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Chapter Abstract 

Chapter 1 – A comparative assessment of the methods-of-moments for 

estimating the correlation length of one-dimensional random fields 

Due to geological processes, soil properties vary in vertical and horizontal directions 

which is defined as inherent uncertainty of soil. This type of uncertainty may seriously 

affect the reliability of all geotechnical structures. The inherent uncertainty of soil 

properties is modelled as a random field, which is described by the mean, standard 

deviation and correlation length (also known as scale of fluctuation, 𝜃𝜃) of soil properties. 

In this Chapter, the effectiveness of eight methods-of-moments for estimating the 

correlation length 𝜃𝜃 is investigated. This is done by generating samples of one-

dimensional random fields for pre-defined values of the correlation length, which is then 

estimated by the different methods. For each method, the influence of the sampling 

domain length 𝐷𝐷 and sampling interval 𝑑𝑑𝑥𝑥 on the estimation of 𝜃𝜃 were investigated, and 

the results are quantified in the form of errors over the parameter space, defined by the 

dimensionless ratios 𝐷𝐷/𝜃𝜃 and 𝜃𝜃/𝑑𝑑𝑥𝑥. Through the present analysis, one is able to assess 

the reliability of 𝜃𝜃 estimations obtained in practice, by mapping the conditions of any 

given experiment i.e., sampling domain, interval and estimated correlation length, onto 

the parameter space. The expected error associated with each method used is also 

quantified. Through this analysis a comparative assessment of the methods is also 

obtained.  

Chapter 2 – Spatial Correlation Length of Soils in Practice  

This Chapter is a study on the spatial correlation length of soils in practice. On this basis, 

a series of Dynamic Probing Light (DPL) penetrations were carried out in cohesive and 

cohesionless soils in various sites in Cyprus. The reliability of 𝜃𝜃 estimations obtained 

were assessed by mapping the conditions i.e., sampling domain, the interval and estimated 

correlation length, into the findings of Chapter 1. Continuous sampling and laboratory 

tests on undisturbed samples (referring to clays) also took place. The findings verify that 

even the so-called “homogenous soils” can be far from uniform. Indeed, the spatial 

correlation length 𝜃𝜃 of the soils examined was found to be as low as a few tens of 

centimeters. These values are far from the 𝜃𝜃 = ∞ value that might be used in a simplistic 

probabilistic analysis. 
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Chapter 3 – The effect of targeted field investigation on the reliability of 

axially loaded piles 

This Chapter deals with the practical problem of the effect of targeted field investigation 

on the reliability of axially loaded piles, aiming at an optimal serviceability and ultimate 

limit state design. This is done in a Random Finite Element Method (RFEM) framework 

properly considering sampling in the analysis; the RFEM method combines finite element 

analysis with the random field theory. In this respect, the freely available program called 

RPILE1D has been modified as to consider sampling of soil and pile properties. In each 

RFEM realization, failure is considered to have occurred when the calculated shaft 

resistance of pile considering spatially uniform properties (average of sampled values 

from the soil and pile random fields), is greater than the respective one considering 

spatially random properties for both soil and pile. The necessary numerical demonstration 

of the proposed methodology is done by considering two sampling strategies: a) sampling 

from a single point and b) sampling from a domain, both along the pile, whilst the various 

parameters governing the statistical uncertainty of the problem are examined. As shown, 

by adopting the proper sampling strategy (defined by the number and location of sampling 

points along the pile), the statistical error can be minimized or even, eliminated. The error 

is quantified by the difference in the probability of failure comparing different sampling 

scenarios. Another main finding is that, the optimal horizontal sampling location is at 

location where the pile is going to be constructed. In addition, it was observed that, the 

benefit from a targeted field investigation is much greater as compared to the benefit 

gained using characteristic soil property values. 

Chapter 4 – The effect of targeted field investigation on the reliability of 

earth retaining structures 

This Chapter introduces the concept of targeted field investigation on the reliability of 

earth-retaining structures in both active and passive state, which is implemented in RFEM 

framework. The open source RFEM software REARTH2D was used and modified 

suitably in order to accommodate the purposes of the present research. Soil properties are 

modelled as random fields, and measurements are modelled by sampling from different 

points of the field domain. Failure in the active state is considered to have occurred when 
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the “actual” resultant earth pressure force on the retaining wall (calculated using the 

friction angle random field) is greater than the respective “predicted” force (calculated 

using an homogenous friction angle field characterized by the mean of the values sampled 

from the respective random field). For the passive state the failure is considered to have 

occurred when the “actual” resultant earth pressure force is less than the respective 

“predicted” one. Two sampling strategies are investigated, namely, sampling from a 

single point and sampling from a domain, through an extensive parametric analysis. As 

shown, the statistical uncertainty related to soil properties may be significant and can only 

be minimized by performing targeted field investigation. Among the main findings is that 

the optimal sampling location is immediately adjacent to the wall face and half wall height 

away from the wall face for the active and passive state respectively. In addition, it is 

advisable that the entire wall height be considered in sampling for both states. Finally, it 

was observed that the benefit from a targeted field investigation is much greater as 

compared to the benefit gained using characteristic values in a Load and Resistance Factor 

Design framework. 

Chapter 5 – Reducing statistical uncertainty in elastic settlement and 

bearing capacity analysis of shallow foundations relying on targeted 

field investigation 

The present Chapter deals with the practical problem of reducing statistical uncertainty 

in elastic settlement and bearing capacity analysis of shallow foundations relying on 

targeted field investigation aiming at an optimal design. In a targeted field investigation, 

the optimal number and location of sampling points are a priory known. As samples are 

taken from the material field (i.e. the ground), which simultaneously is a stress field 

(stresses caused by the footing), the coexistence of these two fields allows for some points 

in the ground to better characterize the elastic settlement and the ultimate bearing capacity 

of foundation. These points are identified herein through an extensive parametric analysis 

of the factors controlling the magnitude of settlement and bearing capacity. This is done 

in an advance probabilistic framework using the RFEM properly considering sampling of 

soil properties. In this respect, the open source RSETL2D and RBEAR2D programs, has 

been modified as to include the function of sampling of soil property values from the 

generated random fields and return the failure probability of footing against excessive 

settlement and bearing capacity respectively. Two sampling strategies are examined: a) 
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sampling from a single point and b) sampling a domain (the latter refers to e.g. continuous 

Cone Penetration Test data). As shown, by adopting the proper sampling strategy (defined 

by the number and location of sampling points), the statistical error can be significantly 

reduced. The error is quantified by the difference in the probability of failure comparing 

different sampling scenarios. Finally, from the present analysis it is inferred that, the 

benefit from a targeted field investigation is much greater as compared to the benefit from 

the use of characteristic values in a Limit State design framework. 
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Notation List 

General  

𝐴𝐴 pile cross-sectional area 

𝐵𝐵 footing width 

𝑏𝑏𝐵𝐵 smaller side of footing 

𝑏𝑏𝐹𝐹 smaller side of raft foundation 

𝑏𝑏𝑔𝑔 smaller side of the rectangle circumscribing the group of piles forming the 

foundation at the level of the pile base  

𝐶𝐶𝐶𝐶𝐶𝐶 coefficient of variation 

𝑐𝑐 cohesion 

𝑐𝑐′ drained cohesion  

𝑐𝑐𝑠𝑠 + 𝑐𝑐0 sill of Semivariogram model  

𝑐𝑐0 nugget effect 

𝐷𝐷 sampling domain length 

𝐷𝐷𝑓𝑓 pile base diameter  

𝑑𝑑𝑑𝑑 sampling domain length measured always from the uppermost point of the 

soil 

𝑑𝑑𝑝𝑝 depth of sampling point  

𝑑𝑑𝑥𝑥 sampling interval (constant value) 

𝐸𝐸 modulus of elasticity of soil 

𝐸𝐸𝑝𝑝 modulus of elasticity of the pile 

E() error function 

er relative error  

𝐹𝐹 resultant wall reaction force  

𝐹𝐹𝐹𝐹 safety factor 
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𝐻𝐻 wall height  

ℎ excavation depth  

𝐾𝐾 lateral earth pressure coefficient 

𝐾𝐾𝐹𝐹 Fourier frequency 

𝐾𝐾𝑥𝑥 maximum number of lags up to which the 𝜌𝜌�(𝜏𝜏) and 𝛾𝛾�(ℎ) should be 

calculated 

𝐾𝐾0 coefficient of earth pressure at rest  

𝐿𝐿 pile length   

𝑀𝑀 resultant wall reaction moment  

𝑚𝑚 number of realizations 

𝑚𝑚𝑥𝑥 lag distance index at which the 𝜌𝜌�(𝜏𝜏) firstly become negative 

N dataset size 

𝑁𝑁𝑐𝑐 bearing capacity factor 

𝑛𝑛  number of samples 

nx number of averaged measurements 

nc number of times that two successive points that intersect the mean value 

𝑃𝑃 vertical applied force 

𝑝𝑝 perimeter of the pile 

𝑝𝑝𝑓𝑓 probability of failure 

𝑝𝑝𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚   maximum probability of failure of pile 

𝑝𝑝𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 minimum probability of failure of pile 

𝑄𝑄𝑠𝑠 Pile shaft resistance 

𝑞𝑞𝑢𝑢 ultimate bearing capacity 

𝑅𝑅 radius of pile 

𝑅𝑅2  coefficient of determination 
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𝑅𝑅𝑑𝑑 relative percentage difference 

r data considered in clusters of 2,3,4,…,N/2 

𝑟𝑟𝐵𝐵 Bartlett’s distance 

S  skewness factor  

SLS serviceability limit state  

𝑆𝑆𝑑𝑑  sample standard deviation 

𝑆𝑆𝑝𝑝  pile stiffness  

𝑆𝑆𝑠𝑠  soil stiffness  

𝑠𝑠𝑢𝑢 undrained shear strength 

T averaging length for local averages 

𝑡𝑡 embedded length of the support 

𝑡𝑡𝑎𝑎;𝑣𝑣𝑠𝑠  the Student 𝑡𝑡 factor for a confidence level of α% in the case of 𝑣𝑣𝑠𝑠 degrees 

of freedom 

ULS  ultimate limit state  

𝑈𝑈𝑠𝑠  soil strength  

𝑋𝑋𝑑𝑑 design value of the geotechnical parameter 𝑋𝑋  

𝑋𝑋𝑘𝑘  characteristic value of the geotechnical parameter 𝑋𝑋  

𝑋𝑋𝐾𝐾𝐹𝐹 Fourier transform  

𝑋𝑋𝑚𝑚  sample mean 

𝑥𝑥 horizontal sampling location (measured from wall face or from the center 

of the footing) 

𝑥𝑥𝑘𝑘 value of property x at location k 

𝑧𝑧𝑎𝑎 
investigation depth below the ground level (for the problem of axially 

loaded pile the investigation depth is below the tip) 
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Greek letters  

𝛼𝛼  empirical adhesion factor 

𝛼𝛼𝑠𝑠 range of influence 

𝑎𝑎𝑐𝑐𝑢𝑢(𝑧𝑧)  adhesion at depth 𝑧𝑧 

𝛾𝛾 unit weight of soil 

𝛾𝛾𝑀𝑀 partial material factor 

𝛾𝛾𝛾𝛾 model factor  

𝛾𝛾(𝜏𝜏) Semivariogram function at separation distance τ 

𝛾𝛾�(𝜏𝜏) sample Semivariogram function at separation distance τ 

𝛾𝛾(𝑇𝑇) Variance Function within the averaging window Τ 

𝛾𝛾�(𝑇𝑇) sample Variance Function within the averaging window Τ 

𝛾𝛾𝜙𝜙 partial factor for the friction angle of soil 

𝛿𝛿′ soil–pile friction angle 

𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚  maximum allowable settlement of pile 

𝛥̄𝛥 average distance between the intersections of the fluctuating property and 

its mean value 

𝛥𝛥𝑖𝑖 distance between two successive points that intersect the mean value 

𝜃𝜃 spatial correlation length (also, it replaces the symbols 𝜃𝜃𝑣𝑣 and 𝜃𝜃ℎ when 

𝜃𝜃𝑣𝑣 = 𝜃𝜃ℎ) 

𝜃𝜃�𝑒𝑒 estimated spatial correlation length 

𝜃𝜃ℎ horizontal spatial correlation length  

𝜃𝜃𝑣𝑣 vertical spatial correlation length  

𝜃𝜃0 pre-defined spatial correlation length 

𝜇𝜇 mean of a soil property 

𝜇𝜇𝛾𝛾 mean unit weight of soil 
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𝜇𝜇𝜃𝜃�𝑒𝑒 mean of 5000 estimated correlation lengths 

𝜇𝜇𝜌𝜌�(𝜏𝜏) mean sample autocorrelation function based on 5000 random fields 

𝜇𝜇𝜙𝜙 mean friction angle 

𝜇𝜇𝜙𝜙′ mean of drained friction angle 

𝜇𝜇𝑐𝑐 mean cohesion 

𝜇𝜇𝐸𝐸 mean elastic modulus 

𝜇𝜇𝑆𝑆𝑝𝑝 mean pile stiffness 

𝜇𝜇𝑆𝑆𝑠𝑠 mean soil stiffness 

𝜇𝜇𝑈𝑈𝑠𝑠 mean soil strength 

𝜇𝜇𝑠𝑠𝑢𝑢 mean undrained shear strength  

𝜇𝜇𝑥𝑥 mean of the dataset 

𝜈𝜈 Poisson’s ratio of soil 

𝑣𝑣𝑠𝑠  degrees of freedom  

𝑣𝑣𝑥𝑥 sequence number 

𝜌𝜌 elastic settlement of footing 

𝜌𝜌(𝜏𝜏) autocorrelation function between two points separated by lag distance τ 

𝜌𝜌�(𝜏𝜏)  sample autocorrelation function between two points separated by lag 

distance τ 

𝜎𝜎 standard deviation of soil properties 

𝜎𝜎𝜃𝜃𝑒𝑒 standard deviation of 𝜃𝜃𝑒𝑒 

𝜎𝜎𝜌𝜌�(𝜏𝜏) standard deviation of sample autocorrelation function based on 5000 

random fields 

𝜎𝜎𝑇𝑇 standard deviation of the local averages within the averaging window T 

𝜎𝜎𝑛𝑛(𝑧𝑧)  normal effective stress at depth 𝑧𝑧 
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𝜎𝜎𝑠𝑠𝑢𝑢 standard deviation of undrained shear strength  

𝜎𝜎0′   effective stress 

𝜎̄𝜎′𝜊𝜊  average effective overburden pressure 

𝜎𝜎1 Major principal stress 

τ lag distance or separation distance between two measurements 

𝜙𝜙 friction angle of soil 

𝜙𝜙′ effective (drained) friction angle  

𝜓𝜓(𝑧𝑧) interface friction angle at depth 𝑧𝑧 
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1 Introduction 

Unlike the variability of manufactured materials used in structures, geotechnical 

variability is a complex attribute that results from many disparate sources of uncertainties 

[1]. Uncertainties in soil properties arise from three main sources, namely, inherent 

variability, statistical uncertainty and systematic uncertainties [2,3]. The inherent 

variability results from the fact that, even in seemingly homogenous soil media, the soil 

properties exhibit variability by nature. Due to limited material soil testing, the statistics 

(i.e. the mean and standard deviation) of a soil property will be subjected to statistical 

uncertainty [4]. Discrepancies between the laboratory and in situ conditions, due to 

factors such as scale, anisotropy and degree of saturation of soil are related to systematic 

uncertainties [2,3,5]. Usually these three sources of uncertainties in soil properties are 

lumped together as the total variability of estimated geotechnical parameters [6–9]. 

Obviously, this leads to an overestimation of uncertainties and subsequently to unrealistic 

estimations of the failure probability of geotechnical structures. In this respect, the above-

mentioned uncertainties, are addressed separately in geotechnical reliability analyses. 

Several studies have investigated the effect of inherent variability of soil properties on 

the performance of geotechnical structures; e.g. of slopes [10-30], of bearing capacity 

[31-43] and settlement of shallow foundations [44–48], of retaining structures [49–51] 

and of deep foundations [52–55]. These studies have a common feature that they used 

random field theory to model the spatial variability of soils. In random field theory, the 

spatial variability is characterized by the parameter’s mean value (μ), standard deviation 

(σ), and spatial correlation length (θ) [56–58]. θ is defined as the distance within which 

the soil property shows relatively strong correlation or persistence from point to point 

[59]. A large θ value implies that the soil property is highly correlated over a large spatial 

extent, resulting in a smooth variation within the soil mass. On the other hand, a small 

value indicates that the fluctuation of the soil property is large [60]. Therefore, for the 

proper description of spatial variability of soils, one is required to estimate the value of θ 

using at least one of the methods available in the literature. In addition to the need to 

properly describe the inherent variability, the value of θ, as will be shown later is a critical 

parameter in order to achieve a significant reduction of statistical uncertainty. In this 

respect, the present doctorate research, firstly, performs a comparative assessment of the 

most widely used methods for estimating the spatial correlation length (θ) (Chapter 3). 
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The effectiveness of the methods is investigated by comparing the estimated θ values of 

5000 one-dimensional random fields with a specific predefined θ value used for 

generating these fields. The random fields were generated with the tstlas1 program. The 

effect of sampling domain length, sampling interval and the method used for the 

estimation of sample autocorrelation function on the calculation of θ were systematically 

investigated. The vertical spatial variability of soils in practice based on field and 

laboratory studies, is subsequently examined. More specifically, a series of dynamic 

penetrations with a Dynamic Probing Light (DPL) apparatus were carried out in both 

cohesive and cohesionless soils, whilst unconfined compression tests on undisturbed clay 

samples also took place (Chapter 4). 

Next in order, this doctorate research investigates numerically the effect of targeted field 

investigation on the reliability of deep foundation (Chapter 5), of earth-retaining 

structures (Chapter 6) and elastic settlement and bearing capacity analysis of shallow 

foundations (Chapter 7). The targeted field investigation involves sampling from a 

specific point or a set of points (i.e., adopting a sampling strategy) so that the statistical 

uncertainty in the design is minimized (the probability of failure is minimized). The 

specific sampling is called optimal. The studies are based on the random finite element 

method (RFEM) [61], properly considering soil sampling in the analyses. The RFEM 

method combines finite element method with the random field theory. The random fields 

are generated using the Local Average Subdivision Method [62] and mapped onto the 

finite element mesh, taking full account of element size in the local averaging process. 

Contrary to the common belief that statistical uncertainty decreases with increasing 

number of samples [63–66], the present doctorate research will show that the statistical 

error for the problems stated above can be minimized only by targeted field investigation.  

Finally, a summary of salient conclusions is presented in Chapter 8. The dissertation is 

completed by four Appendices. The Appendices present the required number of 

realizations considered for the RFEM models used as well as the required element size. 
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2 Literature review 

Inherent variability represents the natural randomness of soil property that arise out of 

depositional, geological and geomorphological processes. This type of uncertainty may 

seriously affect the reliability of geotechnical structures. Inherent uncertainty cannot be 

reduced or eliminated [4]; however, it can be statistically described by means of random 

fields. As mentioned previously, the random fields can be defined by their mean value 

(μ), standard deviation (σ) and spatial correlation length (θ). Although μ and σ are defined 

through simple and standard procedures in statistics, the same does not stand for θ which 

essentially requires estimation of the covariance function of the data. Over the last 

decades, several methods have been proposed for the estimation of the correlation length. 

