organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(4,6-diaminopyrimidin-2-yl) disulfide dimethyl sufoxide disolvate

Ephthymia Papastavrou,^a Saleh Shakhatreh,^b Pericles D. Akrivos^a and Maria Gdaniec^{c*}

^aDepartment of Chemistry, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece, ^bAl Huson University College, Al Balga' Applied University, Al-Huson, Jordan, and ^cFaculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland

Correspondence e-mail: magdan@amu.edu.pl

Received 31 July 2008; accepted 1 August 2008

Key indicators: single-crystal X-ray study; T = 130 K; mean σ (C–C) = 0.002 Å; disorder in solvent or counterion; R factor = 0.030; wR factor = 0.078; data-toparameter ratio = 15.3.

The title compound, C₈H₁₀N₈S₂·2C₂H₆SO, was obtained unintentionally during an attempt to prepare a thiolate derivative of trimethyltin. The complete disulfide molecule is generated by twofold rotation symmetry and the C-S-S-C torsion angle around the S-S bond is $-85.70 (10)^{\circ}$. The molecules are connected via N-H···N hydrogen bonds into strongly corrugated layers parallel to (001), generating an $R_2^2(8)$ motif. The solvent molecule, which exhibits minor disorder of its S atom [site occupancies = 0.9591 (18) and 0.0409 (18)], is linked to this layer via a pair of $N-H\cdots O$ interactions.

Related literature

For information on the preferred conformations of organic disulfides, see: Sączewski et al. (2006).

Experimental

Crystal data

$C_8H_{10}N_8S_2 \cdot 2C_2H_6OS$	
$M_r = 438.62$	
Orthorhombic, Pccn	
a = 11.2612 (4) Å	
b = 11.9948 (5) Å	
c = 15.0754 (6) Å	

Data collection

Kuma KM-4-CCD κ geometry diffractometer Absorption correction: none 17524 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of
$wR(F^2) = 0.078$	independent and constrained
S = 1.04	refinement
2240 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
146 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

 $V = 2036.32 (14) \text{ Å}^3$

2240 independent reflections

1944 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.49 \text{ mm}^{-1}$

T = 130 (2) K $0.40 \times 0.10 \times 0.10$ mm

 $R_{\rm int} = 0.035$

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N7-H7A\cdotsO1^{i}$	0.78 (2)	2.20 (2)	2.959 (2)	165 (2)
$N7 - H7B \cdot \cdot \cdot N1^{ii}$	0.846 (19)	2.33 (2)	3.169 (2)	175.1 (16)
N8−H8A···O1 ⁱⁱⁱ	0.84 (2)	2.09 (2)	2.9109 (19)	164.4 (18)
$N8 - H8B \cdot \cdot \cdot N3^{iv}$	0.81 (2)	2.33 (2)	3.088 (2)	156.8 (19)
Symmetry codes: (i) -	$-x + \frac{1}{2}, y, z - \frac{1}{2};$ (ii	i) $-x + 1, y - \frac{1}{2}$	$z, -z + \frac{1}{2};$ (iii) $x, -y$	$v + \frac{1}{2}, z - \frac{1}{2};$ (iv)

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2773).

References

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.

Sączewski, J., Frontera, A., Gdaniec, M., Brzozowski, Z., Sączewski, F., Tabin, P., Quinoñero, D. & Deyà, P. M. (2006). Chem. Phys. Lett. 422, 234-239. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2008). E64, o1724 [doi:10.1107/S160053680802480X]

Bis(4,6-diaminopyrimidin-2-yl) disulfide dimethyl sufoxide disolvate

E. Papastavrou, S. Shakhatreh, P. D. Akrivos and M. Gdaniec

Comment

The title compound, (I), is shown in Fig. 1. In the crystal it adopts a chiral conformation of C_2 symmetry with the torsion angle around the S–S bond of -85.70 (10)°. The S–S bond length of 2.0249 (7) Å is typical of disulfides in a screw conformation (Sączewski *et al.*, 2006). In turn the torsion angle of -8.23 (13)° around the C–S bond shows that the disulfide S atoms are situated close to the pyrimidine plane.

