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Abstract
In the past few decades, nanotechnology has been employed to provide breakthroughs in the diagnosis and treatment of 
several diseases using drug-carrying particles (DCPs). In such an endeavor, the optimal design of DCPs is paramount, which 
necessitates the use of an accurate and trustworthy constitutive model in computational fluid dynamics (CFD) simulators. We 
herein introduce a continuum model for elaborating on the rheological implications of adding particles in blood. The model 
is developed using non-equilibrium thermodynamics to guarantee thermodynamic admissibility. Red blood cells are modeled 
as deformed droplets with a constant volume that are able to aggregate, whereas particles are considered rigid spheroids. The 
model predictions are compared favorably against rheological data for both spherical and non-spherical particles immersed 
in non-aggregating blood. It is expected that the use of this model will allow for the testing of DCPs in virtual patients and 
for their tailor-design in treating various diseases.

Keywords Differential constitutive equation · Blood · Non-equilibrium thermodynamics · Particle · Viscosity · Normal 
stresses

Introduction

Traditional treatments have proven impotent as drug 
molecules act non-specifically by simply diffusing freely 
throughout the body, leading to undesirable side effects, 
and are detrimental in achieving the required doses for 
positive outcomes. On the other hand, medical applications 
of nanotechnology have proven proficient enough to deliver 
protagonistic clinical breakthroughs in the diagnosis and 
treatment of several diseases using drug-carrying particles 
(DCPs) (Irvine and Dane 2020). For example, very 
recently a lipid nanoparticle carrying messenger RNA has 
been approved by the US Food and Drug Administration 
for its first clinical trial aiming to treat the SARS-CoV-2 
coronavirus (Cohen 2020). The use of DCPs provides 
promising and more effective alternative treatments, 
compared to traditional ones, to fight several diseases of 
the circulatory system, such as atherosclerosis (when the 
vascular wall thickens due to deposition of dead cells or 
cholesterol on the vascular wall), thrombosis (formation of 

a blood clot inside a vessel), and cerebrovascular amyloid 
angiopathy (when amyloid proteins build up on the walls of 
brain arteries) (Agyare and Kandimalla 2014).

The execution of in silico trials (the execution of clini-
cal human trials in computers, i.e., on virtual patients) for 
prognostic purposes could promote the reduction of the time 
required to perform and the cost of design experiments, such 
as preclinical animal ones, that are a prerequisite for the 
approval of a new drug (Moradi Kashkooli et al. 2021). In 
addition, it could facilitate the tailor-design of each drug for 
optimum delivery to the infected areas (Stillman et al. 2020). 
More recently, in silico trials using sophisticated algorithms 
have emerged as a promising methodology with potential 
benefits for expanding computer modeling to drugs and 
other biomedical products (Viceconti et al. 2016).

While the blood vessel itself is seldom the target, almost 
all nanomedicines are injected into the microcirculation 
system and then make their way towards the targeted vas-
cular area or tissue (e.g., the atherosclerotic plaque or the 
tumor). Several factors render such a task quite challeng-
ing. The transport of DCPs is affected by the local hemo-
dynamics. In large vessels, the flow may be considered 
homogenous, and thus the transport of DCPs will strongly 
depend on the local velocity. On the other hand, the flow in 
microvessels, like capillaries, is inhomogeneous because of 
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the migration of red blood cells (RBCs) towards the ves-
sel centerline (Goldsmith et al. 1989) and the migration of 
DCPs towards the vascular wall (Tilles and Eckstein 1987; 
Eckstein et al. 1988). To achieve optimum-targeting DCPs, 
they must first successfully travel from the blood midstream 
to the RBC-free layer close to the vessel wall. As such, the 
physical properties of DCPs that result in optimal margina-
tion to the vessel wall must be considered. For example, 
a recent study (D’Apolito et al. 2015) has shown that the 
margination phenomenon is size- and shape-dependent as 
larger spherical particles and more elongated particles of 
the same size are more effectively marginated both in in vitro 
and in vivo experiments. Also, the margination effect is 
hematocrit-dependent since it occurs faster as the hemato-
crit increases (Fitzgibbon et al. 2015) (the hematocrit, H , 
is the volume fraction of RBCs which, under physiological 
conditions, is between 42 and 47%). It would thus be highly 
desirable if an in silico study could investigate the transport 
of DCPs in vascular environments. This would allow for a 
faster design of suitable DCPs, reduce the need to perform 
numerous trials in animals, and alleviate all constraining fac-
tors associated with it, and/or minimize the error when con-
clusions of laboratory studies drawn on animals are extended 
to humans. Given the multitude of length and time scales 
involved, it is necessary to employ a multiscale modeling 
approach (Eckmann et al. 2020).

Although numerous coarse-grained approaches to sim-
ulate the flow behavior of particles in blood have been 
employed up to date, such as the immersed finite elements 
method (Tan et al. 2012), the lattice Boltzmann-immersed 
boundary method (Liu et al. 2018, 2019), and the dissipative 
particle dynamics method (Müller et al. 2016), these may 
be computationally expensive enough to forbid an elaborate 
parametrization of the complicated vascular transport of 
DCPs. In such approaches, the RBCs are modeled as flexible 
thin membranes enclosing a fluid, with the surface consist-
ing of a triangular network, whereas DCPs are modeled as 
solid particles. Thus, numerical simulations, i.e., simula-
tions wherein the continuity, momentum, and constitutive 
equations are solved numerically, usually using the finite 
elements method (FEM), are the only other tool available 
to address this issue. In such simulations, the rheological 
behavior of the fluid is described by a constitutive equation. 
Therefore, to be able to perform the aforementioned in silico 
trials, a reliable and accurate constitutive model is needed 
that properly and accurately addresses the rheology of nano-
fluids comprising of particles immersed in blood, which we 
shall henceforth refer to as nanoblood.