Eight of the most commonly used methods in the literature are listed in Table 2.1. These 

methods may all be regarded as belong to methods-of-moments, as the θ estimations 

follows directly from the properties of either the autocorrelation function or the variance 

function. In contrast, methods such as the likelihood method, see e.g. [61,67], the 

estimation of θ is based on maximizing a certain probability function and can be regarded 

as belonging to a different category. Comparative studies regarding the effectiveness of 

the various methods estimating the correlation length are rather limited. Uzielli [68] and 

Tan et al. [69] analysed several Cone Penetration Test (CPT) profiles (sampling interval 

for the different profiles ranged from 0.002 to 0.10m) and compared five different 

methods for the calculation of θ, namely the ACF, ACFA, ACFB, VF and the MCA (for 

the definition of each method the readers are referred to Table 2.1). They concluded that 

none of the models rank consistently above or below the others; however, in some cases 

the scatter among estimates from different methods is significant. Kenarsari et al. [70] on 

their study on the evaluation of spatial variability of sandy soil compared the exact same 

methods as Uzielli [68]. They found that the coefficient of variation (COV) of the 

estimated values ranges from 12 to 27% and that the COV of θ decrease if the MCA and 

VF are excluded. On the basis of this assumption they concluded that the ACF, ACFA and 

ACFB give more consistent results. Onyejekwe et al. [71] used the ACF and SV methods 

to estimate the θ of seven CPTu profiles and concluded that the θ estimated using the SV 

method was mostly higher than that estimated using the ACF. However, the authors 

admitted that their study was by no means exhaustive and further studies involving more 

soundings are required to come to firm conclusions. 
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Table 2.1: Methods of moments available in the literature for estimation of θ 

Method Proposed by Examples of application 

Autocorrelation Function (ACF) 
Vanmarcke 

[59,72] 

[4,59,80–

89,72,90,91,73–79] 

Area under the Sample ACF (ACFA)(1) Vanmarcke [72] [72,92,93] 

Bartlett’s Limits (ACFB)(1) Jaksa [83] [76,83,94–96] 

Variance Function (VF) Vanmarcke [59] [59,77,92,97–99] 

Fluctuation Function (FF)(2) 
Campanella et 

al. [100] 
[56,57,68,100–104] 

Variance Reduction Function (VRF)(2) Uzielli [68] [56,68,97] 

Semivariogram (SV) Clark [105] 

[54,56,108–

113,58,81,83,85,92,105–

107] 

Mean-Crossing Approximation 

(MCA) 
Vanmarcke [59] [56,70,87,90,91,113] 

(1) modification of the ACF method; (2) modification of the VF method 

In contrast to inherent variability, statistical uncertainty, can be reduced by proper field 

investigation. Generally, the effect of soil sampling on the performance of geotechnical 

structures has been studied only by a few researchers. In this respect, Griffiths et al. [49] 

studied the effect of sampling on the reliability of passive earth pressure by using the 

Random Finite Element Method (RFEM). Considering a limited number of sampling 

locations (four in number) they concluded that, a single sampling point located at 

horizontal distance equal to approximately one wall height from the wall, results to lower 

probability of failure independent of the spatial correlation length and that, the inclusion 

of additional sample points to characterize the soil properties reduces the probability of 

failure. Jaksa et al. [114] investigated the effect of soil variability and site investigation 

scope on footing’s settlement of a three story building and observed that the likelihood of 

under-designing or over-designing a footing decreases as the scope of the investigation 

increases. Gong et al. [115] studied the level of site exploration effort on the predicted  

tunneling-induced ground settlement in soft clays. Through Monte Carlo Simulation, they 
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generated randomly variable soil properties. Then by using the maximum likelihood 

method they evaluated the statistics of soil parameters, following by a probabilistic 

analysis of the tunneling-induced ground settlement. They found that, the level of site 

exploration effort has only a limited influence on the mean of the predicted ground 

settlement. However, it has a great influence on the variation of the predicted ground 

settlement. Moreover, they concluded that a greater level of site exploration yields a 

smaller variation in soil properties, which tends to reduce the variation of the predicted 

tunneling-induced ground settlement. Mašín, [116] developed a general approach that 

incorporate experimental and sampling uncertainties with random field methods which 

attributes the measured total soil variability to spatial variability. He has found that while 

a relatively large number of samples (greater than 40) is needed to properly characterise 

the total soil variability, a much smaller number of samples (greater than 5) is sufficient 

for the experimental uncertainty quantification. Lo and Leung [117] used extended 

Sobol’s index (a probabilistic tool developed by Professor Ilya M. Sobol [118] to assess 

the influence of each input parameter in a physical model) to identify the optimal 

locations of samples that  maximize reduction to the uncertainty in the factor of safety 

calculated from slope stability assessment. In this respect, using existing soil samples the 

mean, variance, and spatial correlation features of the parameters are firstly estimated, 

then a set of unconditional (or conditional) random field analyses are performed and the 

Sobol’ indices are then evaluated for each location. The maximum Sobol’ index value 

corresponds to the optimal sampling location. Yang et al. [119] used conditional random 

fields enabling the site investigation data to be incorporated directly in probabilistic 

analysis and they found that, the coefficient of variation of factor of safety can be reduced 

by incorporating more site investigation data. Ching and Phoon [120] addressed the 

statistical uncertainties associated with the estimation of a depth-dependent trend function 

and spatial variation about the trend function using limited site-specific geotechnical data. 

This study proposed a two-step approach to characterize the uncertainties in all 

parameters, including the functional form of the trend, within a consistent Bayesian 

framework. Yang et al. [121] studied the importance of sampling location on slope 

stability assessment based on statistical hypothesis testing concluding that the slope crest 

is the optimal location to conduct geotechnical site exploration. Fenton et al. [122] studied 

the effect of number of samples and type of trend removal on residual uncertainty. They 

found that, removing the sample mean outperforms removing the best linear unbiased 
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estimate (BLUE) when the actual field correlation length is small, but the BLUE is better 

to use if the actual correlation length is large relative to the domain size. Also, they found 

that more samples reduce the uncertainty when the field correlation length is small but 

does not have much impact when the field correlation length is large. Li et al. [123] linked 

3D conditional random fields with finite elements, within a Monte Carlo framework, to 

investigate optimum sampling locations and the cost-effective design of a slope. Their 

results clearly demonstrate the potential of 3D conditional simulation in directing 

exploration programmes and designing cost saving structures. More recently, Li et al. 

[124] examined the influence of soil strength mean, standard deviation and spatial 

correlation length on the risk of slope design failure for different levels of site 

investigation scope using conditional random fields and found that there is an optimal 

number of site investigation tests, beyond which the cost of additional boreholes does not 

justify the cost savings due to reduced slope failure risk.  

Regarding the various design codes, these are limited to some general recommendations 

focusing mainly on the extend of the subsurface exploration and aiming at identifying 

possible unfavorable geological conditions. More specifically, for deep foundations in 

normal geological conditions, EN 1997-2:2007 [125] recommends two to six 

investigation points per foundation with minimum depth of investigation below the pile(s) 

tip 𝑧𝑧𝑎𝑎 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚{ 𝑏𝑏𝑔𝑔, 5 m, 3𝐷𝐷𝐹𝐹}. AASHTO [126], in turn, refers to Geotechnical 

Engineering Circular #5 - Evaluation of Soil and Rock Properties [127]. The latter 

suggests one or two investigation points for substructure widths ≤30 m and 30 m 

respectively and depth of investigation below the pile(s) tip 𝑧𝑧𝑎𝑎 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚{ 6 m, 2𝐷𝐷𝐹𝐹}. For 

retaining structures EN 1997-2:2007 [125] recommends that, where the piezometric 

surface and the groundwater tables are below the excavation base, the investigation depth, 

𝑧𝑧𝑎𝑎, be greater than or equal to 𝑚𝑚𝑚𝑚𝑚𝑚{ 0.4ℎ, (𝑡𝑡 + 2.0)m} and where the piezometric surface 

and the groundwater tables are below the excavation base, 𝑧𝑧𝑎𝑎, the recommendation is that 

it be greater than or equal to 𝑚𝑚𝑚𝑚𝑚𝑚{ (𝐻𝐻 + 2.0) m, (𝑡𝑡 + 2.0) m}; if no stratum of low 

permeability is encountered down to these depths, then 𝑧𝑧𝑎𝑎 ≥ 𝑡𝑡 + 5 m. For the same 

problem AASHTO [126] recommends a minimum of one exploration point per retaining 

wall; for retaining walls more than 30 m in length, investigation points spaced every 30 

to 60 m with locations alternating from in front of the wall to behind the wall are 

recommended. For the minimum depth of exploration it suggests that the investigation to 
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be extended at least to a depth below the bottom of the wall where the stress increase due 

to the estimated foundation load is less than 10% of the existing effective overburden 

stress at the depth and between 1 and 2 times the wall height. For the problems of shallow 

foundations EN 1997-2 [125] recommends that, for high-rise structures and civil 

engineering projects, the investigation depth below the ground level should be 𝑧𝑧𝑎𝑎 ≥

𝑚𝑚𝑚𝑚𝑚𝑚{3.0𝑏𝑏𝐹𝐹 , 6 m}. For raft foundations and structures with several foundation elements 

whose effects in deeper strata are superimposed on each other the investigation depth 

below the ground level should be 𝑧𝑧𝑎𝑎 ≥ 1.5𝑏𝑏𝐵𝐵. EN 1997-2, also, recommends that the 

investigation points for a building or structure should be placed at critical points relative 

to the shape, structural behavior and expected load distribution (e.g. at the corners of the 

foundation area). AASHTO [126], recommends a minimum of one exploration point for 

substructures (e.g. piers or abutments) less than or equal to 30m in width and for 

substructure widths greater than 30m, a minimum of two exploration points per 

substructure. Additional exploration points should be provided if erratic subsurface 

conditions are encountered. For the depth of exploration, AASHTO suggests that the 

depth should be great enough to fully penetrate unsuitable foundation soils, and that the 

investigation should be extended at least to a depth where the stress increase due to the 

estimated foundation load is less than 10% of the existing effective overburden stress at 

the depth. Also, in case where bedrock is encountered before the depth required by the 

above criterion is achieved, AASHTO recommends that the exploration depth should be 

great enough to penetrate a minimum of 3m into the bedrock, but rock exploration should 

be sufficient to characterize compressibility of infill material of near-horizontal to 

horizontal discontinuities. 

Aiming to achieve an appropriate target of reliability in geotechnical designs, the current 

design codes applies partial factors to characteristic parameter values. In principle the 

characteristic values of geotechnical parameters are selected so as to take account of the 

inherent variability of the ground, the uncertainty in the determination of the soil 

parameters and the extent of the relevant failure mechanism. “Partial factors” are also 

applied to actions, material properties and/or resistances to provide safety and also to 

account for model uncertainties and dimensional variations [128]. While Eurocode 7 

[129] defines the characteristic value of a geotechnical parameter as “a cautious estimate 

of … the mean of a range of values covering a large surface or volume of the ground”, in 
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the various codes of North America the mean value of the measurements is used 

[126,130–132]. Eurocode 7 further notes that, “if statistical methods are used, the 

characteristic values should be derived such that the calculate probability of a worse value 

governing the occurrence of the limit state under consideration is not greater than 5%.” 

In this respect, the following statistical equation is often used for the calculation of the 

characteristic value [128,133]:  

      𝑋𝑋𝑘𝑘 = 𝑋𝑋𝑚𝑚 − 𝑡𝑡𝑎𝑎;𝑣𝑣𝑠𝑠⋅𝑆𝑆𝑑𝑑
√𝑛𝑛

        (2.1) 

where 𝑋𝑋𝑚𝑚 is the sample mean, 𝑆𝑆𝑑𝑑 is the sample standard deviation, 𝑛𝑛 is the number of 

samples, 𝑡𝑡𝑎𝑎;𝑣𝑣𝑠𝑠 is the Student 𝑡𝑡 factor for a confidence level of α% in the case of 𝑣𝑣𝑠𝑠 degrees 

of freedom and 𝑣𝑣𝑠𝑠 is equal to 𝑛𝑛 − 1, assuming a normal distribution. 𝑡𝑡𝑎𝑎;𝑣𝑣𝑠𝑠values for a 

confidence level of 95% and various degrees of freedom 𝑣𝑣𝑠𝑠 can be found at Table 2.2. 

Table 2.2: 𝒕𝒕𝒂𝒂;𝒗𝒗𝒔𝒔values for a confidence level of 95% and various degrees of freedom 𝒗𝒗𝒔𝒔[134].  

𝑛𝑛 3 4 5 6 7 11 16 21 41 
𝑣𝑣𝑠𝑠=𝑛𝑛-1 2 3 4 5 6 10 15 20 40 
𝑡𝑡𝑎𝑎(95%),𝑣𝑣𝑠𝑠 2.920 2.353 2.132 2.015 1.943 1.812 1.753 1.725 1.684 

EN 1997-1 [129] dictates that the design values of the geotechnical parameters (𝑋𝑋𝑑𝑑) be 

derived from the respective characteristic values using the following equation: 

 𝑋𝑋𝑑𝑑 = 𝑋𝑋𝑘𝑘/𝛾𝛾𝛭𝛭 (2.2) 

where, 𝑋𝑋𝑘𝑘 is the characteristic value of a material property 𝑋𝑋 and the symbol 𝛾𝛾𝛭𝛭  denotes 

partial material factor. When partial factors are not applied to the material properties (i.e. 

𝛾𝛾𝛭𝛭 =1), a model factor 𝛾𝛾𝑅𝑅 greater than 1 is applied to the resistances.  
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3 A comparative assessment of the methods-of-moments for 

estimating the correlation length of one-dimensional random fields 

In this chapter, the effectiveness of the eight methods-of-moments presented in Table 2.1 

for estimating the correlation length θ is investigated. This is done by generating samples 

of one-dimensional random fields for pre-defined values of the correlation length, which 

is then estimated by the different methods. For each method, the influence of the sampling 

domain length D and sampling interval dx on the estimation of θ were investigated, and 

the results are quantified in the form of errors over the parameter space, defined by the 

dimensionless ratios D/θ and θ/dx.  

3.1 Methods of moments for estimating θ 

3.1.1 The ACF method and its modifications 

Probably the earliest application of the autocorrelation function (ACF) in geotechnical 

engineering was made by Atterberg [135]. However, the method became wider-known 

after Vanmarcke’s work [59] and since then it remains one of the most popular methods 

for estimating θ. The procedure is briefly presented below.  

The autocorrelation function, 𝜌𝜌(𝜏𝜏), is a measure of the correlation between two random 

measurements of the same property separated by lag distance τ [136]. However, because 

the available data are usually limited, only an estimation of the real ACF can be made 

[56]. In such a case, the “sample autocorrelation function” 𝜌𝜌�(𝜏𝜏) is used. The latter can be 

estimated by either the Method of Moments or the Fourier transform method.  

Following the Method of Moments, 𝜌𝜌�(𝜏𝜏) is given by the following equation: 

     1
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              (3.1) 

In geotechnical engineering, it is common practice to assume data stationarity, which 

implies that the mean and variance are constant and the autocorrelation depends on the 

lag distance rather than the actual sample location [137–139]. The lag distance τ is an 
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integral multiple of the sampling interval length: 𝜏𝜏 = 𝜈𝜈𝑥𝑥𝑑𝑑𝑥𝑥. 𝐾𝐾𝑥𝑥 is the maximum number 

of lags up to which 𝜌𝜌�(𝜏𝜏) should be calculated. For lag τ=0 the autocorrelation function is 

equal to 1. The sample mean 𝜇̂𝜇𝑥𝑥 is defined by 

 
1
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= ∑   (3.2) 

Alternatively, the sample autocorrelation function can be obtained by computing the 

Fourier transform of the data. In the first step, the Fourier transform 𝑋𝑋𝐾𝐾𝐹𝐹 of data 𝑥𝑥𝑘𝑘 can 

be calculated as: 
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where 𝑥𝑥𝑘𝑘 is the value of property x at location k=0,1,2,…, N-1 and 𝐾𝐾𝐹𝐹 =0, 1, 2…, N-1  is 

the Fourier frequency. In order to apply Fast Fourier Transformation algorithms, the 

number Ν is conveniently chosen a power of 2. Here it is taken to be Ν= 210 = 1024. The 

autocorrelation function is given by the Fourier transform of the modulus-squared of 𝑋𝑋𝐾𝐾𝐹𝐹: 
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The correlation length may then be estimated by i) fitting theoretical autocorrelation 

models to the 𝜌𝜌�(𝜏𝜏) ii) estimating the area under the positive part of 𝜌𝜌�(𝜏𝜏) or iii) using the 

Bartlett’s limits method; ACF, ACFA and ACFB method respectively.  

In the first case (ACF method), theoretical autocorrelation models are fitted to the sample 

autocorrelation function 𝜌𝜌�(𝜏𝜏) (Figure 3.1) using curve fitting methods, such as the 

Ordinary Least Square (OLS) method. The most commonly used theoretical 

autocorrelation models are given in Table 3.1. In this respect, Uzielli et al. [75] 

recommend that only the theoretical autocorrelation models giving 𝑅𝑅2> 0.9 be accepted 

with at least four initial autocorrelation coefficients greater than 𝑟𝑟𝐵𝐵:  

 
1.96

B N
r ≈ ±   (3.5) 
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In the second case (ACFA method), according to Vanmarcke [72], the correlation length 

θ is equal to the area under 𝜌𝜌�(𝜏𝜏), or twice the area under the positive part since 𝜌𝜌�(𝜏𝜏) is 

symmetric about τ=0, thus: 

  
0

ˆ ˆ( ) 2 ( )d dθ ρ τ τ ρ τ τ
+∞ +∞

−∞

= =∫ ∫  (3.6) 

The area is typically taken up to a certain distance τ=mxdx where the sample 

autocorrelation function 𝜌𝜌�(𝜏𝜏) first becomes negative (Figure 3.2a). Then, the correlation 

length θ is estimated by applying the trapezium rule to equation (3.6) [56]: 
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Regarding the ACFB method, Jaksa [83] working on stiff over-consolidated clays 

observed that θ can be estimated relatively easily by the Bartlett’s distance 𝑟𝑟𝐵𝐵, which is 

the distance at which the sample autocorrelation function 𝜌𝜌�(𝜏𝜏) first intersects the limit 

(Figure 3.2b) given by Bartlett’s formula (see equation (3.5)). 

 
Figure 3.1: ACF method: Best fit of theoretical autocorrelation models 𝝆𝝆(𝝉𝝉) on 𝝆𝝆�(𝝉𝝉) 
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Figure 3.2: (a) ACFA: Area under the positive part of 𝝆𝝆�(𝝉𝝉) and (b) ACFB: Bartlett’s Limits 
method (θ=rB) 

 
Table 3.1: Theoretical Autocorrelation models used for the estimation of θ 
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where, 𝛾𝛾�(𝑇𝑇) is the sample Variance Function which measures the reduction of the point 

variance due to local averaging over regions of length T=(nx-1)dx, with nx being the 

number of averaged measurements and dx the constant sampling interval. The sample 

Variance Function 𝛾𝛾�(𝑇𝑇) can be calculated as follows:   

 
2

2
ˆ( ) TT σγ

σ
=   (3.9) 

where, 𝜎𝜎𝑇𝑇 is the standard deviation of the local averages within the averaging window T 

and 𝜎𝜎 is the standard deviation of data. In order to calculate 𝛾𝛾�(𝑇𝑇) the data are first 

combined in pairs (r=2) and a moving average series is obtained. Then, the standard 

deviation 𝜎𝜎 of the resulted series is computed. The above procedure is repeated for 

increasing number of r. As r increases, 𝜎𝜎 becomes smaller than the standard deviation of 

the original function due to the spatial averaging, while μ remains identical to the original.  

