Furthermore, there was a difference 
in the educational attainment status between the study participants’ 
parents (72%, 61% fathers and 82% mothers) and the Cyprus population 
aged 30–34 years (57%, 49% men and 64% women) (CYSTAT, 2019). 

Future studies are needed to determine whether these findings can be 
replicated in other populations. In summary, changes in the metab-
olomic profile of primary school children were observed following a 40- 
day long systematic organic food intervention. This is the first metab-
olomics study providing evidence of differentially expressed metabolites 
in an organic food intervention corroborating the reduction in bio-
markers of OD in primary school children. 
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Hallmann, E., Rembiałkowska, E., Haǰslová, J., 2012. Metabolomic fingerprinting 
employing DART-TOFMS for authentication of tomatoes and peppers from organic 
and conventional farming. Food Addit. Contamin. - Part A Chem., Anal., Control, 
Exposure Risk Assess. 29 (9), 1335–1346. https://doi.org/10.1080/ 
19440049.2012.690348. 

O’Sullivan, A., Gibney, M.J., Brennan, L., 2011. Dietary intake patterns are reflected in 
metabolomic profiles: potential role in dietary assessment studies. Am. J. Clin. Nutr. 
93 (2), 314–321. https://doi.org/10.3945/ajcn.110.000950. 

Pang, Z., et al., 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and 
functional insights. Nucleic Acids Res. 1–9. https://doi.org/10.1093/nar/gkab382. 

Papadimitropoulos, M.P., et al., 2018. Untargeted GC-MS Metabolomics. In: Theodoridis, 
G., Gika, H.G., Wilson, I. (Eds.), Metabolic Profiling: Methods and Protocols, 
Methods in Molecular Biology. Springer Science+Business Media, LLC, part of 
Springer Nature, pp. 133–147. https://doi.org/10.1007/978-1-4939-7643-0_9. 

Playdon, M.C., Moore, S.C., Derkach, A., Reedy, J., Subar, A.F., Sampson, J.N., 
Albanes, D., Gu, F., Kontto, J., Lassale, C., Liao, L.M., Männistö, S., Mondul, A.M., 
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