In most theoretical studies, the methodology employed is 
too simplistic. Decuzzi and co-workers (Decuzzi et al. 2005; 
Decuzzi and Ferrari 2008) analyzed the margination of a 
particle circulating in the bloodstream by considering the 
contribution of buoyancy, and of steric interactions between 

particles and the vascular wall. However, they considered 
blood to be a Newtonian fluid, i.e., with a constant viscos-
ity. Hossain et al. (2013) attempted to predict the deposi-
tion of particles in a patient-specific arterial tree, but also 
considered blood to behave as a Newtonian fluid. The same 
approach was followed by others as well (Shaw et al. 2014; 
Elnaqeeb et al. 2019; Abdelsalam et al. 2020; Ahmed et al. 
2020; Tripathi et al. 2021) who considered nanoblood to 
behave as a Newtonian fluid with a viscosity that depends 
on the particle’s volume fraction using the Brickman model. 
Gentile et al. (Gentile et al. 2008; Gentile and Decuzzi 2010) 
analyzed mathematically the longitudinal transport of par-
ticles in blood vessels by considering blood to be rheologi-
cally described as a Casson fluid and derived an expres-
sion for the effective longitudinal diffusion. Their analysis 
showed (Gentile et al. 2008) that rheology plays a decisive 
role in the transport of particles in the vascular network. 
More recently, Jafarzadeh et al. (2020) studied the accumu-
lation of particles once they are injected into an abdominal 
aortic aneurysm for the duration of a cardiac cycle under 
the imposition of a pulsatile bloodstream. They considered 
blood to behave as a shear-thinning fluid (by using the phe-
nomenological model proposed by Ameenuddin et al. (2019) 
according to which the shear viscosity depends on both the 
shear rate and the hematocrit) to study the hemodynamical 
flow in the vicinity of an abdominal aortic aneurysm. They 
noted that as the H and the size of the particle decrease the 
accumulation of the DCPs in the dilatation part of the artery 
is greater. Abdelsalam and co-workers have also used mod-
els that bear a shear-thinning behavior, despite being phe-
nomenological, such as the Sutterby (Abdelsalam and Bhatti 
2020; Bhatti et al. 2020) and Eyring-Powell (Abdelsalam 
et al. 2021) models. In all cases, the employed phenom-
enological expression refers to the viscosity of neat blood 
and not of the nanofluid as a whole. Dubey et al. (2020) 
performed computational fluid dynamics (CFD) simulations, 
using the FEM, of blood flow through a diseased artery with 
a stenosis followed by an aneurysm. They adopted two dif-
ferent models to address the rheological behavior of blood: 
they employed the Casson viscoplastic model (Casson 1959; 
Mitsoulis 2007) in the arterial core region, and the viscoelas-
tic Sisko model in the peripheral (close to the arterial wall) 
region. This is necessary as due to the accumulation of RBCs 
in the core region, the fluid there behaves as a semi-solid; 
hence, the velocity of the fluid is constant (i.e., zero veloc-
ity gradient). They noted that the velocity at both the core 
and peripheral regions increases as the size of the particles 
decreases irrespective of whether nanoblood flows through 
a stenosis or through an aneurysm. A similar study was pub-
lished by Shaw (2020) who employed the Herschel–Bulkley 
viscoplastic model (Herschel and Bulkley 1926; Mitsoulis 
2007) in the arterial core region, whereas in the peripheral 
region nanoblood was considered to behave as a Newtonian 
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fluid with a viscosity that depends not only on the particle 
volume fraction but also on the particle and the blood vessel 
diameters. Finally, Ponalagusamy and Priyadharshini (2019) 
studied the unsteady flow of the transport of magnetic nano-
particles through an artery with stenosis in the presence of a 
magnetic field by considering blood as a Herschel–Bulkley 
viscoplastic model and noted that when the yield stress and/
or the particle concentration increases, then the wall shear 
stress and the flow resistance increase as well.

The majority of the abovementioned studies have 
selected to employ in their analysis simple rheologi-
cal models. This necessity emanates from the need to 
have an analytical expression for the velocity profile 
within the vessel. Although considering blood to behave 
as a Newtonian fluid is an adequate approximation in  
arteries, it completely fails to capture the correct hemo-
dynamics in capillaries (Sriram et al. 2014). Overall, 
all these works completely ignore the molecular char-
acteristics of blood and their effect on its rheological 
behavior. This certainly raises significant limitations 
to our understanding of the rheological footprints of 
nanoblood. It should also be stressed that all the above-
mentioned studies have not derived a constitutive model 
for nanoblood, whose predictions should be compared 
against rheological data, but merely employed a previ-
ously proposed phenomenological model without first 
benchmarking its validity. The importance of correctly 
predicting, via mathematical modeling, the rheology of 
nanoblood is exemplified by the fact that the highest 
accumulation of DCPs is noted in regions of disturbed 
flow, e.g., branch points and curvatures in the vascu-
lature (Gomez-Garcia et al. 2018), and at the shoulder 
regions of the atherosclerotic plaque (i.e., the junction 
between the plaque and the histologically healthy part 
of the vessel wall) (Peters et al. 2009); in both cases, 
the stresses there are minimum.

In this work, we will employ non-equilibrium thermo-
dynamics (NET) to develop a sophisticated mathematical 
model addressing the rheological behavior of nanoblood. 
To accomplish this, we will develop the model using the 
generalized bracket formalism (Beris and Edwards 1994) 
of NET (Beris and Edwards 1994; Grmela and Öttinger 
1997; Öttinger and Grmela 1997; Edwards et al. 2003; 
Öttinger 2005), by means of which several microstruc-
tured systems have been addressed up to date, such as, 
but not limited to, immiscible complex fluids (Edwards 
and Dressler 2003; Dressler and Edwards 2004; Dressler 
et al. 2008; Grmela et al. 2014; Mwasame et al. 2017), 
polymer melts and solutions (Beris and Edwards 1994; 
Grmela and Öttinger 1997; Öttinger and Grmela 1997; 
Öttinger 2005; Stephanou et al. 2009, 2016, 2020b), pol-
ymer nanocomposites (Rajabian et al. 2005; Eslami et al. 