The correlation length θ is then estimated by best fitting theoretical Variance Function 

models, 𝛾𝛾(𝑇𝑇), to the 𝛾𝛾�(𝑇𝑇) as shown in Figure 3.3. The most commonly used theoretical 

𝛾𝛾(𝑇𝑇) models are listed in Table 3.2. Alternatively, θ can be estimated using the 

Fluctuation Function (FF) method and the Variance Reduction Function (VRF) method 

(see Table 2.1), which are variances of the Variance Function method. The Fluctuation 

Function can be defined as the product of the Variance Function 𝛾𝛾�(𝑇𝑇) by the separation 

distance Τ. Theoretically, the Fluctuation Function curve 𝑇𝑇𝛾𝛾�(𝑇𝑇) will be constant when 

the separation distance Τ increases to a significant extent. However, in reality, as the 

separation distance increases, the value of 𝑇𝑇𝛾𝛾�(𝑇𝑇) decreases and irregular fluctuation often 

appears [103]. Campanella et al. [100] suggests that θ be taken as the peak point (i.e. point 

of inflection) of the 𝑇𝑇𝛾𝛾�(𝑇𝑇) − 𝑇𝑇 curve (Figure 3.4a), whilst Uzielli [68] suggests that θ  be 

taken as the value of 𝑇𝑇𝛾𝛾�(𝑇𝑇)corresponding to 𝛾𝛾�(𝑇𝑇) = 0.15 (Figure 3.4b). 
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Figure 3.3: VF method: Best fit of theoretical variance function models 𝜸𝜸(𝑻𝑻)  on the 𝜸𝜸�(𝑻𝑻)  
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Figure 3.4: (α) FF method [100] and (b) VRF method [68] 

3.1.3 The semivariogram method 

To characterise the dependence between variables at different points, geostatistics 

employs a tool called semivariogram. According to Fenton [92] and Jaksa et al. [140], the 

semivariogram 𝛾𝛾(𝜏𝜏) gives essentially the same information as the autocorrelation 

function and can be defined as half the expected value of the squared difference between 

two pairs of points [85]:  

 21( ) [( ) ]
2 xk kE x xνγ τ += −   (3.10) 

where E[] is the expectation value operator. The sample semivariogram is defined by the 

following equation: 
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To obtain reliable estimates, the 𝛾𝛾�(𝜏𝜏) should be calculated for about half the total sampled 

extent [105,141–143]. In addition, the number of pairs at each lag, should be larger than 

30 to 50 [142]. 

Moreover, in order to estimate θ, a continuous theoretical semivariogram model has to be 

fitted to the sample semivariogram, as shown in Figure 3.5; the most commonly used 

semivariogram models are listed in Table 3.3. In this respect, a number of authors (e.g. 

[54,83,105,142,144]) chose the theoretical semivariogram model that best fits to the 

sample semivariogram by eye based on a trial and error procedure.  
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Figure 3.5: Best fit of theoretical semivariogram models 𝜸𝜸(𝝉𝝉) on the 𝜸𝜸�(𝝉𝝉) 
It is noted that, the theoretical semivariogram models are generally characterised by three 

parameters: (i) the nugget effect, 𝑐𝑐0, (ii) the sill, 𝑐𝑐𝑠𝑠 + 𝑐𝑐0, and (iii) the range of influence, 

𝑎𝑎𝑠𝑠(Figure 3.5). More specifically the nugget effect is the apparent discontinuity of the 

variogram at τ=0 m and it is mainly due to the microstructure, sampling and measurement 

error [109,144,145]. The sill is the distance in which the semivariogram ceases to increase 

sharply and its value approximates the data variance [105,146,147]. Sill defines the range 

of influence 𝑎𝑎𝑠𝑠 with the latter being equivalent to θ. 

3.1.4 The Mean-Crossing Approximation method 

Based on the Mean-Crossing Approximation (MCA) method [59], θ can be approximated 

as: 
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Schematically, this is illustrated in Figure 3.6.  
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Table 3.3: Theoretical semivariogram models used for the estimation of θ. 

Model Theoretical semivariogram function Correlation length θ 

Single Exponential 
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Figure 3.6: Fluctuation of normalised data along the mean axis. 
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3.1.5 Parameters influencing the estimation of θ 

Vanmarcke [72] in his study on random fields shows that the optimal sampling intervals 

may be expected to be proportional to the correlation length. Also, through estimating the 

expectation value of the autocorrelation function estimated from finite domain samples, 

shows on general theoretical grounds that the latter, and hence the estimated correlation 

length, depends on the finiteness of the domain.  DeGroot and Baecher [67] analysed vane 

shear strength data and assessed the spatial correlation using the maximum likelihood 

method. They found that θ was influenced by sample spacing and that the sample 

locations separated by distances within the range of θ are essential to providing good 

estimates of θ.  Jaksa et al. [138] using the ACF nugget (which has the same meaning as 

0c of semivariogram method) studied the influence of sampling interval, which varied 

between 5mm up to 200mm, and showed that the estimated ACF nugget can vary between 

3% and 62% for vertical spatial variability, and between 3% and 50% for horizontal 

spatial variability. In similar work, Jaksa et al.[148] showed that the horizontal spatial 

variability exhibits a nested structure, which means that the estimated θ increase with the 

size of the sampling domain. Fenton [149] analysed 143 regularly spaced CPT records 

and observed that θ depends on the sampling domain length, in that a larger sampling 

domain would result in a larger θ. Also, Fenton [92] stated that the sample correlation or 

covariance functions are acceptable measures of second moment (covariance) structure 

when the θ of the process is small relative to the sampling domain. Cafaro and Cherubini 

[57] studied the influence of large sampling interval on the assessment of vertical strength 

variability of a clayey soil. By adopting the FF method, they indicated that θ tends to 

increase as sampling interval increases. Nie et al.[150] studied the factors affecting the 

calculation of θ by generating one-dimensional Gaussian random fields using the 

Cholesky decomposition method. Using the ACF method, they estimated the predefine θ 

and concluded that the sampling interval should be at least 10 measurements within one 

θ, and the sampling extent should be wide enough such that it covers at least 100 times 

the θ. Sasanian [151] by adopting the ACF method, investigated the effect the sampling 

interval on the θ in the vertical direction using 70 CPT profiles and found that the 

reliability of the θ decreases with the increase in sampling interval. More specifically, for 

a specific dataset, which has a benchmark sampling interval of 0.05 m and θ =2.347 m , 

they extended the initial sampling interval to 0.1, 0.2, 0.4, 0.8, 0.16 and 0.32 m, and 
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observed that by increasing the sampling interval to a value higher than 0.2 m, the 

reliability of the determined θ decreases. 

3.2 Effectiveness of the methods estimating θ 

As mentioned, the effectiveness of the methods given in Table 2.1 is investigated by 

comparing the estimated theta values (𝜃𝜃𝑒𝑒) of 5000 one-dimensional random fields with a 

specific 𝜃𝜃0 value used for generating these fields. As all the results of this analysis depend 

only on the dimensionless ratios D/𝜃𝜃0 and 𝜃𝜃0/dx where D is the domain length and dx is 

the sampling interval, the input value 𝜃𝜃0 can be arbitrarily set; it has been set to 1.5m. 

The random fields were generated with the tstlas11 program. The tstlas1 program uses 

the Local Averaging Subdivision (LAS) method developed by Fenton and Vanmarcke 

[62] to generate random fields with given mean, standard deviation, correlation length 

and correlation function. According to Fenton and Vanmarcke [62], the Local Average 

Subdivision method is a fast and generally accurate method of producing realizations of 

a discrete “local average” random process. Although, the generated samples of random 

fields by the tstlas1 program were validated by comparing the average autocorrelation 

function of the samples to the theoretical estimate given by Vanmarcke [72] for arbitrary 

domain length D. The validation is presented in Appendix I. Moreover, the single 

exponential correlation function has been selected, whilst the mean and the standard 

deviation was set to zero and unity respectively. For the needs of the present research, 

minor modifications of the program were made as to consider 1024 cells instead of 512 

ones and to export out each random field separately. For the assessment of each method, 

the first three moments of the 5000 estimated thetas were obtained and analysed in respect 

to sampling domain and interval.  

Various sampling domain lengths ranging from D= 5m to 100m were considered whilst 

the sampling interval dx was held constant and equal to 0.1m. The effect of sampling 

interval is further investigated by considering sampling intervals ranging from dx = 0.1m 

to 2m, whilst the 𝜃𝜃0 and D were held constant and equal to 1.5m and 100m respectively. 

The Ordinary Least Square (OLS) method was adopted to best fit theoretical 

autocorrelation and variance function models to the sample ones. However, the Weighted 

 
1 http://www.engmath.dal.ca/rfem 

http://www.engmath.dal.ca/rfem
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Least Squares (WLS) method was used to best fit theoretical semivariogram models to 

the sample ones, since it gives more weight to early lags with great number of pairs and 

decrease bias resulting from lags with small number of pairs [152,153].  

3.2.1 Effect of the method used for the estimation of  𝝆𝝆�(𝝉𝝉)  

Before proceeding with the examination of the various methods, it is important to assess 

the reliability of the methods used for the estimation of the “sample autocorrelation 

function” 𝜌𝜌�(𝜏𝜏), i.e. the Method of Moments or the Fourier transform method. 

In order to minimize the effect of sampling domain length (D) and the sampling interval 

(dx) on the estimation of 𝜌𝜌�(𝜏𝜏), the following values were chosen: 𝜃𝜃0= 1m, D =50m, dx 

=D/1024 =0.0488m, corresponding to N= 1024 sampling points. Hence, the sampling 

interval was 20 times smaller than the correlation length, while the latter was 50 times 

smaller than the sampling domain. The mean sample autocorrelation function, 𝜇𝜇𝜌𝜌�(𝜏𝜏), as 

well as the standard deviation, 𝜎𝜎𝜌𝜌�(𝜏𝜏), of the 5000 random fields were computed and plotted 

against lag distance in Figure 3.7. From Figure 3.7a it is inferred that there is no difference 

in 𝜇𝜇𝜌𝜌�(𝜏𝜏) between the two methods. However, Figure 3.7b is more informative, showing 

that for τ >1m the standard deviation of the estimated autocorrelation function calculated 

by the method of moments behaves differently than the one of the Fourier transform 

method. One observes that the two curves in Figure 3.7b start deviating at the lag distance 

where 𝜌𝜌�(𝜏𝜏) firstly intersect the 𝜏𝜏 axis (see Figure 3.7a). This is an indication that reliable 

information is stored only in the positive part of 𝜌𝜌�(𝜏𝜏) up to the first zero. This is in 

agreement with the remarks of Lacasse and Nadim [4]. 

The maximum number of lags (denoted by 𝐾𝐾𝑥𝑥) up to which 𝜌𝜌�(𝜏𝜏) should be calculated 

(recall equation (3.1)) has been discussed by several authors suggesting that the maximum 

number of lags 𝐾𝐾𝑥𝑥 be much smaller than the total number of the dataset Ν (e.g. 

[143,154,155] suggest 𝐾𝐾𝑥𝑥=Ν/4). This is due to the fact that in large separation distances 

the number of pairs contributing to 𝜌𝜌�(𝜏𝜏) diminish to such an extent that the values are 

unreliable [156]. Adopting the 𝐾𝐾𝑥𝑥=Ν/4 value, the 𝜌𝜌�(𝜏𝜏) for the current example was 

calculated for τ up to 12.5m. For this τ value, as shown in Figure 3.7b, the Fourier 

transform method gives appreciably more reliable results as compared to the Method of 
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Moments. In the present research the 𝜌𝜌�(𝜏𝜏) was estimated based on the Method of 

Moments using only the first positive part in the 𝜌𝜌�(𝜏𝜏) − 𝜏𝜏 diagram.  

 
Figure 3.7: (a) mean (𝝁𝝁), and (b) standard deviation (𝝈𝝈),  of  𝝆𝝆�(𝝉𝝉) based on 5000 random 
fields estimated using the Method of Moments and the Fourier transform method. 

3.2.2 Effectiveness of the ACF method and its modifications 

Figure 3.8a shows the variation of the 𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 ratio (mean value of the 5000 estimated 

theta values) with the scaled domain length 𝐷𝐷/𝜃𝜃0 for different theoretical 𝜌𝜌(𝜏𝜏) models. 

From this figure it is inferred that the single exponential (Markovian) correlation function 

is the best choice. However, this did not come as a surprise, as the random fields were 

generated with the same function. This highlights the need for investigating the model 

that best-fits to the sample autocorrelation function; Figure 3.8a shows that the difference 

in 𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 for different model correlation functions can be as high as 25%. However, it 

can be said that all models examined here but the second-order autoregressive one provide 

in general a fairly good estimate of 𝜃𝜃. Figure 3.8a also shows that the estimated 𝜃𝜃 depends 

strongly on 𝐷𝐷/𝜃𝜃0. More specifically, as the 𝐷𝐷/𝜃𝜃0 ratio increases, the 𝜇𝜇𝜃𝜃𝑒𝑒 value tends to 

an asymptotic value which may be close or less close to the input value 𝜃𝜃0.  

Figure 3.8b presents the results from ACFA method, which does not depend on theoretical 

autocorrelation function models. One may conclude that this method performs very well, 

behaving similarly to the ACF method for the single-exponential autocorrelation 

function, with the 𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 curve showing tendency to converge to the desired value 1 for 

large domains. The results for the ACFB method are presented in Figure 3.8c. This method 
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exhibits an over-estimation of the 𝜃𝜃 for large domains, crossing the desired value 1 at 

domains lengths of about 33𝜃𝜃0.  

 
Figure 3.8: (a-c) 𝝁𝝁𝜽𝜽𝒆𝒆/𝜽𝜽𝟎𝟎 versus 𝑫𝑫/𝜽𝜽𝟎𝟎 charts for the ACF, ACFA and ACFB method 
respectively, for 𝜽𝜽𝟎𝟎/𝒅𝒅𝒙𝒙 = 𝟏𝟏𝟏𝟏 (d) 𝝁𝝁𝜽𝜽𝒆𝒆/𝜽𝜽𝟎𝟎 versus 𝜽𝜽𝟎𝟎/𝒅𝒅𝒙𝒙 chart for the ACF,  ACFA and ACFB 
method for 𝑫𝑫/𝜽𝜽𝟎𝟎= 66.7 
Figure 3.8d presents the dependence of 𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 on 𝜃𝜃0/𝑑𝑑𝑥𝑥 for all three ACF methods, for 

𝐷𝐷/𝜃𝜃0= 66.7. The ACF method is given in this figure for the single-exponential case, 

which is best performing as discussed above. It is shown that the ACF and ACFA methods 

provide better prediction for theta as the sampling interval decreases i.e. the ratio 

𝜃𝜃0/𝑑𝑑𝑥𝑥 increases, although a value of this ratio above 5 appears to be practically adequate. 

On the other hand, the ACFB method appears to result in over-estimations of the 𝜃𝜃.  

It is noted here that, Jaksa [83] investigated the relationship between ACF and ACFB and 

found a strong regression fit between the two. Nonetheless, it should be noted that the 
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sampling domain length of the CPT profile examined by Jaksa was about 5m and the θ 

was found to be of the order of 0.2m, which means that D/θ =25. The sampling interval 

was set equal to 0.005m. By recalling the Figure 3.8 it can be seen that both methods 

result to about the same 𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 value, which explains the strong regression found by 

Jaksa. Jaksa [83] observed that the rB parameter (ACFB) appears to be somewhat 

insensitive to sample interval when the interval is less than the θ and thus, this could be 

seen as a strength of this method [68]. On the other hand, according to our results, the 

estimations of theta by this method depend rather strongly on the sampling interval. In 

fact, the theta estimates increase with decreasing sampling interval. 

3.2.3 Effectiveness of the Variance Function method and its modifications 

The effectiveness of the original Variance Function (VF) method and its modifications 

(FF and VRF method; see Table 2.1) are examined in an analogous manner. Four 

comparison charts are given. Figure a shows the variation of the ratio 𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 with 

𝐷𝐷/𝜃𝜃0 for different theoretical 𝛾𝛾(𝑇𝑇) models. In this respect, the single exponential model 

appears to be again the best choice, for the same reason explained in the previous 

paragraph. The function 𝛾𝛾(𝜏𝜏) = 𝜃𝜃/𝑇𝑇, on the other hand, appears to give the poorest 

prediction, whilst the triangular variance, the squared exponential and the second order 

autoregressive models appears to be less good than the single exponential model but much 

better than the function 𝛾𝛾(𝜏𝜏) = 𝜃𝜃/𝑇𝑇. The FF and the VRF methods, which are 

independent of best fit models, appear to have similar behaviour with the original VF 

method if the latter is used along with the single exponential model. In every case, Figure 

a-c show that the VF methods require much longer domain length as compared to the 

ACF methods. Indeed, such domain lengths may be prohibitive in practice. Another 

important observation is that the VF methods do not appear to converge to an asymptotic 

value, at least for the range of sampling domain lengths considered here. That implies that 

the VF methods require much larger domains relatively to the correlation length than the 

ACF method. 

Figure 3.9d shows the dependence of 𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 on the sampling interval. An asymptotic 

𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 value is reached in every case, however this value is much smaller than the 

expected (𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 =1), at least for the largest sampling domain considered here. This 
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behaviour may be attributed to the fact that, as mentioned above, the VRF methods 

require even larger sampling domains in order to perform well.  

 
Figure 3.9: (a-c) 𝝁𝝁𝜽𝜽𝒆𝒆/𝜽𝜽𝟎𝟎 versus 𝑫𝑫/𝜽𝜽𝟎𝟎 chart for the VF, FF and VRF method respectively for 
𝜽𝜽𝟎𝟎/𝒅𝒅𝒙𝒙 = 𝟏𝟏𝟏𝟏 (d) 𝝁𝝁𝜽𝜽𝒆𝒆/𝜽𝜽𝟎𝟎 versus 𝜽𝜽𝟎𝟎/𝒅𝒅𝒙𝒙 chart for the VF, FF and VRF method for 𝑫𝑫/𝜽𝜽𝟎𝟎= 66.7. 

3.2.4 Effectiveness of the semivariogram method 

Figure 3.10a shows the variation of the ratio 𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 with 𝐷𝐷/𝜃𝜃0 for different theoretical 

𝛾𝛾(𝜏𝜏) models. It turns out that the single exponential model, with which the random fields 

have been generated, gives 𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 slightly higher than unity. The logistic model appears 

also to perform well, in the sense that the asymptotic value of 𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 is close to unity. 

Figure 3.10b shows the effect of the sampling interval on the ratio 𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 for 

𝐷𝐷/𝜃𝜃0 =66.7. It turns out that the semivariogram method is somewhat insensitive to 

sample interval. 
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Figure 3.10: SV method: (a) 𝝁𝝁𝜽𝜽𝒆𝒆/𝜽𝜽𝟎𝟎versus 𝑫𝑫/𝜽𝜽𝟎𝟎 chart for 𝜽𝜽𝟎𝟎/𝒅𝒅𝒙𝒙 = 𝟏𝟏𝟏𝟏 (b) 𝝁𝝁𝜽𝜽𝒆𝒆/𝜽𝜽𝟎𝟎 versus 
𝜽𝜽𝟎𝟎/𝒅𝒅𝒙𝒙 chart for𝑫𝑫/𝜽𝜽𝟎𝟎= 66.7. 
3.2.5 Effectiveness of the Mean-Crossing Approximation method 

The effectiveness of the Mean-Crossing Approximation (MCA) method can be examined 

with respect to the sampling domain length and interval as shown in Figure 3.11. From 

Figure 3.11a, it appears that this method results to substantially smaller  𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 values 

than the desired one for every 𝐷𝐷/𝜃𝜃0 value examined. It should be noted that the theta 

estimate is virtually independent of the domain length for 𝐷𝐷/𝜃𝜃0 greater than 10. Also, in 

contrast to the previous methods, the MCA is highly affected by the sampling interval 

(Figure 3.11b). As shown, the value 𝜇𝜇𝜃𝜃𝑒𝑒/𝜃𝜃0 is significantly decreases as the  𝜃𝜃0/𝑑𝑑𝑥𝑥 ratio 

increases. Hence, one may conclude that the MCA method systematically under-estimates 

the correlation length. 