The component molecules of (I) are connected *via* weak N—H···N interactions generating $R_2^2(8)$ hydrogen-bond motif into strongly corrugated layer parallel to (001) (Fig. 2, Table 1). The solvent molecules, which exhibit minor disorder of their S atoms, join to this layer *via* a pair of N—H···O interactions and thus all N–H donors are involved in hydrogen bonding. Crystal packing in the title compound is shown in Fig. 3.

Experimental

1 mmol of 4,6-diaminopyrimidine-2-thiol was dissolved in 10 ml of DMSO at room temperature and was neutralized by the addition of 1 ml of 1 *M* solution of NaOH in methanol. Then, 5 ml of a methanolic solution containing 1 mmol of triorganotin chloride was added and the solution was stirred at room temperature for 1 h. Filtration removed minor solid byproducts and the solution was concentrated by rotary evaporation. After cooling and leaving the solution in the refrigerator for about one week, colourless prisms of (I) appeared.

Refinement

The S atom of the DMSO molecule is disordered over two positions in a 0.9591 (18):0.0409 (18) ratio. The minor component was refined isotropically.

The H atoms of the N—H groups were located in a difference map and refined isotropically. Positions of the H atoms from the C—H groups were determined geometrically (C—H = 0.96Å) and refined as riding with their isotropic displacement parameters freely refined.

Figures

Fig. 1. : The molecular structure of (I) with displacement ellipsoids shown at the 50% probability level. Bonds of the DMSO molecule in the minor orientation are shown as dashed lines. The unlabelled atoms of the disulfide molecule are generated by the symmetry operation (3/2-x, 1/2-y, z).

Fig. 2. : The crystal structure of (I) viewed down the b axis. Hydrogen bonds are shown with dashed lines.

Fig. 3. : Hydrogen-bonded two-dimesional assembly of molecules in (I), parallel to the (001) plane. Hydrogen bonds are shown with dashed lines.

Bis(4,6-diaminopyrimidin-2-yl) disulfide dimethyl sufoxide disolvate

Crystal data	
$C_8H_{10}N_8S_2 \cdot 2C_2H_6OS$	$F_{000} = 920$
$M_r = 438.62$	$D_{\rm x} = 1.431 {\rm ~Mg~m^{-3}}$
Orthorhombic, Pccn	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ab 2ac	Cell parameters from 8255 reflections
<i>a</i> = 11.2612 (4) Å	$\theta = 4-27^{\circ}$
<i>b</i> = 11.9948 (5) Å	$\mu = 0.49 \text{ mm}^{-1}$
c = 15.0754 (6) Å	T = 130 (2) K
$V = 2036.32 (14) \text{ Å}^3$	Prism, colourless
Z = 4	$0.40 \times 0.10 \times 0.10$ mm

Data collection

Kuma KM-4-CCD κ geometry diffractometer	1944 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.035$
Monochromator: graphite	$\theta_{max} = 27.1^{\circ}$
T = 130(2) K	$\theta_{\min} = 4.7^{\circ}$
ω scans	$h = -14 \rightarrow 14$
Absorption correction: none	$k = -15 \rightarrow 15$
17524 measured reflections	$l = -19 \rightarrow 12$
2240 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difmap and geom