2010; Stephanou et al. 2014; Stephanou 2015), micellar 
systems (Germann et al. 2013; Stephanou et al. 2020a), 
blood (Tsimouri et al. 2018; Stephanou 2020; Stephanou 
and Tsimouri 2020), drilling fluids (Stephanou 2018), 
and thixotropic fluids (Stephanou and Georgiou 2018). 
The use of a NET formalism has the compelling advan-
tage, over other approaches, that the constitutive model 
as a whole is guaranteed consistency with the laws of 
thermodynamics (as extended for beyond equilibrium 
systems). Furthermore, it provides a systematic way of 
developing and self-consistently coupling the various 
components (e.g., in our present work, RBCs and par-
ticles). Our ultimate goal in the present work is to pro-
vide an avenue to conduct in silico simulations for the 
testing of DCPs in virtual patients that will allow the 
tailor-design of DCPs for treating various diseases. This 
would ultimately reduce the size and duration of, as well 
as enable the design of more effective, human clinical 
trials, and lower both the development and market costs 
of new DCPs.

The paper is structured as follows: in “Model deriva-
tion”, the new model is introduced, whereas in “Results 
and discussion” we present the model predictions along 
with a comparison with available rheological experimen-
tal data for both spherical and non-spherical (rod-like) 
particles over a wide range of volume fractions (in the 
dilute regime) and shear rates. The paper concludes with 
“Conclusions,” where we elaborate on the significance of 
our work and future plans are highlighted and discussed.

Model derivation

The vector of state variables

Throughout this work, we consider an isothermal and 
incompressible flow, meaning that both the total mass 
density, ρ, and the entropy density (or temperature) are 
excluded from the vector of state variables. At first, to 
describe the rheology and microstructure of nanoblood, 
we follow previous works (Stephanou 2020, 2021; Stepha-
nou and Tsimouri 2020) and consider RBCs as emulsions 
with a droplet morphology by using a constrained contra-
variant second-rank tensor, � , such that det � is equal to 
the squared volume of a RBC. We also define the dimen-
sionless tensor � = �∕

(

det�
)1∕3

 so that det� = 1 . We con-
sider RBCs as spheroids (i.e., ellipsoids of which the 
lengths of two axes are the same), as it is the simplest 
possible approximation to the actual shape of RBCs, i.e., 
biconcave disks. At equilibrium, the tensor � is equal to 
diag[a2, a2, c2] where a and c are the principal semi-axes 
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of the RBC (see Fig.  1 of Stephanou and Tsimouri 
(2020)), whose determinant is det�eq = a4c2 =

(

3

4�
VRBC

)2

 ; 

thus, �eq = �eq∕
(

det�eq

)1∕3

= diag[(a∕c)
2

3 , (a∕c)
2

3 , (c∕a)
4

3 , ] 
(Stephanou 2020; Stephanou and Tsimouri 2020). If we 
then consider the typical values 2a = 7.5 μm and VRBC = 
90 μm3, we must consider 2c = 3.06 μm (Stephanou and 
Tsimouri 2020). The mere use of the conformation tensor 
� allows us to consider the deformability of RBCs but not 
their aggregation in normal blood, which leads to the 
exhibition of a yield stress at sufficiently low shear rates 
as a result of the network formed. We have recently pro-
posed (Stephanou 2020) that to accomplish this we need 
to employ one additional scalar structural variable, � , to 
properly characterize the network formed by RBCs. When 
the network is fully formed, then �=1, while in a com-
pletely broken state, i.e., when only single RBCs remain, 
it vanishes (Mewis and Wagner 2009; Stephanou and 
Georgiou 2018). Next, we consider particles as rigid sphe-
roids; to describe the average particle orientation, we 
consider the orientation tensor � defined (Stephanou et al. 
2014; Stephanou 2015) as � = ∫ ���(�, �, t)dV  where � 
is the particle’s director vector and �(�, �, t) is the orien-
tational distribution function for the vector � at position 
� and time t  . The particle volume fraction is given via 
� = nava where na is the number density of particles, and 
va = (�∕6)d2l their volume, with l the length of the sphe-
roid (for oblates their thickness, whereas for prolates their 
length) and d  its diameter (see Fig.  1 of Stephanou 
(2018)). The orientation tensor is constrained to have a 
constant unit trace due to the rigidity of the particles con-
sidered. At equilibrium, the orientation distribution func-
tion of particles is isotropic; thus, �eq = �∕3 , where � is 
the unit tensor. Finally, we consider the momentum den-
sity � as the hydrodynamic variable, so that overall the 
vector � of state variables is expressed as � = {�,�, �, �}

.

The resulting evolution equations

The complete derivation is presented in the Supplementary 
Information. The final evolution equations for each structural 
variable are as follows:

(1a)

𝜕�

𝜕t
= − � ∙ ∇� + � ∙ ∇� + (∇�)T ∙ � +

1

3
�� ∙

(

�−1 ∶ ∇�
)

−
𝜉

2
(� ∙ �̇ + �̇ ∙ �)

−
3(1 − 𝜆)

IC
2
𝜏S

[

−

(

� ∙ �−1
eq

∙ � −
I
C
1

3
�

)

−
2I

C
2

3

(

�eq −
I
C
2

3
�

)]

,

(1b)

𝜕�

𝜕t
= −� ∙ ∇� + � ∙ ∇� + (∇�)T ∙ �

+
𝜃 − 1

2
(� ∙ �̇ + �̇ ∙ �) − 𝜃�(� ∶ �̇) −

Λa

0

𝜏a

(

� −
1

3
�
)

, where ∇� is the velocity gradient tensor ( XT is the transpose 
of X ), �̇ ≡ ∇�+(∇�)T is the rate-of-strain tensor, � is the slip/

(1c)
��

�t
= −� ∙ ∇� −

1

��
ln� −

2�

tr�
(∇�)T ∶ �,

Fig. 1  Representative model predictions for the dimensionless 
steady-state a shear viscosity, b first normal stress coefficient, and c 
second normal stress coefficient, as a function of the dimensionless 
shear rate Ca . The results are shown for various values of the model 
parameters associated with the particles, while keeping H = 40%, 
� → ∞, � = 0.01, and f0 = 1
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non-affine parameter, IC
i

 is the ith invariant of tensor � , for 
which �eq = � , such that � = � ∙ �eq ⇒ � = � ∙ �−1

eq
 (see 

Stephanou and Tsimouri (2020)), � =
(

r2
e
− 1

)