 
Figure 3.11: MCA method: (a) 𝝁𝝁𝜽𝜽𝒆𝒆/𝜽𝜽𝟎𝟎 versus 𝑫𝑫/𝜽𝜽𝟎𝟎 chart for various 𝜽𝜽𝟎𝟎/𝒅𝒅𝒙𝒙 values, (b) 
𝝁𝝁𝜽𝜽𝒆𝒆/𝜽𝜽𝟎𝟎 versus 𝜽𝜽𝟎𝟎/𝒅𝒅𝒙𝒙 for 𝑫𝑫/𝜽𝜽𝟎𝟎 = 66.7. 
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3.3 Overall assessment of the methods 

In what follows, the overall assessment of the various methods is based on the following 

four performance indices, defined over the sample of the 5000 estimated theta values for 

each method: 

a) The sample mean 𝜇𝜇𝜃𝜃𝑒𝑒 normalized with respect to the input value 𝜃𝜃0. 

b) The relative error er of the mean value of the sample relatively to the input value.  

c) The standard deviation 𝜎𝜎𝜃𝜃𝑒𝑒of the sample. 

d) The skewness factor S of the sample. 

These indices are calculated for different domain lengths and sampling intervals, in order 

to quantify the influence of these parameters on the performance of each method. The 

cases of varying domain length correspond to sampling interval of 0.1m so that θ0/dx=15 

(Figure 3.12). The cases of varying sampling interval correspond to D/θ0=66.7 (Figure 

3.13). Wherever applicable, the single exponential (Markovian) model has been used. 

Figure 3.12a presents collectively the mean theta value curves shown already in the 

analysis of each method in Section 2 of the current Chapter. One observes that the 

autocorrelation function (ACF) and the area under the positive part of the autocorrelation 

function (ACFA) methods perform similarly and very well, approaching the desired value 

as the domain length increases. The desired is nearly attained for the largest domain 

considered in this analysis, D/θ0~67. The semivariogram method (SV) shows a consistent 

convergence towards a specific mean value, although overestimates the input value of 

theta by 6%, for the large domain lengths. The Fluctuation Function (FF) and variance 

reduction function (VRF) methods are variations of the variance function (VF) method. 

The FF method performs similarly to the VF one, while both exhibit a much slower 

approach to the input value for increasing domain length. The VRF method shows an 

even slower approach to the desired value. Bartlett’s limit method (ACFB) exhibits an 

increase without visible convergence, overestimating the input value of theta already at 

D/θ0~33. On the other hand, the mean crossing method (MCA) shows a strong 

convergence to a mean value ~35% of the input value almost independently of the domain 

length. Figure 3.12b mirrors the information contained in the curves of Figure 3.12a 

presenting the absolute value of the error of the mean value relatively to the input value. 

The curves in this graph quantify the required domain for a desired maximum error in the 

estimated mean value of theta.  



27 

 

Figure 3.12c presents the standard deviation of the sample of estimated thetas for each 

method. One observes that the ACF and VF methods, as well as their variations, exhibit 

an increase of the standard deviation in the small domain regime, but quickly converge to 

a nearly constant asymptotic value, between 0.3 and ~0.4 m, i.e. a constant coefficient of 

variation 20% to 25%. These limiting values are, most possibly, a result of inherent 

limitations of the estimation methods, limitations which are present in general in any 

estimation procedure of the correlation length [72]. The SV method presents a peculiar 

increase of the standard deviation of the estimated thetas up to D/θ0~33 followed by a 

decrease for larger domains. Bartlett’s limit method (ACFB) shows a seemingly 

unbounded increase in the standard deviation for large domains. The MCA method 

exhibits a decrease of the standard deviation for increasing domain length, hence an ever-

smaller variation around its (low) mean value.  

Figure 3.12d shows the skewness factor of the estimated theta sample for each method. 

Skewness quantifies the asymmetry of the distribution of values of a certain random 

variable around its mean: a Gaussian distribution has zero skewness; positive skewness 

means that on the larger than mean values side exist less than 50% of the observation, 

while negative skewness means that on the larger than mean values side exist more than 

50% of the observation. One observes that all methods exhibit negative skewness in the 

small domains regime i.e. more than half of the values are larger than the estimated mean. 

The ACF methods and its variations acquire positive skewness for D/θ0~15-20 

approaching a large positive value of skewness ~3 for large domains i.e. values of theta 

smaller than mean tend to arise more often than larger values. The VF and FF methods 

pass to the positive values of skewness at D/θ0~35, while for the VRF method this occurs 

for D/θ0~50, i.e. the VF method and its variations acquire positive skewness for large 

domains than the ACF type of methods. Hence the VF type of methods exhibit a sort of 

self-corrective behaviour so that their ‘slower’ convergence of their mean to desired value 

of theta, is compensated by a more frequent occurrence of thetas larger than the mean i.e. 

closer to the desired value. The same self-corrective behaviour is shown by the SV 

method, where a large positive skewness compensates the over-estimation of theta for 

large domains. Such a property is also shared by the MCA method, which exhibits 

negative skewness for all domains considered, while under-estimating the value of theta. 
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However, the under-estimation is so significant that the effect of skewness on the 

performance of the method is irrelevant.  

 
Figure 3.12: (a) normalized mean value 𝝁𝝁𝜽𝜽𝒆𝒆/𝜽𝜽𝟎𝟎 , (b) relative error 𝒆𝒆𝒓𝒓 , (c) standard deviation 
𝝈𝝈𝜽𝜽𝒆𝒆 and (d) skewness S of 𝜽𝜽𝒆𝒆 corresponding to 5000 𝜽𝜽𝒆𝒆 values for different D/θ0 values. 

Figure 3.13a presents the variation of the mean of the sample of the estimated thetas with 

sampling interval, expressed as a function of the ratio θ0/dx. First, apart from Bartlett’s 

limit method, all other methods show a decrease of the mean with decreasing sampling 

interval. Secondly, except for the mean crossing method, all other methods exhibit 

convergence to a specific asymptotic value, shown already in Figure 3.12a; the semi-

variogram method shows a small variation around the value 1. The mean crossing method 

shows a surprising decrease of the mean value for decreasing sampling interval. That is, 

same as with its behaviour for different domains lengths (Figure 3.12a), this method 

performs in some sense the opposite way than most other methods. Figure 3.13b merely 
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presents the information contained in Figure 3.13a in terms of the relative error of the 

mean value of theta relatively to the input value.  

Figure 3.13c shows the variation of the standard deviation of the sample of thetas for each 

method. The ACF and ACFA methods, together with the VF method and its variations 

exhibit a smooth convergence of the standard deviation to a non-zero limiting value, 

shown also in Figure 3.12c. The SV method starts from high values of the standard 

deviation for large sampling intervals but quickly approaches the results obtained by the 

aforementioned group of the methods. The ACFB shows a seemingly unbounded standard 

deviation for decreasing sampling interval. The MCA method exhibits decrease of the 

standard deviation for decreasing sampling interval. Recalling that the standard deviation 

decreases also with the domain length, one observes that the fluctuation around the mean 

value diminish while the sampling conditions (interval and domain) improve. That would 

be an ideal behaviour if the mean value was converging towards the desired value. 

Figure 3.13d presents the skewness factor of the sample of the estimated thetas for each 

method. One observes that with the exception of the MCA method, all other methods 

have positive skewness, which means that they tend to produce theta estimates smaller 

than their mean. Consulting Figure 3.13a, that implies that the ACF and VF methods and 

their variations tend to produce theta estimates smaller than the desired value. Also, one 

observes that a common feature of the ACF and VF methods and their variations, and the 

MCA method, is that skewness is nearly constant for θ0/dx larger than (roughly) 5. 

Recalling Figures 13a-c, this value of the ratio θ0/dx can be considered as a minimum 

adequate value for these methods to be applied optimally. The SV method shows large 

positive skewness for all sampling intervals considered, which means that it tends to 

produce theta estimates smaller than the desired value (consulting also Figure 3.13a). 

Finally, the MCA method has a nearly constant negative skewness for θ0/dx larger than 5, 

that means that methods produces estimates larger than its mean value, which though is 

a too low to be useful. Overall, one may say that the optimum results are obtained when 

θ0/dx is larger than 5. 



30 

 

 
Figure 3.13: (a) normalized mean value 𝝁𝝁𝜽𝜽𝒆𝒆/𝜽𝜽𝟎𝟎 , (b) relative error 𝒆𝒆𝒓𝒓, (c) standard deviation 
𝝈𝝈𝜽𝜽𝒆𝒆 and (d) skewness S of 𝜽𝜽𝒆𝒆 corresponding to 5000 𝜽𝜽𝒆𝒆 values for different θ0/dx values. 

The estimated 5000 𝜃𝜃𝑒𝑒 values for the case of D/θ0= 66.7 and θ0/dx =15 were also plotted 

in histograms form in Figure 3.14 for the eight methods presented above. Each histogram 

contains 71 bins (following the “square root choice” rule) and refers to 5000 calculated 

theta values. From this figure it is generally inferred that the frequencies are log-normally 

distributed along the 𝜃𝜃𝑒𝑒 axis and that all methods except of that of MCA method, shows 

to have a right hand tail which means that they have a positive skewness (consulting also 

Figure 3.12d and Figure 3.13d). 
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Figure 3.14: Histograms referring to the frequency of the estimated theta (𝜽𝜽𝒆𝒆) values for 
D/θ0= 66.7 and θ0/dx=15 
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3.4 Summary and conclusions 

In this Chapter, the effectiveness of the methods calculating the correlation length 𝜃𝜃 was 

investigated. This was done by generating 5000 one-dimensional random fields with the 

tstlas1 program and comparing the estimated 𝜃𝜃 values with the respective one used as 

input value in the program. The effect of sampling domain length, sampling interval and 

the method used for the estimation of 𝜌𝜌�(𝜏𝜏) on the calculation of θ were systematically 

investigated.  

The main conclusions are summarized as follows:  

1. Referring to the original ACF method, 𝜌𝜌�(𝜏𝜏) should be calculated up to the point 

where 𝜌𝜌�(𝜏𝜏) firstly intersect the τ axis. Beyond this point the estimated 𝜌𝜌�(𝜏𝜏) 

behaves differently when calculated by the method of moments and the Fourier 

transform method, indicating that reliable information is stored only up to that 

point.  

2. The domain length 𝐷𝐷 strongly affects the performance of the methods. In general, 

larger domains improve the estimate of correlation length. In terms of the sample 

mean, the ACF and ACFA methods converge to the input theta value for smaller 

domains than the other methods. The SV method converges to an over-estimate 

of the input value, while the VF type of methods exhibit a much slower 

convergence for increasing domain length. Regarding the fluctuations around the 

mean, the ACF, ACFA and VF methods exhibit a nearly constant standard 

deviation for D/θ0 larger than 15 for given sampling interval. The skewness factor 

of the samples produced by the ACF, ACFA and VF methods, is positive in the 

large domain regime, that is, the estimated values of theta tend to be smaller than 

the sample mean. The opposite happens in the small domain regime. The SV 

method shows a peculiar behaviour regarding the standard deviation and skewness 

factor exhibiting peak values for D/θ0 ~35. 

3. The sampling interval dx significantly affects the performance of the methods. In 

general, smaller intervals improve the estimate of correlation length. For θ0/dx 

greater than a specific value, say 7.5, the sample mean of the ACF, ACFA and VF 

methods is nearly constant to the best estimate allowed by the given domain 

length. The SV method is nearly insensitive to the sampling interval exhibiting an 

over-estimation of the theta for small intervals. The standard deviation of the 
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predicted samples of theta for the ACF, ACFA, VF and SV methods, becomes 

nearly constant for θ0/dx greater than 5 and the same can be observed for the 

skewness factor of the samples. The skewness factor corresponding to the SV 

method is significantly larger than the skewness of the other methods implying 

this method has the tendency to produce values smaller than the mean of the 

sample. 
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4 Spatial variability of soils in practice 

Generally, the literature on estimating 𝜃𝜃 of soils based on real data is rather limited (e.g. 

[81,101,144,157]) and refers mainly to Cone Penetration Test (CPT) data as the test in 

question yields a large amount of closely spaced data. The Standard Penetration Test 

(SPT) have also been used in the past for the same reason (e.g. [54,158]), however, this 

test in not recommended due to the larger sampling interval [144,159]. Dynamic Probing 

(DP) is an alternative for indirect investigations of soils which provide continuous record 

with respect to depth. The objective of the dynamic probing tests is to determine the 

resistance of soil and soft rock in-situ to the dynamic penetration of a cone [125]. Five 

procedures are available according to EN ISO 22476-2 [160], DPL (Light), DPM 

(Medium), DPH (Heavy), DPSH-A and DPSH-B (Super Heavy), covering a wide range 

of specific work per blow. This chapter is a study on the vertical spatial variability of soils 

in practice. In this respect, a series of dynamic penetrations with a Dynamic Probing Light 

(DPL) apparatus were carried out in cohesive and cohesionless soils in various sites in 

Cyprus. The spatial correlation lengths of all readings were calculated using the ACFA 

method and the θ values have been corrected by applying the findings presented in chapter 

3. The spatial variability of clay soils has also been examined using the Unconfined 

Compression Strength (UCS) test on undisturbed samples (Figure 4.1b).  

4.1 Estimation of the spatial correlation length of soils through 

dynamic probing tests 

4.1.1 Correlation length of clay sites  

Eight and five DPL penetrations were carried out in the wider area of Pentakomo 

(Limassol district; 34°43'16"N, 33°15'47"E) and Armou villages (Paphos district; 

34°47'47"N, 32°28'24"E; see also Figure 4.1a) respectively. Both sites are consisted of 

stiff clay of high plasticity. The horizontal spacing between two successive DPL 

penetrations was kept constant and equal to 1.5m for both sites. The reached depth ranges 

from 4.9 to 5.6m for Pentakomo and 2.0 to 3.7m for Armou. EN ISO 22476-2 [160] for 

dynamic probing was adopted. According to this European Norm the number of blows 

shall be recorded every 100mm of penetration. Figure 4.4a shows the results of DPL test 

for the Pentakomo field. 
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Figure 4.1: (a) DPL test performed at Armou village by Panagiotis Christodoulou (on the 
left) and Assistant Professor Dr. Lysandros Pantelidis (on the right), (b)  Unconfined 
Compression Strength test of sample taken from Armou field. 

An essential requirement for the application of Random Field theory for the estimation of 

spatial correlation length is the stationarity of the data. As Brockwell and Davis [137] 

stated, data are stationary if (i) the mean is constant with distance (no trend exists), (ii) 

the variance is constant with the distance, (iii) there are no seasonal variations and (iv) 

there are no irregular fluctuations. However, in practice the stationarity is defined in terms 

of weak stationarity, i.e. the mean and variance are constant and the autocorrelation is a 

function of separation (lag) distance only [56,83,137]. Besides, the data obtained from 

site investigation exhibit, more or less, trends and thus the data set should be transformed 

from non-stationarity into stationarity, simply by removing the trends using regression 

analysis [75,100]. 

In this section, the area under the positive part of Autocorrelation Function (ACFA) 

method has been adopted for the estimation of the spatial correlation length θ; recall 

Equations (3.6) and (3.7). The values of spatial correlation length for both clay sites are 

summarized in Table 4.1. The reliability of θ estimations obtained were assessed by 

mapping the conditions i.e., sampling domain, the interval and estimated correlation 

length, into Figure 3.8b and d. The corrected θ values are also presented in Table 4.1. As 

can be seen, there is relatively small difference between corrected and uncorrected θ 

values. This is generally inferred from the fact that the scaled sampling domain length 

(a) (b) 
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(𝐷𝐷/𝜃𝜃0) of the soundings is relatively small, which as shown in Figure 3.8b results to an 

underestimation of θ values. In contrast, the small value of scaled sampling interval 

(𝜃𝜃0/𝑑𝑑𝑥𝑥) results to an overestimation (Figure 3.8d) of θ values. Therefore, these two 

conditions rule out each other and therefore no noticeable difference was observed. 

It should be mentioned that these values are of the same scale with the values given by 

other researchers also for clay sites, e.g. Jaksa [83] for South Parklands (ADEL, AU), 

Akkaya and Vanmarcke [93] for Texas A&M University (TX, USA) and Cafaro and 

Cherubini [57] for Taranto, (IT).   
Table 4.1: Estimated values of the correlation length θ of clay sites of Pentakomo and 
Armou. 

Field 

No. of DPL penetration 
Average 
θ (cm) COV 1 2 3 4 5 6 7 8 

θ (cm) 

Pentakomo 11.6 18.4 13.5 26.6 20.6 22.8 19.3 14.1 18.5 0.275 

Armou 26.3 15.4 14.2 13.8 11.8 - - - 16.3 0.353 

Corrected θ 

Pentakomo 10.7 20.4 11.8 32.8 23.4 26.8 20.9 12.8 19.95 0.367 

Armou 28.4 14.9 13.6 14.2 10.5 - - - 16.3 0.381 

4.1.2 Correlation length of a quarry sand-heap 

For the needs of the present research, the author examined the spatial variation of a quarry 

(Skyramont Quarries Ltd; 34°47'15.7"N, 33°09'16.3"E) sand-heap of height of 8.3m 

(Figure 4.2a) using the procedure described previously. The main purpose of this study 

was to investigate the spatial variation of a manmade soil, since its believing from the 

author that this type of soil may give the greatest spatial correlation length that can be 

found in practice. Five DPL penetrations were carried out with the horizontal spacing 

between two successive DPL penetrations to be at 2m (Figure 4.2b).  
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Figure 4.2: DPL test performed at sand-heap of height of 8.3m at a quarry plant. 

The variation of number of blows per 100mm penetration (which is inverse analogous to 

the strength of soil) with the depth for the 5 penetrations performed is presented in Figure 

4.3. The θ values refers to a depth up to 6m from the surface. As it is inferred from Figure 

4.3, beyond this depth a different layer exists. 

 
Figure 4.3: Variation in penetration resistance with DPL performed in 5 locations on a sand-
heap. 

The data presented above were analyzed using the ACFA method for the estimation of θ. 

As previously the reliability of θ estimations obtained were assessed by mapping the 

conditions i.e., 𝐷𝐷/𝜃𝜃0 , 𝜃𝜃0/𝑑𝑑𝑥𝑥 and the estimated correlation length, into Figure 3.8b and d. 

In this case the 𝜃𝜃0/𝑑𝑑𝑥𝑥 values exhibit convergence to asymptotic value and hence it is 

concluded that the assumed 𝑑𝑑𝑥𝑥 value leads to reliable results. On the other hand, the 

(a) (b) 
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domain length D considered in this test is not sufficient enough and therefore it leads to 

an underestimation of θ values. Both corrected and uncorrected theta values are presented 

in Table 4.2.   
Table 4.2: Estimated values of the correlation length θ of a sand-heap. 

No. of DPL penetration 
Average θ (cm) COV 

1 2 3 4 5 

θ (cm)   

79.3 112.3 67.6 165.1 126.2 112.1 0.350 

Corrected θ   

111 170.1 91.9 264.2 191.8 165.9 0.370 

4.1.3 Calculation of μ and σ of undrained shear strength (Su) through UCS tests 

Laboratory tests were also performed on undisturbed clay samples (see Figure 4.1b) for 

further studying the spatial variability of cohesive soils. Continuous sampling took place 

adjacent to each mid DPL borehole with stainless steel tube samplers of 38.1mm internal 

diameter and of 200mm length. The procedure was performed in accordance with EN 

ISO 22475-1[161]. All soil samples along with their samplers were then submerged in 

water until saturation. The curing period lasted 30 days. Configuration similar to the one 

used in California Bearing Ratio Test [162] was used in order the saturation to take place 

in constant volume and not allowing soil particles to escape. This procedure allowed for 

the influence of moisture content on soil properties to be eliminated favouring objectivity. 

