Supplementary Materials

Mesoporous Composite Networks of Linked MnFe₂O₄ and ZnFe₂O₄ Nanoparticles as Efficient Photocatalysts for the Reduction of Cr(VI)

Euaggelia Skliri¹, Ioannis Vamvasakis¹, Ioannis T. Papadas², Stelios A. Choulis² and Gerasimos S. Armatas^{1,*}

- ¹ Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece; sklirieva@materials.uoc.gr (E.S.); j.vamvasakis@gmail.com (I.V.)
- ² Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 3041 Limassol, Cyprus; ioannis.papadas@cut.ac.cy
- (I.T.P.); stelios.choulis@cut.ac.cy (S.A.C.)
- * Correspondence: garmatas@materials.uoc.gr; Tel.: +30-2810-545004

Figure S1. N₂ adsorption-desorption isotherms and the corresponding pore-size distribution plots (inset) for the ZFO and MFO MNAs catalysts.

Analysis of the adsorption data indicate a surface area of $105 \text{ m}^2 \text{ g}^{-1}$ and a pore volume of $0.15 \text{ cm}^3 \text{ g}^{-1}$ for ZFO MNAs and a surface area of $106 \text{ m}^2 \text{ g}^{-1}$ and a pore volume of $0.21 \text{ cm}^3 \text{ g}^{-1}$ for MFO MNAs. The pore-size distribution calculated from the adsorption branch of isotherm according to the NLDFT method (based on slit-like pores) indicates an average pore size of 5.8 and 6.1 nm for ZFO and MFO MNAs, respectively.

Figure S2. Kinetic profiles for UV–visible light-induced reduction of Cr(VI) over different ZFO and MFO based catalysts. The red lines are fit to the data.

Figure S3. N₂ adsorption and desorption isotherms at –196 °C (Inset: the pore-size distribution calculated from the adsorption branch of isotherm according to the NLDFT method, indicating a pore size of about 2.9 nm) of the MFO-6-ZFO RNAs.

Analysis of the adsorption data indicate a BET surface area of 50 m² g^{-1} and a total pore volume of 0.13 cm³ g^{-1} .

Figure S4. Kinetic profile for UV–visible light-induced reduction of Cr(VI) over untemplated MFO-6-ZFO catalyst (MFO-6-ZFO RNAs). The red lines are fit to the data.

Figure S5. (a) Powder XRD pattern and (b) N₂ adsorption and desorption isotherms at –196 °C (Inset: the NLDFT pore-size distribution calculated from the adsorption branch of isotherm, indicating an average pore size of about 5.9 nm) of the MFO-6-ZFO catalyst retrieved after the cycling test.

Figure S6. (a) Mott-Schottky plots and (b) Tauc plots of the ZFO and MFO MNAs.

Figure S7. Open-circuit photovoltage (OCP) decay curves of ZFO, MFO and MFO-6-ZFO MNAs in 0.5 M Na₂SO₄ solution.