∕
(

r2
e
+ 1

)

 with 
re = l∕d the particle’s aspect ratio, Λa

0
 is a numerical con-

stant, and �S, �a , and �� are characteristic relaxation times. 
Here, we consider �a = �a0� as the characteristic particle 
rotational time, where �a0 is the particle rotational time at 
infinite dilution and � the particle volume fraction (Stepha-
nou 2018), �S the characteristic relaxation time related to the 
deformability of RBCs (Stephanou 2020), and �� the char-
acteristic relaxation time for regeneration once the flow field 
has ceased. Note that, following Doi and Edwards (1988) 
and Larson (1999), we consider the particle rotational time 
to increase with the volume fraction since crowding leads to 
an increase of the time needed to complete one rotation. 
Also, we consider �� = ��S , where the parameter � quantifies 
the relative importance between the regeneration/buildup 
and the flow-induced breakup of the RBC network formed 
at low shear rates or at stasis (Stephanou 2020). When 
𝜀 ≫ 1 , the time needed for regeneration is much larger than 
the one needed for breakup, and thus, the scalar structural 
variable vanishes, � → 0 , in which case a yield point is not 
predicted. The thermodynamic admissibility of the model is 
provided in the Supplementary Information. Finally, the 
stress tensor is given as

Here, �s is the viscosity of the Newtonian medium, e.g., 
plasma or other solvents, kB is Boltzmann’s constant, T  is 
the absolute temperature, and Γ is the surface energy den-
sity, which can be shown to be given as Γ(�) = 3f0(�)�s∕�s
(Stephanou 2020; Stephanou and Tsimouri 2020). Note that 
the parameter f0 has been considered to be a function of � as 
the surface energy density is expected to be affected by the 
particle concentration. A comparison against experimental 
data depicted in “Comparison with experimental data” will 
point out that f0(�) , at least for suspension of rod-like nano-
particles in non-aggregating blood, is a decreasing function 
of � . Given the uncertainty, in lieu of theoretical considera-
tions, we will simply consider f0(�) as an adjustable param-
eter. Furthermore, following Stephanou (2020),

where Hm is the maximum packing hematocrit, 
which is expected to have a value close to 0.72 

(2a)

� =
[

1 + f (𝜙)
]

HΓ

[

2(1 − 𝜉)

(

I
C
1
� − � ∙ � −

2I
C
2

3
�

)

−
𝜆ln𝜆

tr�
�

]

+ nakBT𝜃(3� − �) + 𝜂s
[

1 + f (𝜙)
]

P
(

H, 𝜆𝜂
)

�̇

+ 𝜂s𝜙

[

B
(

re
)

3
(� ∙ �̇ + �̇ ∙ �) +

A
(

re
)

9
�(� ∶ �̇)

]

.

(2b)P
(

H, ��
)

=

(

1 −
H

Hm

)−T(��)Hm

(Stephanou 2020). Note that this expression as H → 0 
boils down, as it should, to Taylor’s expression who 
showed that the viscosity of an emulsion, in the dilute 
regime, is given as P

(

H, ��
)

= 1 + T
(

��
)

H  , where 
T
(

��
)

=
(

5�� + 2
)

∕
[

2
(

�� + 1
)]

 (Taylor 1932) and �� is 
the ratio between the internal and external fluid viscosi-
ties. It is known that RBCs are very deformable since they 
are composed of a thin elastic membrane (lipid bilayer) 
enclosing the cytoplasm (a hemoglobin solution) (Yilmaz 
and Gundogdu 2008) which has a higher viscosity (equal 
to about 3–10 mPa s) than that of the surrounding blood 
plasma. Thus, the ratio between the internal (cytoplasm) and 
external (plasma) viscosities, �� , is between 2.5 and 8.3. 
As will be shown later, when we neglect the elasticity of 
RBCs (neglecting their deformability) under very low RBC 
concentrations, H → 0 , and considering spherical rigid par-
ticles, Eq. (2a) boils down to the viscosity of a dilute suspen-
sion of spherical particles in a Newtonian solvent and gen-
eralizations thereof, i.e., � = 𝜂s

[

1 + f (𝜙)
]

�̇ ; as � → 0 this 
should boil down to Einstein’s expression (Einstein 1906, 
1911; Woolard et al. 1928) by considering f (�) = 5

2
� , which 

is accurate up until � ≈ 0.02 , whereas Batchelor and Green 
(Batchelor and Green 1972a, b) extended Einstein’s equation 
to higher volume fractions (up until � ≈ 0.1 ) by considering 
f (�) =

5

2
� + c�2 , with c ≈ 6.2 . Although other expressions 

could be employed (see Eq. (26c) of Stephanou et al. (2014)), 
these suffice for the present application since the volume 
fraction of DCPs in nanoblood is not expected to exceed 
10%. Finally, the parameters A

(

re
)

 and B
(

re
)

 are functions 
of the aspect ratio (see Eq. (2) in Stephanou (2018)), which 
vanish for spherical particles. Also, in the case of a dilute 
suspension of spheroidal particles then f (�) = C� where C 
is also a function of the aspect ratio (see Eq. (2) in Steph-
anou (2018)); in the case of spherical particles, C = 5∕2 . 
By noting that nakBT = �

(

kBT∕va
)

= �X
(

�S∕�a0
)

 where 
X = 6∕

(

�re
)

 , then

or when defining the dimensionless stress via 
∼
�=

(

�S∕�s
)

�:

where the contributions to the overall viscosity are as 
follows:

∼
�Newtonian =

[

1 + f (𝜙)
]

P
(

H, 𝜆𝜂
)

∼

�̇ , (4b)

(3)

� = 3
[

1 + f (𝜙)
]

f0H
(

𝜂s∕𝜏s
)

[

2(1 − 𝜉)

(

I
C
1
� − � ∙ � −

2I
C
2

3
�

)

−
𝜆ln𝜆

tr�
�

]

+ 𝜙X
(

𝜂s∕𝜏a0
)

𝜃(3� − �) + 𝜂s
[

1 + f (𝜙)
]

P
(

H, 𝜆𝜂
)

�̇

+ 𝜂s𝜙

[

B
(

re
)

3
(� ∙ �̇ + �̇ ∙ �) +

A
(

re
)

9
�(� ∶ �̇)

]

(4a)
∼
�=

∼
�Newtonian +

∼
�RBCs +

∼
�Particles
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where � = �s∕�a0 and 
∼

�̇= 𝜏s�̇ is the dimensionless rate-of-
strain tensor. The first contribution, 

∼
�Newtonian , refers to the 

Newtonian contribution to the stress tensor that depends 
on the concentration of both RBCs and particles, and the 
RBC viscosity ratio �� . The latter two contributions arise 
due to RBCs (Eq. (4b)) and particles (Eq. (4c)), respectively 
(Stephanou et al. 2014; Stephanou 2015, 2018, 2020; Steph-
anou and Tsimouri 2020).