After the curing period, a series of Unconfined Compression Strength tests was carried 

out according to the procedure described in EN ISO/TS 17892-7 [163]. Figure 4.4b shows 

the stress-strain curves for the eight specimens of Pentakomo field, while Table 4.3 

presents the undrained shear strength of specimens for both clay fields. From the results, 

it is inferred that the two clay materials have quite similar mean 𝑠𝑠𝑢𝑢value but the Armou 

clay appears to be more variable (see Table 4.3). It is reminded that the sampling was 

continuous, meaning that the sample No2 was immediately below No1 and so on (Figure 

4.4, Table 4.3). 
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Figure 4.4: (a) Variation in penetration resistance with DPL; (b) Axial stress vs strain graph 
for the eight undisturbed samples from Pentakomo field. 
 
Table 4.3: Statistical results for the undrained shear strength (𝒔𝒔𝒖𝒖). 

Field 

No. of sample 
𝜇𝜇𝒔𝒔𝑢𝑢 

(kPa) 
𝜎𝜎𝒔𝒔𝑢𝑢 

(kPa) 
COV 1 2 3 4 5 6 7 8 

𝒔𝒔𝑢𝑢 (kPa) 

Pentakomo 84.5 131.4 79.7 84.6 30.3 63.4 27.4 61.8 70.4 33.4 0.47 
Armou 39.2 43.3 148.7 52.1 36.8 - - - 64.0 47.7 0.74 

4.2 Conclusions 

The field and laboratory studies allowed the following conclusions to be drawn. Firstly, 

the one-dimensional random fields obtained by the DPL test allowed for the estimation 

of the vertical spatial correlation length, 𝜃𝜃, of soils in various positions. For the two clay 

sites examined herein, 𝜃𝜃 was found to be in the order of a few tens of centimeters and 

more specifically it ranges from 10.7 to 32.8 cm for the Pentakomo field and from 10.5 

to 28.4cm for the Armou field. In respect to the sandy field examined, the values of θ  

obtained are ranged from 91.9 to 264 cm. The variability of the clay sites is also indicated 

by the undrained shear strength values obtained in the laboratory. In every case, the spatial 
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correlation length values calculated here are far from the 𝜃𝜃 = ∞ value that might be used 

in a simplistic probabilistic analysis. Finally, it is interesting to be mentioned that the θ 

values obtained by the data from the two clay sites and from the sandy field, are in total 

agreement with the values given by other researchers.  
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5 The effect of targeted field investigation on the reliability of axially 

loaded piles 

The present chapter deals with statistical error in the analysis of axially loaded piles. Only 

shaft resistance of piles is considered, as for the effective calculation of the tip resistance 

of a pile, soil property values referring to the very limited area affected by the tip must 

obviously be used. 

5.1 Brief description of the procedure followed 

The freely available RFEM program RPILE1D (http://www.engmath.dal.ca/rfem) has 

been extended as to consider sampling of soil and pile properties values. The original 

RPILE1D program is described in detail in Fenton and Griffiths [61,164], so only a brief 

description is given here. In this respect, the pile is divided into a series of elements with 

cross-sectional area, 𝐴𝐴, and modulus of elasticity, 𝐸𝐸𝑝𝑝. The axial stiffness assigned to the 

i-th element is, thus, the geometric average of the product 𝑆𝑆𝑝𝑝 = 𝛢𝛢𝐸𝐸𝑝𝑝 over the element 

domain. Also, the soil spring elements, which are attached to the nodes, are characterised 

by its initial stiffness, 𝑆𝑆𝑠𝑠, and its ultimate strength, 𝑈𝑈𝑠𝑠 (bilinear relationship; see [61]). 

The initial stiffness is a function of soil’s modulus of elasticity, 𝐸𝐸𝑠𝑠, while the ultimate 

strength is given by the following formula:  

  [ ]( ) ( ) (z) tan (z)u nU z p ac z σ ψ= +  (5.1) 

The ultimate strength is simulated as a single random process due to the uncertainty on 

both empirical coefficients 𝑎𝑎 and 𝐾𝐾[164]. In the same manner, the soil and pile stiffness 

(𝑆𝑆𝑠𝑠 and 𝑆𝑆𝑝𝑝 respectively) are also simulated as random processes. Pile stiffness is 

considered as random field in the present analysis because, although a manmade material, 

according to experimental studies (e.g. [165–167]) the 𝐶𝐶𝐶𝐶𝐶𝐶of concrete stiffness is as high 

as 0.1 (value equal to 0.3 has also been reported in the literature; e.g. [168]. The 𝐶𝐶𝐶𝐶𝐶𝐶 of 

timber stiffness is typically in the order of 0.2 (e.g. [169]); timber piles are mentioned 

here because driven timber piles for foundation purposes are considered in the AASHTO 

LRFD Bridge Design Specifications [126].  
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Therefore, the RFEM model consists of pile elements joined by nodes, a sequence of 

spring elements attached to the nodes (see Figure 5.1; [61]), and three independent 1-D 

random processes, described as follows: 

• 𝑆𝑆𝑠𝑠(𝑧𝑧)and 𝑈𝑈𝑠𝑠(𝑧𝑧) are the spring stiffness and strength contributions from the soil 

per unit length along the pile, and 

• 𝑆𝑆𝑝𝑝(𝑧𝑧)is the stiffness of the pile.  

 
Figure 5.1: Finite element representation of pile-soil system [61]. 

The above one-dimensional random fields are assumed lognormally distributed having 

the same spatial correlation length (𝜃𝜃) and the same exponentially decaying (Markovian) 

correlation function (see [61]):  

 ( ) exp[ 2 ]ρ τ τ θ= −   (5.2) 

Eventually, the analysis results in the calculation of the load beyond which the given 

maximum settlement (𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚) becomes intolerable or the ultimate load that the pile can 
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carry just prior to failure. These two loads correspond to the serviceability and ultimate 

limit state respectively (𝑆𝑆𝑆𝑆𝑆𝑆and 𝑈𝑈𝑈𝑈𝑈𝑈). The 𝑈𝑈𝑈𝑈𝑈𝑈 state is defined by the sum of the ultimate 

strength (𝑈𝑈𝑠𝑠)over all the springs, whilst, the calculation of 𝑆𝑆𝑆𝑆𝑆𝑆 state is determined by 

imposing a displacement 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 at the top of the pile. In general, the finite element analysis 

involves the computation of the spring force which yield the prescribed 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚. 

The RPILE1D program was modified as to: 

1. have the function to virtually sample soil stiffness (𝑆𝑆𝑠𝑠), soil strength (𝑈𝑈𝑠𝑠) and pile 

stiffness (𝑆𝑆𝑝𝑝) values from specific points or domains (it is noted that, the soil 

consists of a single material, i.e. there is no stratification; the same stands for the 

pile), 

2. calculate the average of the sampled values (when the sampling points are more 

than one), 

3. calculate the resistance of pile in both the 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑈𝑈𝑈𝑈𝑈𝑈 states, using the sampled 

value(s) and 

4. calculate the failure probability of pile in either the 𝑆𝑆𝑆𝑆𝑆𝑆 or the 𝑈𝑈𝑈𝑈𝑈𝑈 state. 

In addition to the above modifications, the base spring has been modified as to have the 

same properties with the lateral ones, meaning that the pile does not rest on firm stratum. 

The effect of firm stratum on the sampling strategy (see definition below) is subject matter 

of future investigation. The actions referring to the added features 1 to 3 are performed in 

each RFEM realization.  

The validation of the modified program was done as follows. First a given pile was solved 

with the original RPILE1D program using deterministic property values for all materials. 

Then the same pile was solved with the modified program using values sampled from 

various places along the pile (since the problem is deterministic, all sampled values had 

the same value). The two programs gave exactly the same results for both the 𝑆𝑆𝐿𝐿𝑆𝑆 and 

the 𝑈𝑈𝑈𝑈𝑈𝑈 states, indicating that the function of sampling was embedded correctly into the 

original program. The rationality of the results of the present analysis are also indicative 

of the validity of the modified code. 

The following definitions are given: 

• the “optimal sampling strategy” refers to the number of sampling points and their 

location resulting to an optimal design. In an “optimal design” the error due to bad 
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sampling strategy is the minimum possible (i.e. the statistical uncertainty is 

minimized). The error is quantified comparing the probability of failure (𝑝𝑝𝑓𝑓) 

obtained by different sampling scenarios. The term “sampling” may refer to 

undisturbed specimens or to continuous probing test data (e.g. Cone Penetration 

Test, Standard Penetration Test).  

• In each RFEM realization, “failure” is considered to have occurred when the 

calculated shaft resistance of pile considering spatially uniform properties 

sampled from the soil and pile random fields (average values), is greater than the 

respective one considering spatially random properties for both soil and pile. 

• The “probability of failure” is defined by the fraction of the realizations resulted 

in failure over the total number of realizations.  

5.2 Parametric study for determining the optimal sampling strategy 

In the parametric study that follows, the input data used in the example presented in 

Fenton and Griffiths [164], are used herein as reference values (see Table 5.1). The 

reference pile length (𝐿𝐿), here, is 15m. It is noted that, when no values are mentioned in 

the text below, the reference values are used.  
Table 5.1: Input data abstracted by Fenton and Griffiths [164]; called here as “reference 
data”. 
𝛿𝛿𝑚𝑚𝑚𝑚𝑥𝑥 

(mm) 

Pile stiffness (𝑆𝑆𝑝𝑝) Soil stiffness (𝑆𝑆𝑠𝑠) Soil strength (𝑈𝑈𝑠𝑠) 

25 𝜇𝜇𝑆𝑆𝑝𝑝 (kN) 𝐶𝐶𝐶𝐶𝐶𝐶 𝜇𝜇𝑆𝑆𝑠𝑠 

(kN/m/m) 

𝐶𝐶𝐶𝐶𝐶𝐶 𝜇𝜇𝑈𝑈𝑠𝑠 

(kN/m) 

𝐶𝐶𝐶𝐶𝐶𝐶 

1000 0.1 100 0.2 10 0.2 

 

The influence of the following parameters on the failure probability of pile has been 

investigated: the sampling depth (𝑑𝑑𝑝𝑝) referring to a single sampling point or the sampling 

domain length (𝑑𝑑𝑑𝑑) both measured from the surface (i.e. the uppermost point of the pile), 

the pile length (𝐿𝐿), the spatial correlation length (𝜃𝜃), the maximum allowable settlement 

(𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚) of pile, as well as, the pile stiffness �𝑆𝑆𝑝𝑝�, soil stiffness (𝑆𝑆𝑠𝑠) and soil strength (𝑈𝑈𝑠𝑠). 

The number of realizations for each RFEM model was set to 20,000 because this research 
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deals with small differences in 𝑝𝑝𝑓𝑓 values (this is further discussed in the Appendix II). 

The optimal sampling strategy, which could be a single point or a domain along the pile, 

is indicated by the minimum failure probability in the 𝑝𝑝𝑓𝑓 vs depth charts. 

5.2.1 Sampling soil and pile properties from a single point 

5.2.1.1 Effect of spatial correlation length and pile length 

The following spatial correlation and pile lengths were considered: 𝜃𝜃 =0.1, 0.2, 0.5, 1, 2, 

5, 10 and 100m and 𝐿𝐿 = 10, 15, and 20m respectively. It is noted that, the number of pile 

elements considered was always 100 for effectively finding the optimal sampling 

location; for comparison purposes, in their example, Fenton and Griffiths [164] 

considered 30 elements for a 10-meter long pile.  

The variation of 𝑝𝑝𝑓𝑓 with respect of the scaled sampling depth (𝑑𝑑𝑝𝑝 𝐿𝐿)⁄  for the various 𝜃𝜃 

and 𝐿𝐿 values is shown in Figure 5.2. In this paragraph, the pile and soil properties are 

sampled from the same depth, although the authors admit that sampling from a specific 

depth of a pile is unrealistic for cast in situ piles. As shown in Figure 5.2, the minimum 

𝑝𝑝𝑓𝑓 value was found near the top of the pile in the 𝑆𝑆𝑆𝑆𝑆𝑆 state (Figure 5.2a, c and e) and at 

the centre in the 𝑈𝑈𝑈𝑈𝑈𝑈 state (Figure 5.2b, d and f), the reference values given in Table 5.1 

were used. It is interesting that, there is a worst-case theta value (theta giving the 

maximum statistical error), which is not the same for the two failure states. In addition, 

in the 𝑆𝑆𝑆𝑆𝑆𝑆 state, the worst-case theta depends also on the location of the (single) sampling 

point. For the 𝑈𝑈𝑈𝑈𝑈𝑈 state, it is observed that, for theta values in the order of 1 or smaller, 

𝑝𝑝𝑓𝑓 is independent of the 𝑑𝑑𝑝𝑝 𝐿𝐿⁄  ratio (i.e. 𝑝𝑝𝑓𝑓 is constant along the pile length). Moreover, 

in the 𝑆𝑆𝑆𝑆𝑆𝑆 state, for the great 𝜃𝜃 values considered in the analysis, the 𝑝𝑝𝑓𝑓 vs 𝑑𝑑𝑝𝑝 𝐿𝐿⁄  curves 

present a characteristic minimum near the top. These behaviours are very interesting, and 

they are further discussed later. 
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Figure 5.2: 𝒑𝒑𝒇𝒇 vs 𝒅𝒅𝒑𝒑 𝑳𝑳⁄  curves for various 𝜽𝜽 values for the case of sampling from a single 
point.  

The effect of pile length on 𝑝𝑝𝑓𝑓 is shown in Figure 5.3 both for the 𝑆𝑆𝑆𝑆𝑆𝑆 and the 𝑈𝑈𝑈𝑈𝑈𝑈 state. 

From Figure 5.3 it is inferred that as 𝐿𝐿 increases, 𝑝𝑝𝑓𝑓 also increases (recall the definition 

of 𝑝𝑝𝑓𝑓). Moreover, although for the 𝑈𝑈𝑈𝑈𝑈𝑈 the minimum 𝑝𝑝𝑓𝑓 is always found at the mid-height 

of pile (Figure 5.3b), for the 𝑆𝑆𝑆𝑆𝑆𝑆 the characteristic minimum in 𝑝𝑝𝑓𝑓 is shifted slightly to 
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smaller 𝑑𝑑𝑝𝑝 𝐿𝐿⁄  ratios as 𝐿𝐿 increases (Figure 5.3a). Probably the increase of 𝑝𝑝𝑓𝑓 with pile 

length is because the pile is affected by a longer random field. The fact that this increase 

appears to be smaller and smaller as the pile length increases is rather attributed to the 

fact that, a long pile (as compared to theta) meets repeating pattern of properties. 

 
Figure 5.3: 𝒑𝒑𝒇𝒇 vs 𝒅𝒅𝒑𝒑 𝑳𝑳⁄   curves for (a) the SLS and (b) the ULS, for three different pile 
lengths (sampling from a single location). 

From Figure 5.2 and Figure 5.3 it is inferred that, for the same pile and soil, the statistical 

error (expressed by the 𝑝𝑝𝑓𝑓), may vary significantly when the analysis is based on a single 

sample taken from different depths. The same is illustrated for both states in Figure 5.4, 

using as index the relative percentage difference (𝑅𝑅𝑑𝑑) between the minimum and 

maximum 𝑝𝑝𝑓𝑓 value; as shown,𝑅𝑅𝑑𝑑 depends strongly on 𝜃𝜃.  

 
Figure 5.4: Chart indicating the relative percentage difference 𝑹𝑹𝒅𝒅  between the minimum 
and maximum 𝒑𝒑𝒇𝒇 value for 𝜽𝜽 values ranging from 0.1 to 100m and pile length 𝑳𝑳 =10, 15 and 
20m. 
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5.2.1.2 Effect of  𝜹𝜹𝒎𝒎𝒎𝒎𝒎𝒎 

The effect of the maximum allowable settlement (𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚) on the optimal sampling location 

is examined in a similar way; apparently, this case is relevant only to the 𝑆𝑆𝑆𝑆𝑆𝑆 state. 

Different 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 values were considered, i.e. 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 =0.025, 0.075, 0.100, 0.150 and 

0.250m. The results are presented in Figure 5.5. The analysis was carried out for all input 

value combinations shown above; however only the scaled correlation length 𝜃𝜃 𝐿𝐿⁄ =2/3 

case is illustrated here. In brief, it seems that, the 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 value plays minor role in the 

location of the optimal sampling point. Moreover, the fact that the optimal sampling point 

is near the top is because the pile stiffness considered is relatively small. The authors add 

that, stronger piles (i.e. 𝑆𝑆𝑝𝑝>>𝑆𝑆𝑠𝑠) call for sampling from the mid-height of pile. 

 
Figure 5.5: 𝒑𝒑𝒇𝒇 vs 𝒅𝒅𝒑𝒑/𝑳𝑳 curves for the SLS state by considering different 𝜹𝜹𝒎𝒎𝒎𝒎𝒎𝒎  values. 

5.2.1.3 Effect of pile stiffness (𝑺𝑺𝒑𝒑)  

The effect of pile stiffness on sampling strategy is illustrated in the 𝑝𝑝𝑓𝑓 vs 𝑑𝑑𝑝𝑝 chart of 

Figure 5.6 referring to the SLS state. Various 𝑆𝑆𝑝𝑝 values ranging from 103 to 106 kN have 

been considered, whilst for all 𝑝𝑝𝑓𝑓 - 𝑑𝑑𝑝𝑝 curves, the 𝜃𝜃 𝐿𝐿⁄  ratio was equal to 2/3. From the 

figure in question it is inferred that the pile stiffness plays significant role in the selection 

of the optimal sampling location in the SLS state. More specifically, as 𝑆𝑆𝑝𝑝 increases, the 

𝑝𝑝𝑓𝑓 vs 𝑑𝑑𝑝𝑝 relationship tends to be symmetrical as for the mid-height of the pile; 

subsequently, the minimum 𝑝𝑝𝑓𝑓 tends also to be in the mid-height of pile as 𝑆𝑆𝑝𝑝 increases. 

On the other hand, as 𝑆𝑆𝑝𝑝 decreases, the minimum 𝑝𝑝𝑓𝑓 appears to be at shallower depths. 
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This is attributed to the fact that the axially loaded piles of low stiffness, (or better, of low 

𝑆𝑆𝑝𝑝 𝑆𝑆𝑠𝑠⁄  ratio) deform more near the top, while in very stiff piles the strain is distributed 

more evenly along their length. One should bear in mind that, excessive deformation near 

the top may cause either the pile or the soil to fail without influencing the underlain pile-

soil system. Thus, the fact that the case of weak piles gives very low 𝑝𝑝𝑓𝑓 values in the SLS 

state is only fictitious. It is noted that, the code has not yet been modified to include the 

pile strength; this is also subject matter of future research. In reality, piles have much 

greater stiffness than the surrounding soil, and thus, a failure of this kind is rather not 

possible. For the ULS state the optimal sampling location lies always at the mid-height 

of pile, exhibiting, in general, behaviour such as the respective one observed in Figure 

5.8d.  

 
Figure 5.6: 𝒑𝒑𝒇𝒇 vs 𝒅𝒅𝒑𝒑 curves for different mean pile stiffness (𝑺𝑺𝒑𝒑) values for the SLS state; 
figure referring to scaled correlation length 𝜽𝜽 𝑳𝑳⁄ =2/3. 

5.2.1.4 Effect of soil stiffness  (𝑺𝑺𝒔𝒔) 

The effect of soil stiffness (𝑆𝑆𝑠𝑠) on the optimal sampling location has also been examined. 