$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of independent and constrained refinement
$\mathbf{N}(\mathbf{F}^2) = 0.070$	$w = 1/[\sigma^2(F_0^2) + (0.0487P)^2]$
$WR(F^{-}) = 0.078$	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
2240 reflections	$\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$
146 parameters	$\Delta \rho_{min} = -0.31 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. DMSO molecule is slightly disordered. In the minor orientation the DMSO C and O atoms superimpose with the C and O atoms of the major orientation. The *S* atom is split into two positions with occupancies 0.96 and 0.04.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
S1	0.69207 (3)	0.18545 (3)	0.35324 (2)	0.01604 (12)	
N1	0.57870 (10)	0.31222 (10)	0.22912 (8)	0.0152 (3)	
C2	0.58248 (12)	0.21471 (12)	0.26959 (9)	0.0144 (3)	
N3	0.51503 (10)	0.12462 (10)	0.25880 (8)	0.0170 (3)	
C4	0.43156 (13)	0.13306 (12)	0.19373 (10)	0.0189 (3)	
C5	0.42109 (13)	0.22991 (12)	0.14298 (10)	0.0198 (3)	
H5A	0.3656	0.2345	0.0948	0.028 (5)*	
C6	0.49402 (13)	0.31911 (12)	0.16390 (10)	0.0166 (3)	
N7	0.36069 (14)	0.04423 (12)	0.18104 (11)	0.0279 (4)	
H7A	0.3204 (18)	0.0445 (16)	0.1393 (13)	0.026 (5)*	
H7B	0.3746 (16)	-0.0163 (16)	0.2079 (11)	0.024 (5)*	
N8	0.48636 (13)	0.41723 (12)	0.11984 (10)	0.0221 (3)	
H8A	0.4314 (19)	0.4234 (16)	0.0824 (13)	0.036 (6)*	
H8B	0.5057 (18)	0.4735 (17)	0.1454 (14)	0.035 (6)*	
S2	0.26010 (4)	0.05431 (4)	0.41883 (3)	0.02342 (15)	0.9591 (18)
01	0.26997 (10)	0.08760 (10)	0.51429 (7)	0.0276 (3)	
С9	0.21608 (17)	-0.08841 (15)	0.41993 (13)	0.0341 (4)	
H9A	0.2808	-0.1338	0.4402	0.057 (7)*	
H9B	0.1495	-0.0974	0.4591	0.047 (6)*	
H9C	0.1939	-0.1109	0.3611	0.071 (8)*	
C10	0.1254 (2)	0.1121 (2)	0.37893 (17)	0.0564 (7)	
H10A	0.1327	0.1916	0.3738	0.071 (8)*	
H10B	0.1072	0.0809	0.3219	0.104 (11)*	
H10C	0.0628	0.0944	0.4199	0.056 (7)*	
S2'	0.1601 (14)	0.0428 (13)	0.4582 (10)	0.056 (5)*	0.0409 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01515 (19)	0.01586 (19)	0.0171 (2)	0.00024 (13)	-0.00058 (14)	0.00286 (14)
N1	0.0156 (6)	0.0131 (6)	0.0167 (7)	0.0008 (5)	-0.0011 (5)	-0.0004 (5)
C2	0.0139 (6)	0.0154 (7)	0.0138 (7)	0.0025 (5)	0.0023 (5)	-0.0012 (6)
N3	0.0172 (6)	0.0151 (6)	0.0185 (7)	-0.0009 (5)	-0.0007 (5)	-0.0001 (5)
C4	0.0186 (7)	0.0161 (7)	0.0221 (8)	0.0002 (6)	-0.0010 (6)	-0.0024 (6)
C5	0.0201 (7)	0.0168 (8)	0.0226 (8)	0.0006 (6)	-0.0058 (6)	-0.0014 (6)
C6	0.0179 (7)	0.0158 (7)	0.0162 (7)	0.0024 (5)	0.0010 (6)	-0.0013 (6)
N7	0.0306 (8)	0.0179 (7)	0.0353 (9)	-0.0077 (6)	-0.0162 (7)	0.0053 (7)
N8	0.0252 (7)	0.0164 (7)	0.0247 (8)	-0.0013 (6)	-0.0099 (6)	0.0019 (6)
S2	0.0229 (2)	0.0294 (3)	0.0179 (2)	0.00107 (17)	-0.00281 (17)	0.00052 (17)
01	0.0298 (6)	0.0316 (7)	0.0215 (6)	0.0015 (5)	-0.0053 (5)	-0.0091 (5)
C9	0.0388 (10)	0.0317 (10)	0.0318 (11)	-0.0018 (8)	-0.0077 (8)	-0.0085 (8)
C10	0.0490 (14)	0.0504 (14)	0.0697 (17)	0.0079 (11)	-0.0347 (13)	0.0077 (13)

Geometric parameters (Å, °)