In total, our model has 11 parameters. Four of these 
parameters characterize the particles:

1. The aspect ratio between the length and the diameter of 
the spheroid, re = l∕d,

2. The particle volume fraction, �,
3. The particle rotational time at infinite dilution, �a0 , and
4. Λa

0
 which is a numerical constant.

If all the information concerning the nanoblood sample 
under study is provided, then the first two parameters should 
not be considered as adjustable ones. Further note that if the 
particles are spherical, then only the volume fraction is rele-
vant as the orientation tensor is always equal to its equilibrium 
value (see “Reduction to special cases” and “Comparison with 
experimental data”) (Stephanou et al. 2014; Stephanou 2015). 
Seven additional parameters characterize the RBCs:

1) The slip/non-affine parameter, �,
2) The characteristic relaxation time related to the deform-

ability of RBCs, �S,
3) The parameter � that quantifies the relative importance 

between the regeneration/buildup and the flow-induced 
breakup of the RBC network,

4) The hematocrit, H,
5) The ratio between the internal (cytoplasm) and external 

(solvent) fluid viscosities, ��,
6) The external (solvent) viscosity, �S , and
7) f0 , an adjustable parameter.

Again, if all the information concerning the nanoblood sam-
ple under study is provided, then three parameters ( H, �� , �S ) 
are known constants. Note that in case the transient shear 
viscosity does not present a damping behavior, we may set 
� = 0 (Stephanou 2020; Stephanou and Tsimouri 2020); also, 
if we are interested in nanoblood that involves non-aggregating 
RBCs (e.g., when the solvent is not plasma), then 𝜀 ≫ 1 . Over-
all, there are six adjustable parameters: �a0,Λa

0
, �, �, �S , and f0.

(4c)

∼
�RBCs = 3

[

1 + f (�)
]

f0H

[

2(1 − �)

(

I
C
1
� − � ∙ � −

2I
C
2

3
�

)

−
�ln�

tr�
�

]

,

(4d)

∼
�Particles = 𝜙X𝛽𝜃(3� − �) + 𝜙

[

B
(

re
)

3

(

�∙
∼

�̇ +
∼

�̇ ∙�

)

+
A
(

re
)

9
�(� ∶ �̇)

]

,

Asymptotic behavior of the model in steady‑state 
shear

The asymptotic values of the material functions, in both the 
zero- and infinite-shear-rate limits, can be obtained analyti-
cally. In particular, the zero-shear-rate values of the material 
functions when � → ∞ are:

On the other hand, at very large shear rates, the shear vis-
cosity, for any value of � , approaches the infinite-shear-rate 
viscosity:

whereas the two normal stress coefficients vanish.

Reduction to special cases

It is highly important to showcase how the model as derived 
here, which considers the base fluid to be aggregating blood 
and with non-spherical (spheroidal) particles, reduces to spe-
cial cases:

1. Suspension of non-spherical particles in non-aggregat-
ing blood

  The case of non-aggregating blood, e.g., when RBCs 
are immersed in phosphate-buffered saline (PBS), can 
be obtained when 𝜀 ≫ 1 so that � = 0 (Stephanou 2020).

2. Suspension of spherical particles in aggregating or non-
aggregating blood

  In the case that we limit the analysis only to spheri-
cal particles then, � = (1∕3)� and re = 1 , meaning that 
A = B = 0 so that the stress tensor simplifies to,

  where �(� = 0) is the stress expression of neat blood 
(Stephanou 2020):

(5a)

�0

�s
= 6f0H(1 − �)2 +

[

1 + f (�)
]

P
(
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)

+
2B

(
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)

3
� + X��2

�

Λa
0

,

(5b)
Ψ1,0

�s�s
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2X��2

�

(

�

Λa
0

)2

,

(5c)
−Ψ2,0

�s�s
= 6f0H�(1 − �)2 +

X��2(1 − �)

�

(

�

Λa
0

)2

.

(6)
�∞

�s
=
[

1 + f (�)
]

P
(

Ht, ��
)

+ B
(

re
)

�,

(7a)
� =

[

1 + f (�)
]

�(� = 0) ⇒ � =
[

1 + f (�)
]

�(� = 0),

(7b)

�(𝜙 = 0) = 3f0H

[
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)

−
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]

+ 𝜂sP
(

H, 𝜆𝜂
)

�̇.
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3. Suspension of spheroidal particles in a Newtonian sol-
vent

When the elasticity of the RBCs is neglected, forcing the 
conformation tensor � to be always equal to its equilibrium 
value, then blood behaves as a Newtonian fluid; indeed, blood 
can be considered to be Newtonian in certain conditions, e.g., 
in large arterial blood vessels. Then, the stress tensor simpli-
fies to

which is identical to the one presented by Stephanou 
(2018). In this case, the zero- and infinite-shear-rate shear 
viscosities, �0 and �∞ , respectively, are given via (Stepha-
nou 2018):

Results and discussion

In this section, we present the predictions of the new model in 
the case of homogenous simple shear, described by the kinemat-
ics � = (�̇�y, 0,0) , and how they compare with available experi-
mental data. The material functions to analyze are as follows: 
(a) the shear viscosity 𝜂 = 𝜎yx∕�̇� and the two normal stress coef-
ficients Ψ1 =

(

𝜎xx − 𝜎yy
)

∕�̇�2 and Ψ2 =
(

𝜎yy − 𝜎zz
)

∕�̇�2 . 
The results have been obtained by numerically solving the 
constitutive model (Eq. (1)), using MATLAB. In particular, as 
we are interested here only in steady-state simple shear, the 
system of ordinary differential equations boils down to a system 
of algebraic equations that is solved using the fsolve command 
of MATLAB. Once the solutions are obtained, then the stress 
tensor is calculated through Eq. (2a).