In this respect, a number of 𝑝𝑝𝑓𝑓 vs 𝑑𝑑𝑝𝑝 curves for the SLS state was drawn for various 𝑆𝑆𝑠𝑠 

values ranging from 10 to 500 kN/m/m (Figure 5.7). Generally, it can be said that the soil 

stiffness affects the sampling location in a way similar to pile stiffness (see the previous 

paragraph), apparently because it is the relative difference between 𝑆𝑆𝑠𝑠 and 𝑆𝑆𝑝𝑝 that controls 

the behavior of the soil-pile system and not the absolute values of them.  
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Figure 5.7: 𝒑𝒑𝒇𝒇 vs 𝒅𝒅𝒑𝒑 curves for different soil stiffness (𝑺𝑺𝒔𝒔) values for the SLS state; figure 
referring to scaled correlation length  𝜽𝜽 𝑳𝑳⁄ =2/3. 

5.2.1.5 Effect of soil strength (𝑼𝑼𝒔𝒔) 

The parametric study on the effect of soil strength on the optimal sampling point for both 

SLS and ULS states revealed that the 𝑈𝑈𝑠𝑠 value does not affect the sampling strategy; 

𝑈𝑈𝑠𝑠values ranging from 5 to 150 kN/m were examined.  

Although the findings indicate that the soil strength from the parametric analysis point of 

view of considering different mean 𝑈𝑈𝑠𝑠 values (while all the other parameters have been 

kept constant), does not affect the optimal sampling location, this is not absolutely true. 

The effect of soil strength on the sampling strategy should be better interpreted in relation 

to the effect of soil stiffness (see paragraph 5.2.1.4 of the current Chapter), because, as 

known, soils of high strength present also high stiffness and vice versa. 

5.2.1.6 Effect of COV of pile stiffness (𝑺𝑺𝒑𝒑), soil stiffness (𝑺𝑺𝒔𝒔) and soil strength (𝑼𝑼𝒔𝒔) 

In this paragraph the effect of COV of 𝑆𝑆𝑝𝑝, 𝑆𝑆𝑠𝑠 and 𝑈𝑈𝑠𝑠 on the optimal sampling location 

was examined for different COV values, i.e. COV=0.1, 0.2, 0.3, 0.4 and 0.5 with 𝜃𝜃 𝐿𝐿⁄  

being equal to 2/3. The results are presented in Figure 5.8. From the figure in question it 

is inferred that, the statistical error is largely affected by the coefficient of variation of the 

various parameters. However, there is no influence on the location of the optimal 

sampling point.  
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Figure 5.8: 𝒑𝒑𝒇𝒇 vs 𝒅𝒅𝒑𝒑/𝑳𝑳  curves for different values of COV of  (a) 𝑺𝑺𝒑𝒑 (SLS state),  (b)  𝑺𝑺𝒔𝒔 and  
(SLS state) and  (c) 𝑼𝑼𝒔𝒔 (ULS state) for 𝜽𝜽 𝑳𝑳⁄ =2/3. 

5.2.2 Sampling soil and pile properties from a domain 

In this sampling strategy, sampling domains are chosen as fractions of the total pile 

length, 𝐿𝐿. All sampling domains are extended from the uppermost point of the pile to a 

certain depth; thus, the maximum sampling domain is equal to the total length of the pile. 

An incremental domain length of 0.1𝐿𝐿 was chosen in the analysis. The effect of pile 

stiffness �𝑆𝑆𝑝𝑝�, soil stiffness (𝑆𝑆𝑠𝑠) and soil strength (𝑈𝑈𝑠𝑠) on 𝑝𝑝𝑓𝑓 of pile are examined 

separately below. 

5.2.2.1 Effect of pile stiffness (𝑺𝑺𝒑𝒑)  

The effect of pile stiffness on the sampling strategy for the SLS state is shown in the 𝑝𝑝𝑓𝑓 

vs ‘sampling domain length’ (𝑑𝑑𝑑𝑑) charts of Figure 5.9a. Generally, from this figure it is 
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inferred that for the usual case where 𝑆𝑆𝑝𝑝>>𝑆𝑆𝑠𝑠, the longer the sampling domain is, the 

smaller the statistical error is. Indeed, this error can be reduced to zero by exploiting the 

probing test data (e.g. CPT or SPT) along the entire pile length, if any. The same 

conclusion stands for any theta value (e.g. see Figure 5.9b).  

Regarding the ULS state, it was found that the optimal sampling domain length is 

independent of the pile stiffness, since for any 𝑆𝑆𝑝𝑝value, the same 𝑝𝑝𝑓𝑓 -𝑑𝑑𝑑𝑑 curves shown in 

Figure 5.11 are obtained. By considering, however, the entire pile length, if available, the 

statistical error is reduced to zero. 

 
Figure 5.9: 𝒑𝒑𝒇𝒇 vs 𝒅𝒅𝒅𝒅 curves for different values of (a) pile stiffness (𝑺𝑺𝒑𝒑) and 𝜽𝜽 =1.0m, (b) 
spatial correlation length 𝜽𝜽 and 𝑺𝑺𝒑𝒑 =106 kN 

5.2.2.2 Effect of soil stiffness  (𝑺𝑺𝒔𝒔) 

Generally, it stands what it has been written for the case of 𝑆𝑆𝑝𝑝. The effect of 𝑆𝑆𝑠𝑠on the 

sampling strategy is shown in Figure 5.10a and b. From the figure in question it is inferred 

that, for the usual case of 𝑆𝑆𝑝𝑝>>𝑆𝑆𝑠𝑠, the longer the sampling domain is, the smaller the 

statistical error is. For small 𝑆𝑆𝑝𝑝 𝑆𝑆𝑠𝑠⁄  ratios, that is, for relatively weak piles, the optimal 

sampling domain length is very short, indicating a possible failure near the surface. 

Regarding the ULS state, it was found that the optimal sampling domain length is 

independent of 𝑆𝑆𝑠𝑠; indeed, for any 𝑆𝑆𝑠𝑠value, the same 𝑝𝑝𝑓𝑓 -𝑑𝑑𝑑𝑑 curves shown in Figure 5.11 

are obtained. 
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Figure 5.10: 𝒑𝒑𝒇𝒇 vs 𝒅𝒅𝒅𝒅 curves for different values of (a) soil stiffness (𝑺𝑺𝑺𝑺) and 𝜽𝜽 =1.0m, , (b) 
spatial correlation length (𝜽𝜽)and 𝑺𝑺𝑺𝑺 =100 kN/m/m 

5.2.2.3 Effect of soil strength (𝑼𝑼𝒔𝒔) 

The parametric study on the effect of soil strength on the optimal sampling domain length 

for both SLS and ULS states revealed that the 𝑈𝑈𝑠𝑠 value does not affect the sampling 

strategy (Figure 5.11; see also paragraph 5.2.1.5). 

5.2.2.4 Effect of  𝜹𝜹𝒎𝒎𝒎𝒎𝒎𝒎 

The effect of the maximum allowable settlement (𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚) on the optimal sampling domain 

is shown in Figure 5.12; for the obvious reason, this case is relevant only to the 𝑆𝑆𝑆𝑆𝑆𝑆 state. 

Different 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 values were considered, i.e. 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 =0.025, 0.075, 0.100, 0.150 and 

0.250m, while the curves in Figure 5.12 refer to 𝜃𝜃 𝐿𝐿⁄ =2/3. In brief, it seems that, the 

𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 value plays rather minor role in the location of the optimal sampling point. 

Moreover, the fact that the optimal domain length ranges between 𝐿𝐿/5 and 𝐿𝐿/3 is because 

the pile stiffness considered is relatively small. Stronger piles with 𝑆𝑆𝑝𝑝>>𝑆𝑆𝑠𝑠 call for 𝑑𝑑𝑑𝑑 

values equal to the entire pile length. 
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Figure 5.11: 𝒑𝒑𝒇𝒇 vs 𝒅𝒅𝒅𝒅 curves for different values of spatial correlation length (𝜽𝜽); chart 
standing for any 𝑺𝑺𝒑𝒑 and 𝑺𝑺𝒔𝒔 value. 

 
Figure 5.12: 𝒑𝒑𝒇𝒇 vs 𝒅𝒅𝒅𝒅 curves for various 𝜹𝜹𝒎𝒎𝒎𝒎𝒎𝒎 values; chart referring to the SLS state 

5.2.2.5 Effect of 𝑪𝑪𝑪𝑪𝑪𝑪of pile stiffness (𝑺𝑺𝒑𝒑), soil stiffness (𝑺𝑺𝒔𝒔) and soil strength  (𝑼𝑼𝒔𝒔) 

In this paragraph the effect of COV of 𝑆𝑆𝑝𝑝, 𝑆𝑆𝑠𝑠 and 𝑈𝑈𝑠𝑠 on the optimal sampling domain 

length was examined for different COV values, i.e. COV=0.1, 0.2, 0.3, 0.4 and 0.5 with 

𝜃𝜃 𝐿𝐿⁄  being equal to 2/3. The results are presented in Figure 5.13. From the figure in 

question it is inferred that, the statistical error is largely affected by the coefficient of 

variation of the various parameters. However, the influence on the optimal sampling 

domain length is rather minor. 
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Figure 5.13: 𝒑𝒑𝒇𝒇 vs 𝒅𝒅𝒅𝒅 curves for different values of COV values of (a) 𝑺𝑺𝒑𝒑 ,  (b) 𝑺𝑺𝒔𝒔 and  (c) 
𝑼𝑼𝒔𝒔. Figure (a) and (b) refer to the SLS state, whilst figure (c) to the ULS state; also 𝜽𝜽 𝑳𝑳⁄  = 
2/3 in all figures. 

5.3 The importance of targeted field investigation in practice 

The importance of targeted field investigation, where samples are taken from a priory 

known optimal locations, is highlighted here. A random material field referring to a 

specific RFEM realization, such the ones presented in Figure 5.14 (light areas correspond 

to lower friction angles and vice versa), it can be said that it convincingly represents a 

real field. For both examples presented in this paragraph, the various values of the 

parameters used are summarised in Table 5.2 (both soil materials are assumed 

cohesionless, whilst the unit weight of soil is considered constant throughout the soil 

mass). 
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Figure 5.14: Graphical representation of the two example random fields of friction angle of 
soil (recall Table 5.2). a) 𝜽𝜽 𝑳𝑳⁄ = 𝟏𝟏/𝟏𝟏𝟏𝟏 and b) 𝜽𝜽 𝑳𝑳⁄ = 𝟏𝟏/𝟏𝟏.𝟓𝟓. Light areas correspond to lower 
friction angles and vice versa. The pile is located at 𝒙𝒙 𝑳𝑳⁄ = 𝟎𝟎.  

 
Table 5.2: Summary of the values of parameters defining the two examples. 

Example 
Random 

field 
Distribution 𝜇𝜇𝜙𝜙′ 𝐶𝐶𝐶𝐶𝑉𝑉𝜙𝜙′ L 𝜃𝜃 𝐿𝐿⁄  Figure 

#1 𝜙𝜙′ Log-normal 30o 0.2 15 1/15 Figure 5.14a 
#2 𝜙𝜙′ Log-normal 30o 0.2 15 1/1.5 Figure 5.14b 

As known the shaft resistance of piles is given by the following equation:  

  ( ) ( )2 ' tan 'sQ R L K οπ σ δ= ⋅ ⋅  (5.3) 

where, R and L are the radius and length of pile respectively, 𝜎̄𝜎′𝜊𝜊 is the average effective 

overburden pressure, 𝐾𝐾 is the coefficient of earth pressure and 𝛿𝛿′is the soil–pile friction 

angle. For bored, cast in-situ piles, K=Ko= 1 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙 ′ [170] and 𝛿𝛿′ 𝜙𝜙′⁄ =0.98 [171]. 

Rearranging the terms in Equation (5.3), after making the relevant substitutions: 

  
( ) ( ) ( )1 sin ' tan 0.98 '
2 '

sQ
R L ο

φ φ
π σ

= − = Λ
⋅ ⋅

 (5.4) 

Thus, for a given bored pile (expressed by the dimensions L and R) and deterministic unit 

weight of soil, the shaft resistance of pile is directly analogous to the term shown on the 

right-hand side of Equation (5.4).  𝜙̄𝜙′ is the mean of the values sampled (values derived 

from empirical correlation with Cone Penetration Test tip resistance data). 

Using as reference 𝜙̄𝜙′value the value corresponding to the entire length of the pile at the 

location where the pile is going to be constructed (x/L=0), the relative difference Rd 

(=Λ/Λref-1) versus x/L charts of  Figure 5.15 was drawn. It is reminded that these figures 

refer to the specific realizations given in Figure 5.14, which have been randomly chosen.  
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Figure 5.15: Relative difference Rd (=Λ/Λref-1; recall Equation (5.3)) versus x/L charts for 
a) 𝜽𝜽 𝑳𝑳⁄ = 𝟏𝟏/𝟏𝟏𝟏𝟏 and b) 𝜽𝜽 𝑳𝑳⁄ = 𝟏𝟏/𝟏𝟏.𝟓𝟓. Charts drawn using characteristic friction angle 
values. 

From Figure 5.15 it is inferred that, not only the sampling domain length strongly affects 

the statistical error but also the location (in plan-view) of sampling. Also, it is mentioned 

that, the decrease and increase of the Rd values in Figure 5.15b around x/L= -0.25 and 0.25 

respectively are due to the existence of a weak (elements) and a strong area (light and 

dark elements respectively) at these locations (see Figure 5.14b).  

5.4 Designing with LRFD (Load and Resistance Factor Design) codes 

The discussion on the design of piles based on characteristic soil property values (please 

see equations (2.1) and (2.2) in Chapter 2) instead of the respective mean values is 

facilitated by the two example charts of Figure 5.16 (same as Figure 5.15 but with 

characteristic values). From the latter it is clear that, the benefit from a targeted field 

investigation is much greater as compared to the benefit gained using characteristic 

values. Moreover, despite the conservatism which is inserted in the analysis using the 

characteristic value concept, the characteristic values alone, as shown, cannot guaranty a 

conservative enough study.  
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Figure 5.16: Relative difference Rd (=Λ/Λref-1; recall Equation (5.2)) versus x/L charts for 
a) 𝜽𝜽 𝑳𝑳⁄ = 𝟏𝟏/𝟏𝟏𝟏𝟏 and b) 𝜽𝜽 𝑳𝑳⁄ = 𝟏𝟏/𝟏𝟏.𝟓𝟓. Charts drawn using characteristic friction angle 
values. 

5.5 Summary and conclusions 

This Chapter deals with the practical problem of the effect of targeted field investigation 

on the reliability of axially loaded piles, aiming at an optimal design. In this respect, the 

freely available Random Finite Element Method (RFEM) program called RPILE1D has 

been modified by the authors as to consider sampling of both soil and pile properties. Two 

sampling strategies were considered, namely, sampling from a single point and sampling 

a domain, both along the pile, whilst the various parameters governing the statistical 

uncertainty of the problem were examined.  

The analysis showed that statistical uncertainty in designing axially loaded piles can be 

very high and that, statistical error is not necessarily reduced by increasing the number of 

sampling points considered. Indeed, the opposite may happen. As shown, the statistical 

error can be minimized or even, eliminated by adopting the proper sampling strategy 

(defined by the number and location of sampling points along the pile). 

More specifically, when continuous probing test data are used and the pile stiffness is 

much greater than the stiffness of the surrounding soil, the entire pile length is advised to 
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be taken into account both in the SLS and the ULS state, as shorter sampling domain 

lengths may insert great statistical error. Also, weak piles, such as, timber piles, require 

much shorter domain lengths (measured from the top), as longer sampling domains may 

increase the error.   

On the other hand, when the design is based on sampling points and not on continuous 

probing test data, the best practice for minimizing the statistical error is sampling from 

the mid-height of the pile in both SLS and ULS states. However, for the SLS state, when 

the pile is relatively weak, the optimal sampling point lies near the top of the pile. For the 

ULS state, the optimal sampling point lies at the mid-height of pile, for any pile stiffness.  

Another main finding is that, the optimal horizontal sampling location is at the exact 

location where the pile is going to be constructed. In addition, it was observed that, the 

benefit from a targeted field investigation is much greater as compared to the benefit 

gained using characteristic soil property values. Moreover, despite the conservatism 

which is inserted in the analysis using the characteristic value concept, the characteristic 

values alone, as shown, cannot guaranty a conservative enough engineering study. The 

safety level can be increased by applying a statistical uncertainty partial factor (similar to 

the model factor γR used by Eurocode 7) or a unified and more conservative model factor 

to the resistances, which will absorb the statistical uncertainties related to the soil. 
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6 The effect of targeted field investigation on the reliability of earth 

retaining structures 

This chapter investigates numerically the effect of targeted field investigation on the 

reliability of earth retaining structures in active and passive state. This is done based on 

the RFEM [61], properly considering soil sampling in the analysis. The present analysis 

will show that the statistical error in an active or passive earth pressure analysis can be 

minimized only by targeted field investigation. Apparently, this study refers to structures, 

such as, sheet pile and bored pile walls, retaining undisturbed soil and not to backfilled 

retaining structures. As stated in the introduction, the current design codes are limited to 

some general recommendations, focusing mainly on the extend of the subsurface 

exploration and aiming at identifying possible unfavorable geological conditions. In this 

respect, AASHTO [126] additionally recommends that samples be taken from locations 

alternating from in front of the wall to behind the wall. Apparently, this recommendation 

refers to structures such as sheet walls and pile walls, where undisturbed soil is retained 

and both active and passive states exist simultaneously. No recommendation is given for 

the sampling depth or distance from the wall. 

6.1 Brief description of the RFEM program used 

The open source RFEM program REARTH2D (see Fenton and Griffiths [61] and 

Griffiths et al. [49]) is used and modified suitably in order to accommodate the purposes 

of the present research. The program involves generation and mapping of soil properties 

(cohesion, friction angle and/or unit weigh; at least one of these parameters is required to 

be random) onto a finite element mesh. For a specific set of material random fields, the 

program returns the wall reaction force and overturning moment caused by the self-

weight of a spatially random soil. In addition, from the same set of random fields, the 

REARTH2D program is able to sample soil property values for calculating the respective 

wall reaction force and overturning moment based on Rankine’s [172] earth pressure 

theory considering that the soil medium is homogenous and characterized by the sampled 

values (mean of the values sampled for each soil property). The procedure is repeated 𝑚𝑚 

times; 𝑚𝑚 is the number of realizations, where, each realization refers to a new set of 

random fields for 𝑐𝑐′, 𝜙𝜙′ and 𝛾𝛾. Then, the failure probability (𝑝𝑝𝑓𝑓) of the wall against sliding 
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or overturning is calculated. The “failure probability” is defined by the fraction of the 

number of realizations resulted to a specific type of failure (sliding or overturning) over 

the total number of realizations. In the active state and for each RFEM realization, 

“failure” is considered to have occurred when the “actual” wall reaction force (or 

overturning moment) referring to the spatially random soil (value calculated using the 

RFEM method), is greater than the respective (factored or unfactored) predicted value 

referring to soil having spatially uniform properties sampled from the RFEM random 

fields (value calculated based on Rankine’s earth pressure theory as mentioned above). 

That is, it stands that 

      , , ,"actual" ,ora RFEM a Rankine a a predictedp P X FS X P X FS Xf = > >        (6.1) 

where, the symbol 𝑋𝑋 denotes either wall reaction force or overturning moment (𝐹𝐹 and 𝑀𝑀 

respectively), the subscript 𝑎𝑎 denotes active state of failure and 𝐹𝐹𝐹𝐹 is the user-defined 

safety factor. In the passive state, “failure” is considered to have occurred when the 

“actual” wall reaction force (or overturning moment), is less than the respective (factored 

or unfactored) predicted value and therefore, it stands that 

      , , ,"actual" ,orf p RFEM p Rankine p p predictedp P X X FS P X X FS= < <         (6.2) 

where, the subscript 𝑝𝑝 denotes passive state of failure.  