S1—C2	1.7990 (15)	N7—H7B	0.846 (19)
S1—S1 ⁱ	2.0249 (7)	N8—H8A	0.84 (2)
N1—C2	1.3198 (18)	N8—H8B	0.81 (2)
N1—C6	1.3722 (19)	S2—O1	1.4976 (11)
C2—N3	1.3309 (19)	S2—C10	1.773 (2)
N3—C4	1.3623 (19)	S2—C9	1.7822 (19)
C4—N7	1.345 (2)	С9—Н9А	0.9600
C4—C5	1.396 (2)	С9—Н9В	0.9601
C5—C6	1.385 (2)	С9—Н9С	0.9601
С5—Н5А	0.9601	C10—H10A	0.9601
C6—N8	1.354 (2)	C10—H10B	0.9601
N7—H7A	0.78 (2)	C10—H10C	0.9600
C2—S1—S1 ⁱ	107.03 (5)	C6—N8—H8A	116.9 (13)
C2—N1—C6	114.02 (12)	C6—N8—H8B	118.4 (14)
N1—C2—N3	130.14 (13)	H8A—N8—H8B	116 (2)
N1—C2—S1	121.27 (11)	O1—S2—C10	106.58 (10)
N3—C2—S1	108.59 (10)	O1—S2—C9	105.54 (8)
C2—N3—C4	114.92 (12)	C10—S2—C9	98.08 (11)
N7—C4—N3	116.94 (14)	S2—C9—H9A	109.7
N7—C4—C5	122.08 (15)	S2—C9—H9B	109.3
N3—C4—C5	120.98 (13)	Н9А—С9—Н9В	109.5
C6—C5—C4	117.90 (14)	S2—C9—H9C	109.5
С6—С5—Н5А	120.9	Н9А—С9—Н9С	109.5
С4—С5—Н5А	121.2	Н9В—С9—Н9С	109.5
N8—C6—N1	116.62 (13)	S2-C10-H10A	110.0
N8—C6—C5	121.46 (14)	S2—C10—H10B	109.5
N1—C6—C5	121.91 (13)	H10A-C10-H10B	109.5
C4—N7—H7A	117.4 (15)	S2—C10—H10C	108.9

supplementary materials

C4—N7—H7B	120.2 (12)	H10A—C10—H10C	109.5
H7A—N7—H7B	119.9 (19)	H10B—C10—H10C	109.5
C6—N1—C2—N3	-2.4 (2)	C2—N3—C4—C5	0.6 (2)
C6—N1—C2—S1	176.75 (10)	N7—C4—C5—C6	176.79 (15)
S1 ⁱ —S1—C2—N1	-8.23 (13)	N3—C4—C5—C6	-3.3 (2)
S1 ⁱ —S1—C2—N3	171.09 (8)	C2—N1—C6—N8	-179.77 (13)
N1—C2—N3—C4	2.5 (2)	C2—N1—C6—C5	-0.8 (2)
S1—C2—N3—C4	-176.76 (10)	C4—C5—C6—N8	-177.67 (14)
C2—N3—C4—N7	-179.45 (14)	C4—C5—C6—N1	3.4 (2)

Symmetry codes: (i) -x+3/2, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N7—H7A…O1 ⁱⁱ	0.78 (2)	2.20 (2)	2.959 (2)	165 (2)
N7—H7B…N1 ⁱⁱⁱ	0.846 (19)	2.33 (2)	3.169 (2)	175.1 (16)
N8—H8A····O1 ^{iv}	0.84 (2)	2.09 (2)	2.9109 (19)	164.4 (18)
N8—H8B····N3 ^v	0.81 (2)	2.33 (2)	3.088 (2)	156.8 (19)
Summatry adday (ii) $w \perp 1/2$ $w = 1/2$ (iii)	w + 1 = 1/2 $= +1/2$ (iv)	1/2 = 1/2	(1) (1) (1) (1) (2) (1)	

Symmetry codes: (ii) -x+1/2, y, z-1/2; (iii) -x+1, y-1/2, -z+1/2; (iv) x, -y+1/2, z-1/2; (v) -x+1, y+1/2, -z+1/2.

Fig. 3