Material functions in steady‑state simple shear flow

In this section, we will keep the following parameters, 
associated with RBCs, as constants: �� = 5 , meaning 
T(��) ≈ 2.17 , and Hm = 72%(Stephanou 2020). We first 
consider the case of non-aggregating blood ( � → ∞ , in 
which case a yield point is not predicted), while we later 
consider the implications of considering finite values of �.

(8)
� =𝜂s
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1 + f (𝜙)
]
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3
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A
(
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)

9
�(� ∶ �̇)

]

+ X
(

𝜂S∕𝜏a0
)

𝜙𝜃(3� − �),

(9a)
�0

�s
= 1 + f (�) +

2B
(

re
)

3
� +

X��2

Λa
0

,

(9b)
�∞

�s
= 1 + f (�) + B

(

re
)

�.

In Fig. 1, we depict the predictions of the dimension-
less steady-state material functions as a function of the 
dimensionless shear rate, Ca = 𝜏s�̇� , for various values 
of the model parameters associated with the particles, 
while keeping fixed the ones associated with the RBCs: 
H = 40%, � → ∞, � = 0.01, and f0 = 1 (note that here we 
omit the volume fraction dependency of f0 for simplicity). 
We note that the shear viscosity (Fig. 1a) is seen to slightly 
shear thicken before shear thinning, leading to the exhibi-
tion of a maximum, which is seen to intensify as the par-
ticle volume fraction is increased. Also, by increasing � , 
both the zero- and infinite-shear-rate viscosities increase 
following Eqs. (5a) and (6). On the other hand, when the 
particle aspect ratio is decreased the shear-thickening 
behavior is seen to vanish without affecting the zero- and 
infinite-shear-rate viscosities. We should note here that 
the neat blood predictions do not predict any shear thick-
ening (see Fig.  4 of Stephanou and Tsimouri (2020)) 
indicating that the shear thickening observed is particle-
induced. Overall, these predictions, except for the slight 
shear-thickening behavior, are in line with available rheo-
logical measurements for non-aggregating blood, as will 
be more carefully documented in the next section. In the 
case of the first normal stress coefficient (Fig. 1b), we note 
that the zero-shear-rate value is noted to increase when 
either � or Λa

0
 decrease, in line with Eq. (5b), whereas 

the predictions in the range 1 ≤ Ca ≤ 10 are noted to be 
insensitive to the parameter values. Also, at large shear 
rates, a power-law behavior is predicted: when re = 20 we 
find that Ψ1 ∝ Ca−1.65, whereas when re = 10 we note that 
Ψ1 ∝ Ca−2 . Finally, the second normal stress coefficient 
(Fig. 1c) is noted to be completely independent of the 
values of all model parameters varied here, exhibiting a 
power-law behavior of the form −Ψ2 ∝ Ca−2, except for the 
zero-shear-rate value that is noted to increase when either 
of � or Λa

0
 decrease, in line with Eq. (5c). A remarkable 

feature is the appearance of a maximum at about Ca ≈ 1 ; 
this is attributed to the RBCs as it can also be noted in 
the case of neat non-aggregating blood (see Fig. 5b of 
Stephanou (2020)).

When selecting a finite value for the � parameter, the 
scalar structural variable, � , decreases as the shear rate 
increases, as noted in Fig. 2. When the parameter � increases, 
� is noted to decrease faster with the shear rate, which is the 
expected behavior given the definition of � . Note that as 
� → 0 then the structural variable will remain equal to unity 
irrespective of the applied shear rate, whereas when 𝜀 ≫ 1 
then the structural vanishes even if a very small shear rate is 
applied, meaning that a yield-stress point is not predicted. 
Finally, when increasing the slip parameter to � = 0.01 we 
note that the prediction remains invariant at small shear 
rates and reaches a constant value at large shear rates; this 
is because after a critical shear rate is reached the RBCs 
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begin to tumble without deforming, which ceases the further 
destruction of the network.

When selecting a finite value for the � parameter, a yield 
point is predicted for all material functions (see panel a in 
Figs. 3, 4, and 5) irrespective of the value of the remain-
ing parameters. The yield shear stress, σy , and yield first, 
N1,y , and negative second, −N2,y , normal stress differences 
are all seen to be decreasing when � and H increase and 
f0 decreases. The value of the � parameter is, however, 
completely irrelevant at large shear rates, as expected. In 
line with Eq. (6), the infinite-shear-rate shear viscosity 
depends only on the H  when the particle volume frac-
tion and the viscosity ratio �� are constant. On the other 
hand, we note that both the first (Fig. 4a) and negative 
second (Fig. 5a) normal stress differences at large shear 
rates shift downwards when � increases or f0 decreases, 
whereas both curves shift upwards when the H increases, 
which is the expected outcome. As mentioned by Stepha-
nou (2020), despite the plethora of shear stress rheological 
measurements of blood, no data for the normal stresses 
are available in the literature. The same statement holds 
also to nanoblood for which only very scarce rheological 
measurements are available, such as the ones reported by 
Antonova et al. (2014) (see Figs. 6, 7, 8, and 9).

Comparison with experimental data

Rheological data for neat non‑aggregating blood

Antonova et al. (2014) measured the viscosity of a RBC-
PBS solution, with a hematocrit value adjusted to 40%, that 
they use as their base fluid for preparing their nanoblood 
suspensions (see Figs. 7b and 9). Given that the viscos-
ity of PBS (external fluid) at 37 °C (where all rheological 
measurements were made) is �s = 0.73mPas (Chien et al. 
1966) and that the cytoplasmic fluid that resides inside the 
RBC has a viscosity in the range of 3–10 mPa s (Cokelet 
and Meiselman 1968), then the ratio between the internal 
(cytoplasm) and external (plasma) viscosities is between 4.1 
and 13.7; we will here consider the average value �� = 8.9 , 
meaning that T(��) ≈ 2.3 . Furthermore, since the measure-
ments were made on a RBC-PBS solution, i.e., using as a 
base fluid non-aggregating blood, we consider � → ∞ . Thus, 
only three more parameters remain to be selected: f0, � , and 
�s.We compare the model prediction with these experimental 
data in Fig. 6, considering f0 = 3.8, � = 0, and �s = 0.5s , and 
note that the model compares adequately well with the experi-
mental data.