In the REARTH2D program the active and passive states are reached incrementally. 

However, in practice, retaining structures do not always work under large wall 

movements; thus, the active or passive state may not be fully reached. Ni et al. [173] 

highlighted the importance of the intermediate active or passive state in design. Reducing 

the increments in the finite element analysis and thus not allowing the active or passive 

state to be fully reached, the authors observed, as expected, greater wall reaction forces 

for the active state and smaller for the passive state, but no change in the optimal sampling 

location. Thus, avoiding any confusion, the analysis that follows refers to fully reached 

active and passive states. 

Favoring objectivity in the comparison between the “actual” and the respective 

“predicted” values, the original REARTH2D program has been modified so as to 

calculate the wall reaction force and overturning moment based on the finite element 
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method instead of Rankine’s theory. That is, the failure probability for the active state is 

defined as follows: 

      , , ,"actual" ,ora RFEM a FEM a a predictedp P X FS X P X FS Xf = > >                       (6.3) 

and for the passive state as: 

      , , ,"actual" ,orf p RFEM p FEM p p predictedp P X X FS P X X FS= < <         (6.4) 

The finite-element earth pressure analysis in REARTH2D uses an elastic, perfectly plastic 

Mohr–Coulomb constitutive model with stress redistribution achieved iteratively using 

an elasto-viscoplastic algorithm essentially similar to that described in the text by Smith 

and Griffiths [174]. The boundary conditions on the right side of the mesh (across the 

wall) are such that they allow vertical but not horizontal movement, while the base of the 

mesh is fully restrained. The top and left sides of the mesh are unrestrained, except for 

the nodes adjacent to the wall, which are as described immediately below. 

The active state against sliding is modelled by translating the nodes of the mesh next to 

the wall horizontally and uniformly, away from the soil. While, the passive state against 

sliding is modelled by translating the nodes towards the soil mass. These nodes have fixed 

horizontal components of displacement. 

As active (or passive) conditions are mobilized, the vertical components of these 

displaced nodes are either free to move down (or up for the passive state) or restrained 

depending on whether a perfectly smooth or perfectly rough wall is modelled.   Following 

each increment of displacement, the mobilized active (or passive) reaction force on the 

wall is computed by integrating the stress in the elements attached to the displaced nodes.        

Considering a rough, rigid wall, the active (or passive) state against rotation is modelled 

by imposing the same angular displacement to the nodes next to the wall, having as pivot 

point the lower point of wall; in this respect, the (cross-sectional) width of the wall is 

considered to be infinitesimally small. For smooth rotating walls, these nodes are allowed 

to slip downwards (or upwards for passive state) along the wall surface. The translation 

or rotation of the wall is performed incrementally. For the active state, the finite element 

analysis is terminated when the incremental displacements have resulted in the active 

reaction force reaching its minimum limiting value, while for the passive state, is 

terminated when the passive reaction force flattens out and reaches a maximum value.  
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The sub-chapters that follows examine the case of a wall retaining a fully drained 

cohesionless soil against active and passive failure in plane strain conditions. Different 

sampling strategies are examined, i.e. sampling from a single point and sampling from a 

domain, through a parametric analysis for defining the strategy that minimizes the 

probability of failure and thus the statistical error (i.e. the optimal sampling strategy). 

In both studies (i.e. active and passive state), both 𝜙𝜙′ and 𝛾𝛾 are treated as log-normal 

random fields. The soil is assumed cohesionless with 𝜇𝜇𝜙𝜙′ =30o and 𝜇𝜇𝛾𝛾 =20 kN/m3, while 

various standard deviation and 𝜃𝜃 values are examined. Moreover, since 𝐾𝐾𝑜𝑜  depends on 

𝜙𝜙′ (the initial horizontal stresses are defined by Jaky’s [175] 𝐾𝐾𝑜𝑜 = 1 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙 ′ equation), 

this is also treated as random field. In addition, it is mentioned that, although the elastic 

parameters of soil (ν and Ε) affect the required wall movement in order the active or 

passive state to be fully reached, preliminary parametric analysis carried out by the author 

showed that they have no influence on the optimal sampling strategy. Thus, these values 

have been kept constant and equal to 0.3 and 105 kN/m2 respectively throughout the entire 

analysis presented herein. Furthermore, the random fields are assumed to have the same 

spatial correlation length (𝜃𝜃) and an exponentially decaying (Markovian) correlation 

structure (see Equation (5.2)). Finally, a safety factor FS equal to 1.3 is generally assumed 

in the active state analysis, while a FS equal to 1.25 for the passive state; the effect of FS 

on the sampling strategy is also investigated later. 

6.2 Active state of stress 

6.2.1 Parametric study for determining the optimal sampling strategy 

The soil mass is discretised into a 48x34 mesh (number of elements at the horizontal and 

vertical direction respectively) consisting of eight-noded square elements with side length 

equal to 0.1 (Figure 6.1). Various wall heights are considered ranging from H=1.4 m to 

2.9 m (meaning that the wall extends to a depth ranging from 14 to 29 elements), while 

the mesh geometry has been kept the same for all cases. A 24-element wall will be 

generally considered in the analysis (hereafter called a “reference wall”); the other wall 

heights will be used for the investigation of the effect of wall height on the optimal 

sampling strategy. The 48-element mesh in the horizontal direction was chosen so that 

the failure mechanism in the RFEM analysis will not to be affected by the proximity of 
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the right boundary. In this respect, for the highest wall considered (29-element-high wall), 

as the 𝜙𝜙′ value approaches zero (extreme case), according to Rankine’s theory, the failure 

mechanism in the active state will occupy a horizontal distance from the wall face equal 

to one wall height (that is, 29 elements; value 40% smaller as compared to the 48 

horizontal elements of the geometry).  

 
Figure 6.1: Active earth failure of the “reference” wall. Graphical representation of a 
random field of 𝝓𝝓′ (this is a typical RFEM realisation); light areas correspond to lower 
friction angles and vice versa. For the soil shown, 𝜽𝜽/𝑯𝑯 = 𝟖𝟖.𝟑𝟑 and COVφ = 0.3.  

As samples are taken from a material field (i.e. the ground), which simultaneously is a 

stress field (stresses caused by the self-weight of the soil and also, any external load), the 

location of the optimal sampling points is affected by the coexistence of these two fields. 

Aiming at finding the optimal sampling strategy, the following parameters will be 

examined: the sampling depth (𝑑𝑑𝑝𝑝) and horizontal distance (𝑥𝑥) for the case of sampling 

from a single point (measured from the soil surface and the wall face respectively), the 

sampling domain length (𝑑𝑑𝑑𝑑) and horizontal distance (𝑥𝑥) of the continuous probing test 

location for the case of sampling from a domain (measured as in the previous case), the 

spatial correlation length of soil (𝜃𝜃), the wall roughness (perfectly smooth or perfectly 

rough wall), the wall height (𝐻𝐻), the coefficient of variation (𝐶𝐶𝐶𝐶𝐶𝐶) of 𝜙𝜙′ and 𝛾𝛾, the mean 

value of 𝜙𝜙′, the safety factor value (𝐹𝐹𝐹𝐹) considered and the soil mass anisotropy 

(𝜃𝜃ℎ ≠ 𝜃𝜃𝑣𝑣). Hereafter, it is noted that the symbol 𝜃𝜃 (that is, without subscript) denotes 

isotropic conditions (𝜃𝜃ℎ = 𝜃𝜃𝑣𝑣). Four sampling scenarios are indicatively shown in Figure 
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6.2 (scenarios A and B refer to a single sampling point, whilst scenarios C and D to 

continuous probing tests).  

 

 
Figure 6.2: Graphical representation of different sampling scenarios: Scenarios A and B 
refer to a single sampling point (each located at depth dp), whilst Scenarios C and D to 
sampling domains (each having length dd).  

The optimal sampling point or domain will be identified by comparing the failure 

probability (𝑝𝑝𝑓𝑓)values derived by various sampling strategies. Apparently, when dealing 

with small differences in 𝑝𝑝𝑓𝑓 values, the stability of the results is very important. In this 

respect, the number of realizations was set equal to 3000; this number, as discussed in  

Appendix III, can be considered adequate for the needs of the present research. The effect 

of the element size is also examined in the same appendix. 

6.2.2 Sampling from a single point 

6.2.2.1 Effect of spatial correlation length (θ) 

Example charts showing the variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑝𝑝 𝐻𝐻⁄  for various 𝜃𝜃 𝐻𝐻⁄  values 

are given in Figure 6.3. From this figure it is inferred that, the optimal sampling location 

for the active case is clearly for zero horizontal distance from the wall, both for the case 

of translating and rotating wall and for any 𝜃𝜃 value. Isolating the curves for 𝑥𝑥 𝐻𝐻⁄ =0 (see 

Figure 6.4) it seems that, there is a “worst case spatial correlation length”—see also [176], 

where the failure probability becomes maximum; for example, for the various 𝜃𝜃 𝐻𝐻⁄  ratios 
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shown in Figure 6.4 (ranging from 𝜃𝜃 𝐻𝐻⁄ =0.04 to 8.3), the 𝜃𝜃 𝐻𝐻⁄ =0.21 case gives the 

higher 𝑝𝑝𝑓𝑓 values. From Figure 6.4 it is also inferred that, as 𝜃𝜃 tends to zero, the 𝑝𝑝𝑓𝑓value 

tends to a single value for any depth (that is, 𝑝𝑝𝑓𝑓 is independent of the sampling depth). 

However, as 𝜃𝜃 increases, the 𝑝𝑝𝑓𝑓value becomes more dependent on the sampling depth. 

 
Figure 6.3: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example curves for various 𝜽𝜽 𝑯𝑯⁄  and 𝒙𝒙 𝑯𝑯⁄  values for the case of 
sliding (figures (a), (c) and (e)) and overturning wall (figures (b), (d) and (f)). 
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Figure 6.3: Continued. 

 
Figure 6.4: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example curves for various 𝜽𝜽 𝑯𝑯⁄  and 𝒙𝒙 𝑯𝑯 = 𝟎𝟎  ⁄ (smooth wall) 
for the case of (a) sliding and (b) overturning wall. 

6.2.2.2 Effect of wall roughness 

The effect of wall roughness on the location of the optimal sampling point is examined 

herein. The optimal sampling distance was also found to be at 𝑥𝑥 𝐻𝐻⁄ =0, therefore, results 

are presented only for this case (see Figure 6.5). Comparing Figure 6.4 with Figure 6.5 

(for perfectly smooth and perfectly rough wall respectively) it is inferred that, the 

statistical error is, generally, less sensitive to the sampling depth in the case of rough wall. 

However, comparing similar soil-wall systems but with different wall roughness it can be 

said that, by choosing the proper sampling depth, smaller 𝑝𝑝𝑓𝑓 can be obtained when the 

wall is smooth.  
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Figure 6.5: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example curves for various 𝜽𝜽 𝑯𝑯⁄  values and 𝒙𝒙 𝑯𝑯 = 𝟎𝟎  ⁄  (perfectly 
rough wall) for the case of (a) sliding and (b) overturning wall; please compare with Figure 
6.4 (perfectly smooth wall). 

6.2.2.3 Effect of wall height 

The variation of 𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑝𝑝 𝐻𝐻⁄  for various wall height values , i.e. 𝐻𝐻 =1.4, 1.9, 2.4, 2.9 

m, is shown in Figure 6.6. From this figure it is clear that, the wall height has minor 

influence on the location of the optimal sampling point. 

 
Figure 6.6:  𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example curves for different wall heights,  H, and 𝜽𝜽 =20 m for 
the case of (a) sliding and (b) overturning wall. 

6.2.2.4 Effect of COV of 𝝓𝝓′ and 𝜸𝜸 

In this paragraph, six 𝐶𝐶𝐶𝐶𝐶𝐶values for 𝜙𝜙′ and 𝛾𝛾 were considered, i.e. 𝐶𝐶𝐶𝐶𝐶𝐶 =0, 0.1, 0.2, 0.3, 

0.4 and 0.5. The optimal sampling distance from the wall was found not to be affected by 
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the 𝐶𝐶𝐶𝐶𝐶𝐶 of 𝜙𝜙′ and 𝛾𝛾, where again the 𝑥𝑥 𝐻𝐻⁄ =0 case leads to the smaller statistical error. 

Thus, only the 𝑥𝑥 𝐻𝐻⁄ =0 case will be presented here. From Figure 6.7 it is, generally, 

inferred that the 𝐶𝐶𝐶𝐶𝐶𝐶of 𝜙𝜙′ and 𝛾𝛾 has no or minor effect on the optimal sampling depth 

for the sliding and rotating case respectively.  

6.2.2.5 Effect of 𝝁𝝁𝝓𝝓′ and 𝝁𝝁𝜸𝜸 

So far, the mean value of 𝜙𝜙′ was equal to 30° in all cases considered in the analysis. The 

influence of 𝜇𝜇𝜙𝜙′ on the optimal sampling location is examined herein. In this respect, three 

𝜇𝜇𝜙𝜙′ values were considered, i.e. 𝜇𝜇𝜙𝜙′ = 20°, 30°, and 40°. The 𝐶𝐶𝐶𝐶𝐶𝐶of 𝜙𝜙′ was set equal to 

0.3, while the 𝐶𝐶𝐶𝐶𝐶𝐶of 𝛾𝛾 was set to zero. The authors found that, the optimal sampling 

distance was again at 𝑥𝑥 𝐻𝐻⁄ =0 for any 𝜇𝜇𝜙𝜙′ value (not shown here for space economy). In 

addition, from Figure 6.8 it is inferred that the 𝜇𝜇𝜙𝜙′ of soil has no effect on the optimal 

sampling depth both in the case of translating and rotating wall. The same stands for 𝜇𝜇𝛾𝛾. 

6.2.2.6 Effect of the Factor of Safety (𝑭𝑭𝑭𝑭) 

The variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑝𝑝 𝐻𝐻⁄  for different 𝐹𝐹𝐹𝐹 values is shown in Figure 6.9; 

the optimal sampling distance from the wall face was also found to be at 𝑥𝑥 𝐻𝐻⁄ =0 for any 

𝐹𝐹𝐹𝐹 value, thus, only the 𝑥𝑥 𝐻𝐻⁄ =0 case is presented here. From Figure 6.9 it is obvious that 

the failure probability decreases as 𝐹𝐹𝐹𝐹 increases, but what it is not trivial is that, the 

positive effect of targeted field investigation on the reduction of the statistical error is 

greater for greater 𝐹𝐹𝐹𝐹 values. For example, considering the case of rotating wall, as shown 

in Figure 6.9, the 𝑝𝑝𝑓𝑓 for 𝐹𝐹𝐹𝐹=1.1 is approximately 0.45 and independent of the 𝑑𝑑𝑝𝑝 𝐻𝐻⁄  ratio. 

For the same soil-wall system, if 𝐹𝐹𝐹𝐹=1.5, 𝑝𝑝𝑓𝑓 ranges from 0.18 for 𝑑𝑑𝑝𝑝 𝐻𝐻⁄ =0 (and 1.4) to 

almost zero for 𝑑𝑑𝑝𝑝 𝐻𝐻⁄ =0.6. 
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Figure 6.7: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example relationships by considering different values of COV 
of 𝝓𝝓′ and γ; figures (a) and (b) refer to COV of 𝝓𝝓′ , whilst figures (c) and (d) refer to COV 
of γ for the sliding and overturning moments, respectively. 
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Figure 6.8: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example relationships for (a) sliding and (b) overturning 
moment considering different 𝛍𝛍𝛟𝛟′ values.  

 
Figure 6.9: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example curves for different 𝑭𝑭𝑭𝑭 values for the case of (a) sliding 
and (b) overturning wall. 

6.2.2.7 Effect of soil anisotropy 

According to the literature, the spatial variability of soil in the horizontal direction is much 

greater than the respective one in the vertical direction due to natural deposition and soil 

formation processes. In this respect, these studies mention that the horizontal spatial 

correlation length (𝜃𝜃ℎ) is generally about 10 times the vertical one (𝜃𝜃𝑣𝑣). For example, 

𝜃𝜃ℎ ≈ 9𝜃𝜃𝑣𝑣 for Vanmarcke [177], 𝜃𝜃ℎ ≈ 10𝜃𝜃𝑣𝑣 for Soulie et al. [178] and Cherubini [179], 

𝜃𝜃ℎ ≈ 12𝜃𝜃𝑣𝑣 for Popescu et al. [180], 𝜃𝜃ℎ ≈ 13𝜃𝜃𝑣𝑣 for Phoon and Kulhawy [181], and 𝜃𝜃ℎ ≈ 
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2 to 7 times the 𝜃𝜃𝑣𝑣 value for Firouzianbandpey et al. [84]. Driven from these findings, the 

effect of soil anisotropy on the optimal sampling location will be investigated here by 

comparing the 𝜃𝜃ℎ = 𝜃𝜃𝑣𝑣 case with the 𝜃𝜃ℎ = 10𝜃𝜃𝑣𝑣 case. The reference wall-soil system with 

𝜃𝜃𝑣𝑣 𝐻𝐻 =⁄ 𝜃𝜃ℎ 𝐻𝐻 =⁄ 2.08 will be compared with a respective one having 𝜃𝜃𝑣𝑣 𝐻𝐻 =⁄ 2.08 and  

𝜃𝜃ℎ 𝐻𝐻 =⁄ 20.8. The variation of 𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑝𝑝 𝐻𝐻⁄  for various 𝑥𝑥 𝐻𝐻⁄  values is shown in Figure 

6.10. From this figure it is inferred that, the statistical error practically remains the same 

for horizontal sampling distances less than one wall height (𝑥𝑥 ≤ 𝐻𝐻) for both the 

translating and rotating wall cases. Although for 𝑥𝑥 ≤ 𝐻𝐻 the difference in the 𝑝𝑝𝑓𝑓values is 

very small, again the optimal sampling location is at 𝑥𝑥 𝐻𝐻⁄ = 0. Comparing Figure 6.10a 

with Figure 6.3c and Figure 6.10b with Figure 6.3d, it can be said that the effect of the 

horizontal sampling location is significantly higher in the isotropic case. Regarding the 

optimal sampling location, the soil anisotropy has no effect on the optimal sampling depth 

both in the case of translating and rotating wall.  

 
Figure 6.10: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄   example curves for various  𝒙𝒙 𝑯𝑯⁄  values for (a) sliding and (b) 
overturning wall considering anisotropic soil (to be compared with Figure 6.3c and d 
respectively). 

6.2.3 Sampling from a domain 

This sampling strategy refers to data referring to continuous probing tests (e.g. the Cone 

Penetration Test or Standard Penetration Test). The length of the sampling domain is 

always measured from the soil surface, whilst arithmetic mean values are used for the 

various soil properties in the Finite Element Method (FEM) analysis. Since each (finite) 
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element (see Figure 6.1) has edge 0.1 length units (in this respect, meters), sampling is 

considered to take place every 0.1m (along the vertical direction). The minimum and 

maximum sampling domain length considered were 0.1m (rather referring to a single 

point) and 3.4m respectively. It is noted that for all cases examined in this section the 

optimal sampling distance was found again to be at 𝑥𝑥 𝐻𝐻⁄ =0. Thus, for space economy, 

the analysis below generally refers to the 𝑥𝑥 𝐻𝐻⁄ =0 case. 