Fig. 2  Representative model predictions for the scalar structural vari-
able, � , as a function of the dimensionless shear rate for various val-
ues of � and �

Fig. 3  Representative model predictions for the steady-state dimen-
sionless a shear stress and b shear viscosity as a function of the 
dimensionless shear rate. The results are shown for various values 
of the model parameters associated with the RBCs, while keeping 
� = 1%, re = 10, � = 1, and Λa

0
= 10

−2
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Rheological data for a suspension of spherical 
nanoparticles in non‑aggregating blood

We first consider the viscosity of a suspension of core–shell-
type star polymers in a saline solution whose interior is com-
posed of hyperbranched-polystyrene-bearing arms of 
poly(acrylic acid); these star polymers resemble spherical 
nanoparticles with a (hydrodynamic) radius equal to 14 nm 
(Antonova et al. 2014). As seen in Fig. 7a, these solutions 
behave as Newtonian fluids at various concentrations. The 
average viscosity of the saline solution is equal to 
�s = 0.739mPas . Since the volume fraction for each Newto-
nian suspension is not provided by Antonova et al., (2014), 
we use the shear viscosity data and the Batchelor and Green 
(1972a, b) expression, � = 𝜂s

(

1 +
5

2
𝜙 + c𝜙2

)

�̇ with c=6.2, 
in order to obtain an estimate of the volume fraction for each 
solution; we find �

(

0.02
mg

ml

)

= 0.0565,�
(

0.1
mg

ml

)

= 0.0594 , 

and �
(

0.2
mg

ml

)

= 0.082 . Then, and given that the volume 
fraction for each nanoblood suspension is small (same vol-
ume fractions are assumed as those obtained in Fig. 7a), we 
consider that the parameters �, �, �S , and f0 remain equal to 
those selected in the case of neat blood (Fig. 6). Thus, the 
model predictions are obtained by simply rescaling the pure 
blood predictions, as dictated by Eq.  (7a), by a factor 
1 + f (�) . The comparison against the shear viscosity data of 
the suspension of spherical nanoparticles in a Newtonian 
fluid is provided in Fig. 7a which showcases that the selected 
values for the volume fractions are adequately accurate. 
Then, we proceed to predict, without additional adjustable 
parameters, the rheological predictions in the case of suspen-
sions of spherical nanoparticles in non-aggregating blood at 
various concentrations. This comparison, shown in Fig. 7b, 
is again noted to be adequately good.

Fig. 4  Representative model predictions for the steady-state dimen-
sionless a first normal stress difference and b first normal stress coef-
ficient as a function of the dimensionless shear rate. Same parameter 
values as in Fig. 3

Fig. 5  Representative model predictions for the steady-state dimen-
sionless negative a second normal stress difference and b second nor-
mal stress coefficient as a function of the dimensionless shear rate. 
Same parameter values as in Fig. 3
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Rheological data for a suspension of rod‑like nanoparticles 
in non‑aggregating blood

Antonova et  al. (2014) measured the viscosity of lin-
ear  poly(acrylic acid) (PAA) chains, that exhibit a rod-like 
conformation, immersed in a saline solution for various 
molecular weights and two concentrations (0.02 and 0.1 mg/
mL). Unfortunately, as no information is given concerning 
the aspect ratio or the volume fraction for either sample, we 
will obtain these values by comparison against the rheologi-
cal data. Antonova et al. (2014) noted that in their experi-
ments, carried out with rather dilute PAA solutions, no 
measurable effect of the polymer molecular weight on the vis-
cosity was registered. By simply fitting their experimental data 
against our model, we obtain the following values for the volume 
fractions �

(

0.02
mg

ml

)

= 0.005 and �
(

0.1
mg

ml

)

= 0.025 , and the 
following values of all remaining parameters: aspect ratio 
re = 120,Λa

0
= 10−5 , and �a0 = 0.5 s . The comparison is pre-

sented in Fig. 8 where we note a satisfactory comparison against 
the experimental data. Note that the non-spherical shape of these 
particles induces a shear-thinning behavior (cf. Figure 7a where 
spherical particles are used).

Finally, in Fig. 9, we compare against the experimental 
rheological data of Antonova et al. (2014) with H = 0.4 for 
a suspension of rod-like (PAA) nanoparticles in non-aggre-
gating blood, with the solvent being PBS ( �s = 0.73mPas ), 
when the particle concentration is 0.1 mg/mL ( � = 0.025 ). 
As mentioned by Antonova et al. (2014), the rheological 
measurements are the same irrespective of the molecu-
lar weight of PAA, as also noted in Fig. 8; however, the 

nanoblood rheological measurements are lower than the 
neat blood ones. Since PAA particles are immersed in PBS 
(i.e., the base fluid is non-aggregating blood), we consider 
� → ∞ . Again, as the volume fraction is small, we employ 
the same values for the parameters � and �S as in the case of 
neat blood (Fig. 6), i.e., � = 0 and �s = 0.5 s , but consider 
f0(� = 0.025) = 2 . The fact that this parameter has to be 
reduced is a direct consequence of the viscosity reduction of 
the nanoblood sample relative to the neat blood one. Finally, 
we consider the same values for the parameters re,Λa

0
 , 

and �a0 as in the case of the rod-like suspensions compared 
in Fig. 8, i.e., re = 120,Λa

0
= 10−5 , and �a0 = 0.5 s . As noted 

in Fig. 9, the new model is seen to compare favorably with 
the experimental data of Antonova et al. (2014).

Fig. 6  Comparison of the model predictions for the shear viscos-
ity with the experimental rheological data of neat non-aggregating 
blood with H = 40% (Antonova et  al. 2014). The dotted line depicts 
the Newtonian contribution P

(

H, 𝜆𝜂
)

�̇� , where P
(

H, ��
)

 is given from 
Eq. (2b), at large shear-rates

Fig. 7  Comparison of the model predictions for a the shear viscos-
ity of a suspension of spherical nanoparticles in saline (a Newtonian 
fluid) and b the shear viscosity of suspensions of spherical nanopar-
ticles in non-aggregating blood at various concentrations with the 
experimental rheological data of Antonova et al. (2014)
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Conclusions

Given the growing interest in the use of drug-carrying par-
ticles to fight numerous diseases, it becomes absolutely 
necessary to have in our arsenal a rheological model that 
adequately addresses the rheology of nanofluids compris-
ing of particles immersed in blood, what we refer to in this 
article as nanoblood. The availability of such a model would, 
undoubtedly, offer the opportunity to execute in silico human 
trials to bolster the reduction of both the time needed to 
perform and the cost of design experiments, and further 
the tailor-design of each drug for optimum delivery to the 
infected areas. Such a model should be properly derived to 
accommodate the coupling between particles and blood, 
not to violate physical laws, and be properly parameterized 
against available rheological data.

We have herein introduced such a constitutive model 
derived via the use of non-equilibrium thermodynamics. 
Thus, the state variables have been properly coupled with 
the flow field, while concurrently guaranteeing the model’s 
thermodynamic admissibility. To the best of the author’s 
knowledge, this is the very first rheological model derived 
for nanoblood using such an approach. In deriving the 
model, we have considered the actual morphologies of both 
the RBCs, modeled as deformed droplets with a constant 
volume that are able to aggregate, and particles, modeled as 
rigid spheroids. We have thoroughly established its capacity 
to favorably compare against available suspension rheologi-
cal data (Antonova et al. 2014) with both spherical (Fig. 7b) 
and rod-like nanoparticles (Fig. 9) immersed in non-aggre-
gating blood (RBC suspension in PBS), given especially 

the fact that the parameters (except for f0  in Fig. 9) are 
carried over from previous comparisons: the comparisons 
in Fig. 7b and Fig. 9 are purely predictive ones as the param-
eters are kept the same to the ones used in Figs. 6 and 7a, for 
Fig. 7b, and Fig. 8, for Fig. 9, respectively. In addition, we 
have showcased that the model is noted to predict a positive 
first normal stress difference (Figs. 1 and 4), and a nega-
tive second normal stress difference (Figs. 1 and 5). Recent 
experimental evidence (Kim et al. 2019) suggests that the 
migration of particles is a direct result of the appearance of 
normal stress differences. Alas, if optimization of the tailor-
design of DCPs is to be sought, it is extremely paramount to 
properly predict normal stresses in vascular environments; 
however, it has been ignored by the experimental rheological 
community altogether, as no such data can be found in the 
literature. This surely leaves a gap in our effort to develop a 
constitutive model able to accurately address the rheological 
behavior of both neat blood and nanoblood. We, therefore, 
urge the experimental rheological community to be more 
actively interested in studying the rheological behavior of 
nanoblood comprising particles immersed in normal (aggre-
gating) blood.

We do admit that the current version of our model 
bears certain limitations. At first, in our previous works 
(Stephanou 2020; Stephanou and Tsimouri 2020) the 
model parameters were considered constants. We could 
use carefully executed experiments (Fischer 2007) 
wherein single RBCs are suspended in fluids with vis-
cosities ranging from 12.9 to 109 mPa s. This would 
allow the specification of the � parameter as a function 
of the viscosity ratio �� . Also, since the yield (shear) 

Fig. 8  Comparison of the model predictions for the shear viscosity of 
a suspension of rod-like nanoparticles in saline (a Newtonian fluid) 
with the experimental rheological data of Antonova et al. (2014). The 
dotted lines depict the saline viscosity value �s = 0.739mPa s

Fig. 9  Comparison of the model predictions for the shear viscosity 
of a suspension of rod-like nanoparticles in non-aggregating blood 
(blue line) with the experimental rheological data of Antonova et al. 
(2014). Note that the neat blood prediction, as presented in Fig. 6, is 
also presented (red line)
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stress can be expressed (Apostolidis and Beris 2014) as 
a function of the H  and the concentration of fibrinogen, 
cf  , a key blood protein responsible for the aggregation of 
RBCs, we could specify the � parameter as a function of 
H  and cf  . These generalizations would reduce the num-
ber of adjustable parameters. Secondly, its validation has 
been made using rheological data (Antonova et al. 2014) 
that refer to non-aggregating blood. This stands as a huge 
void in our efforts to showcase the model capacity to 
address the rheological behavior of nanoblood in actual 
vascular environments. However, as mentioned above, 
this void stems from the unavailability of such data in 
the literature. Thirdly, in our present derivation we have 
neglected coupling terms between the structural variables 
for mere simplicity. Given the fact that nanoparticles are 
noted to interact with blood cells (Vu et al. 2020), and 
that blood proteins interact with nanoparticles by form-
ing an absorbed layer on the nanoparticles that leads to 
nanoparticle aggregation (De Paoli Lacerda et al. 2010), 
such an amendment is particularly important. The use 
of NET will allow us to properly couple the structural 
variables while, at the same time, guaranteeing the ther-
modynamic admissibility of the revised version, as we 
have done previously for polymer nanocomposites with 
remarkable success (Stephanou et al. 2014; Stephanou 
2015).

In the future, we aim to employ our model in CFD 
simulations in vascular environments to provide answers 
as to how the tailor-design of DCPs should take place. 
This could include the use of numerical techniques, 
such as the FEM or finite-volume method (FVM) solv-
ers. Commercial software such as Fluent (Ansys Inc.) 
or FreeFem +  + , an open-source FEM solver used by 
Dubey et al. (2020), could also be employed in perform-
ing the aforementioned CFD simulations. This will ena-
ble us to understand what specific factors result in the 
optimal margination of DCPs to the vessel wall. As we 
have exemplified prior, when one targets atherosclerotic 
plaques, the highest accumulation of DCPs is noted at 
the shoulder regions of the plaque (Peters et al. 2009) 
where the stresses are minimum. This result should be 
verified via CFD simulations. Overall, the use of our 
model in CFD simulations would allow for the execu-
tion of in silico human trials of several treatments to 
facilitate a faster and more economic design of suitable 
DCPs.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00397- 021- 01289-x.
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