6.2.3.1 Effect of spatial correlation length (𝜽𝜽) 

Example charts showing the variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑑𝑑 𝐻𝐻⁄  for various 𝜃𝜃 𝐻𝐻⁄  and 

𝑥𝑥 𝐻𝐻⁄  values are given in Figure 6.11, both for the case of sliding and rotation of wall; it 

is reminded that 𝐹𝐹𝐹𝐹 was set equal to 1.3 (recall Equation (6.3)). From this figure it is 

inferred that, the optimal horizontal sampling distance from the wall is again for 𝑥𝑥 𝐻𝐻⁄ =0, 

although for very small theta values the horizontal sampling distance makes no noticeably 

difference. However, as the theta increases the role of horizontal distance becomes more 

significant. Given now that, soil samples will be taken from 𝑥𝑥 𝐻𝐻⁄ =0, it is advisable, as it 

is inferred from Figure 6.11, that the entire domain length along the wall to be considered, 

especially for the rotational mode of failure. This practice may significantly reduce the 

statistical error. It is also interesting that, extending the sampling domain beyond the 

maximum depth of wall (i.e. 𝑑𝑑𝑑𝑑 𝐻𝐻⁄ >1), the statistical error remains constant. Finally, from 

Figure 6.11 it is inferred that, a “worst case theta” exists. This is more obvious in Figure 

6.12 showing the variation of 𝑝𝑝𝑓𝑓with  𝑑𝑑𝑑𝑑 𝐻𝐻⁄  for various 𝜃𝜃 𝐻𝐻⁄  values and 𝑥𝑥 𝐻𝐻⁄ =0. 
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Figure 6.11: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄   example relationships for different values of scaled correlation 
length 𝜽𝜽 𝑯𝑯⁄  and lateral distance from the wall face (𝒙𝒙 𝑯𝑯⁄ ). Figures (a), (c), and (e) refer to 
the case of sliding wall whilst figures (b), (d) and (f) to the case of overturning wall. 
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Figure 6.12: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄  example relationships for the case of (a) sliding and (b) 
overturning wall by considering different scaled 𝜽𝜽 𝑯𝑯⁄  values. 

6.2.3.2 Effect of wall roughness 

Generally, the wall roughness has a minor effect on the optimal sampling domain length, 

although, as expected (see Figure 6.13), it noticeably affects the failure probability. As 

shown in Figure 6.13, a great reduction in the statistical error can be achieved only in the 

case of smooth rotating wall, with the optimal sampling domain length being the entire 

wall height. Characteristically it is mentioned that, the minimum failure probability is 

obtained for 𝑑𝑑𝑑𝑑 𝐻𝐻⁄ =1 and that, this probability remains constant for greater 𝑑𝑑𝑑𝑑 𝐻𝐻⁄  values. 

 
Figure 6.13: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄  example curves for 𝜽𝜽 𝑯𝑯⁄ = 8.3 and 𝒙𝒙 𝑯𝑯⁄ = 𝟎𝟎 (rough and 
smooth wall) for the case of a) sliding and b) overturning wall. 
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6.2.3.3 Effect of wall height 

In this paragraph four wall heights were considered, i.e. 𝐻𝐻 =1.4, 1.9, 2.4, 2.9 m. Figure 

6.14 presents the variation of 𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑑𝑑 𝐻𝐻⁄  for these four cases. From this figure it is 

clear that the wall height has only minor influence on the sampling domain length (see 

also Section 3.1.3). 

 
Figure 6.14: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄  example curves for different wall heights 𝑯𝑯 and 𝜽𝜽 = 𝟐𝟐𝟐𝟐𝟐𝟐 for 
the case of a) sliding and b) overturning wall. 

6.2.3.4 Effect of COV of 𝝓𝝓′ and 𝜸𝜸 

In this paragraph, six 𝐶𝐶𝐶𝐶𝐶𝐶 values for 𝜙𝜙′ and 𝛾𝛾 were considered, i.e. 𝐶𝐶𝐶𝐶𝐶𝐶 =0.0, 0.1, 0.2, 

0.3, 0.4 and 0.5. The optimal horizontal sampling distance from the wall was found not 

to be affected by the 𝐶𝐶𝐶𝐶𝐶𝐶 of 𝜙𝜙′ or 𝛾𝛾, where again the 𝑥𝑥 𝐻𝐻⁄ =0 case leads to the smaller 

probabilities of failure. Thus, only the 𝑥𝑥 𝐻𝐻⁄ =0 case will be presented here. From Figure 

6.15 it is, generally, inferred that the 𝐶𝐶𝐶𝐶𝐶𝐶 of 𝜙𝜙′ and 𝛾𝛾 has no or minor effect on the 

optimal sampling length for the sliding and rotating case respectively.  
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Figure 6.15: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄  example relationships by considering different values of COV 
of 𝝓𝝓′(figures (a) and (b)) and γ (figures (c) and (d)); figures (a) and (c) refer to the case of 
sliding wall, whilst figures (b) and (d) refer to the case of overturning wall.  

6.2.3.5 Effect of the Factor of Safety (𝑭𝑭𝑭𝑭) 

The variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑑𝑑 𝐻𝐻⁄  for different 𝐹𝐹𝐹𝐹 values is shown in Figure 6.16; 

the optimal sampling distance was also found to be at 𝑥𝑥 𝐻𝐻⁄ =0 for any 𝐹𝐹𝐹𝐹 value, thus, 

only this case is presented here. From Figure 6.16 it is obvious that the failure probability 

decreases as 𝐹𝐹𝐹𝐹 increases, but what it is not trivial is that, the positive effect of targeted 

field investigation on 𝑝𝑝𝑓𝑓 (that is, decrease in 𝑝𝑝𝑓𝑓) is greater for greater 𝐹𝐹𝐹𝐹 values.  
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Figure 6.16: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄   example curves for different 𝑭𝑭𝑭𝑭 values for the case of a) sliding 
and b) overturning wall. 
6.2.3.6 Effect of soil anisotropy 

In this paragraph the retaining soil is considered to be highly anisotropic having 

𝜃𝜃ℎ 𝐻𝐻 =⁄ 20.8 and 𝜃𝜃𝑣𝑣 𝐻𝐻 =⁄ 2.08; for the isotropic case is stands that 𝜃𝜃ℎ 𝐻𝐻 =⁄ 𝜃𝜃𝑣𝑣 𝐻𝐻 =⁄ 𝜃𝜃 𝐻𝐻⁄ = 

2.08. The optimal horizontal sampling distance from the wall was found not to be affected 

by the anisotropy of soil, where again the 𝑥𝑥 𝐻𝐻⁄ =0 case leads to the smallest probabilities 

of failure; thus, only the 𝑥𝑥 𝐻𝐻⁄ =0 case is presented here. From Figure 6.17, it is generally 

inferred that the soil anisotropy has also no effect on the sampling domain length for 

sliding or rotating cases.  

 
Figure 6.17: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄    example curves for the case of (a) sliding and (b) overturning 
wall considering anisotropic soil (𝜽𝜽𝒉𝒉 𝑯𝑯 =⁄ 20.8 and 𝜽𝜽𝒗𝒗 𝑯𝑯 =⁄ 2.08) and isotropic soil 
(𝜽𝜽𝒉𝒉 𝑯𝑯 =⁄ 𝜽𝜽𝒗𝒗 𝑯𝑯 =⁄ 𝜽𝜽 𝑯𝑯⁄ = 2.08). 
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6.2.4 Discussion 

6.2.4.1 Optimal sampling locations 

One of the main outcomes derived from the present analysis is that the optimal horizontal 

sampling location in the active state of stress is at 𝑥𝑥 𝐻𝐻⁄ =0, that is, immediately adjacent 

to the wall face. This came as a surprise as someone would expect the optimal location to 

lie on or in the close vicinity of Rankine’s 45°+𝜙𝜙′ /2 failure plane passing through the 

lower point of the wall. Actually, based on author’ findings (see Section 3 of the current 

Chapter), this is the case for the passive state. Regarding Rankine’s earth pressure theory 

it is reminded that, there is not a single failure plane, but an infinite number of such planes, 

parallel to the one mentioned above encompassing all the other [171]. A common 

characteristic of these planes is that their lower point is in contact with the wall. In this 

respect, it seems that the optimal sampling location in the active case shows preference 

to this array of points. Regarding now the depth of the optimal sampling point, it was 

found that this lies at depth greater than the 2/3 or 1/2 of the wall height for the sliding 

and rotational mode of failure respectively; the exact depth depends on the spatial 

correlation length of the soil. For the optimal sampling domain length, it is advisable that 

the entire wall height be considered.  

6.2.4.2 The importance of targeted field investigation in practice 

The importance of targeted field investigation, where samples are taken from a priory 

known optimal locations, is highlighted here. A random material field referring to a 

specific RFEM realization (such as the one presented in Figure 6.1), it can be said that it 

convincingly represents a real field. For the three examples presented in this paragraph, 

the reference wall (and the finite element mesh) of Figure 6.1 will be used, whilst the 

material properties are given in Table 6.1. These materials differ from each other, in 

essence, in the spatial correlation length and only for the first material, in addition to the 

friction angle of soil, the unit weight is a random field. Besides, as it is inferred from the 

present research, the mean and 𝐶𝐶𝐶𝐶𝐶𝐶 values of 𝜙𝜙′ and 𝛾𝛾 have no effect on the optimal 

sampling location. The random field of 𝜙𝜙′ used in each example is shown in Figure 6.1, 

Figure 6.18 and Figure 6.19 respectively. It is reminded that the light areas correspond to 

lower friction angles and vice versa. The FS value is assumed unity (recall Equation (6.3)

); this factor is discussed in the next paragraph.  
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Table 6.1: Summary of the characteristics of the soils used in the three examples (wall height 
H= 2.4 m). 

Example 
Random 
field(s) 

Distribution 𝜇𝜇𝜙𝜙′ 𝜇𝜇𝛾𝛾 COV 𝜃𝜃 𝐻𝐻⁄  Figure (1) 

#1 𝜙𝜙′, 𝛾𝛾 Log-normal 30o 20 kN/m3 0.3 8.3 Figure 6.1 
#2 𝜙𝜙′ Log-normal 30o 20 kN/m3 0.3 4.2 Figure 6.18 
#3 𝜙𝜙′ Log-normal 30o 20 kN/m3 0.3 0.42 Figure 6.19 

(1) Figures shown the random fields of 𝜙𝜙′. 
 

 
Figure 6.18: Graphical representation of the random field of 𝝓𝝓′ of Example #2 (𝜽𝜽 𝑯𝑯⁄ =4.2; 
see Table 6.1). Light areas correspond to lower friction angles and vice versa. 

 
Figure 6.19: Graphical representation of the random field of 𝝓𝝓′ of Example #3 (𝜽𝜽 𝑯𝑯⁄ =0.42; 
see Table 6.1). Light areas correspond to lower friction angles and vice versa. 

The predicted resultant driving force (F) or moment (M) acting on the wall is compared 

against the respective “actual” ones. For each one of the examples presented herein, the 

latter derives from the respective random field of 𝜙𝜙′ using the RFEM method (in Example 

#1, in addition to 𝜙𝜙′, γ is also a random field). The predicted F and M values derive from 

a homogenous soil field characterized by the mean of the values sampled from the original 

(random) field. The results are presented in Figures 20-22 in Fpredicted/F”actual” or 

Mpredicted/M”actual” versus x/H form for various 𝑑𝑑𝑑𝑑/H values. The relative difference Rd is 
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also given in each chart (secondary vertical axis; a positive value indicates design on the 

safe side and vice versa; Rd is equal to Fpredicted/F”actual”-1 or Mpredicted/M”actual”-1 for the 

case of forces and moments respectively). 

If the suggestions related to the horizontal distance from the wall and the domain length 

(x/H=0 and dd/H=1 respectively) are valid, the Fpredicted/F”actual” and Mpredicted/M”actual” 

ratios for this specific sampling scenario should, logically, be equal to unity or very close 

to this value. The readers should bear in their mind that, a Fpredicted/F”actual” or 

Mpredicted/M”actual” value close to unity or equal to unity for a x/H value other than zero 

does not indicate that this x/H location is an optimal sampling location. As the soil 

retained by the wall is a spatially random field, a set of samples taken from points away 

from the wall face, may also give (coincidentally) mean value equal (or approximately 

equal) to the respective one obtained from a set of samples taken from the x/H=0 location.  

As shown in Figure 6.20 - Figure 6.22, the Fpredicted/F”actual” and Mpredicted/M”actual” ratio 

values for x/H=0 are very close to unity or equal to unity, indicating the validity of author’ 

suggestions. Indicatively, it is mentioned that the abrupt drop of the Fpredicted/F”actual” (or 

Mpredicted/M”actual”) versus x/H curves in Figure 6.20 between x/H=0.5 and 1.5 is attributed 

to the “dark” (strong) area appearing at this particular location, as shown in Figure 6.1. 

From Figure 6.20 - Figure 6.22 it is also confirmed that a vertical sampling domain of 

length equal to the wall height gives better prediction for the destabilizing forces acting 

on the wall. 

A comparison between the figures given in Section 2.1 with the respective ones given in 

Section 2.2 shows clearly that statistical uncertainty does not necessarily decrease with 

the increasing number of samples. Indeed, the opposite may easily happen. For example, 

comparing the pf ≈ 0.03 value for x/H = 0 shown in Figure 6.3f (single point case) with 

the pf ≈ 0.26 value for x/H = 2 (case of 24 sampling points) shown in Figure 11f, it is 

obvious that statistical uncertainty can only be minimized by targeted field investigation. 

Such examples can also be found in the present section; please compare the case of {x/H 

= 2, dd/H = 1} with the {x/H = 0, dd/H = 0.25} in Figure 21b giving Rd,M ≈ −0.42 and 

−0.12, respectively. 

 



82 

 

 
Figure 6.20: Example #1: Fpredicted/F”actual” and Mpredicted/M”actual” vs x/H curves for various dd/H 
values and for both the sliding and overturning failure case (see also Table 6.1 and Figure 
6.1). 

 
Figure 6.21: Example #2: Fpredicted/F”actual” and Mpredicted/M”actual” vs x/H curves for various dd/H 
values and for both the sliding and overturning failure case (see also Table 6.1 and Figure 
6.18). 

Figure 6.22: Example #3: Fpredicted/F”actual” and Mpredicted/M”actual” vs x/H curves for various dd/H 
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values and for both the sliding and overturning failure case (see also Table 6.1 and Figure 
6.19). 

6.2.4.3 Designing with Load and Resistance Factor Design (LRFD) codes 

The discussion on the design of earth retaining structures based on characteristic soil 

property values (please see equations (2.1) and (2.2) in the literature review of this Thesis) 

instead of the respective mean values is facilitated by the two example charts of Figure 

6.23. These charts refer to the case #3 presented in the previous paragraph (see also Table 

6.1). This specific case was chosen because of the relatively low θ value (i.e. θ/H=0.42), 

which indicates a rather highly spatially variable soil; thus, the use of the characteristic 

value makes more sense. Two cases are presented, the dd/H=1 and the dd/H=0.25. The 

figure in question refers to the sliding mode of failure, however, the respective curves for 

the overturning mode of failure do not differ appreciably. It is also mentioned that in the 

example presented here the partial material factor for the friction angle 𝛾𝛾𝛭𝛭= 𝛾𝛾𝜙𝜙was set 

equal to unity.  

From Figure 6.23 it is clear that the benefit from a targeted field investigation is much 

greater as compared to the benefit gained using characteristic values. Moreover, despite 

the conservatism which is inserted in the analysis using the characteristic value concept, 

the characteristic values alone, as shown, cannot guaranty a conservative enough 

engineering study. The safety level can be increased by applying a statistical uncertainty 

partial factor (similar to the model factor γR used by Eurocode 7) or a unified and more 

conservative model factor to the resistances, which will absorb the statistical uncertainties 

related to the soil. In this respect, a partial factor equal to 1.3 has also been applied 

(FS=1.3; recall Equation (6.3)) in the present example. As shown in Figure 6.23, the use 

of such a factor simply displaces upwards (that is to the safe side) the Fpredicted/F”actual” (or 

Mpredicted/M”actual”) versus x/H curves. The inclusion of the “characteristic value” in the 

REARTH2D code has been done by the authors. 
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Figure 6.23: Fpredicted/F”actual” vs. x/H curves using both mean and characteristic values 
(dashed and solid lines respectively) for FS = 1 and 1.3. Figure referring to the case of a 
sliding wall and to two sampling domain cases (dd/H = 1 (figure a) and to dd/H = 0.25 (figure 
b)). The reference wall was used. Soil characteristics as shown in Table 6.1 (Example #3). 

6.3 Passive state of stress 

6.3.1 Parametric study for determining the optimal sampling strategy 

For the determination of optimal sampling strategy in passive state of failure, the soil 

mass is discretized into a 60x34 mesh (number of elements at the horizontal and vertical 

direction respectively) consisting of eight-noded square elements with side length equal 

to 0.1m (Figure 6.24). As in the previous section, various wall heights are considered 

ranging from H=1.4 m to 2.9 m, while the mesh geometry has been kept the same for all 

cases. The reference wall (i.e. 24-element wall) will be generally considered in the 

analysis. The 60-element mesh in the horizontal direction was chosen so that the failure 

mechanism in the RFEM analysis not to be affected by the proximity of the right 

boundary. 
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Figure 6.24: Passive earth failure of the “reference” wall. Graphical representation of a 
random field of 𝝓𝝓′ (this is a typical random finite element method (RFEM) realisation); 
light areas correspond to lower friction angles and vice versa. For the soil shown, 𝜽𝜽 𝑯𝑯⁄ = 
8.3 and COV 𝝓𝝓′ = 0.3. 

Similarly to active state, the following parameters will be examined: the sampling depth 

(𝑑𝑑𝑝𝑝) and horizontal distance (𝑥𝑥) for the case of sampling from a single point, the sampling 

domain length (𝑑𝑑𝑑𝑑) and horizontal distance (𝑥𝑥) of the continuous probing test location 

for the case of sampling from a domain, the spatial correlation length of soil (𝜃𝜃), the wall 

roughness (perfectly smooth or perfectly rough wall), the wall height (𝐻𝐻), the coefficient 

of variation (𝐶𝐶𝐶𝐶𝐶𝐶) of 𝜙𝜙′, the mean value of 𝜙𝜙′, the safety factor value (𝐹𝐹𝐹𝐹) considered 

and the soil mass anisotropy (𝜃𝜃ℎ ≠ 𝜃𝜃𝑣𝑣). The number of realizations was set equal to 3000; 

this number, as discussed in Appendix III, can be considered adequate for the needs of 

the present research. The element size was chosen to be half of the smallest spatial 

correlation length considered in this study (see e.g. [182]).  

6.3.2 Sampling from a Single Point 

6.3.2.1 Effect of Spatial Correlation Length (𝜽𝜽) 

Example charts showing the variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑝𝑝 𝐻𝐻⁄  for various 𝜃𝜃 𝐻𝐻⁄  values 

are given in Figure 6.25. From this figure it is inferred that, the optimal sampling location 

for the passive case is 0.5H away from the wall both for the case of translating and rotating 

wall and for any 𝜃𝜃 value. Isolating the curves for 𝑥𝑥 𝐻𝐻⁄ =0.5 (see Figure 6.26) it seems 

that, there is a “worst case spatial correlation length” (see also [176]), where, the failure 

probability becomes maximum; for example, for the various 𝜃𝜃 𝐻𝐻⁄  ratios shown in Figure 
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6.26 (ranging from 𝜃𝜃 𝐻𝐻⁄ = 0.08 to 8.3), the 𝜃𝜃 𝐻𝐻⁄ = 0.42 case gives the higher 𝑝𝑝𝑓𝑓 values. 

From Figure 6.26 it is also inferred that, as 𝜃𝜃 tends to zero, the 𝑝𝑝𝑓𝑓 value tends to a single 

value for any depth (that is, 𝑝𝑝𝑓𝑓 is independent of the sampling depth). However, as 𝜃𝜃 

increases, the 𝑝𝑝𝑓𝑓 value becomes more dependent on the sampling depth. 

 
Figure 6.25: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example curves for various 𝜽𝜽 𝑯𝑯⁄   and 𝒙𝒙 𝑯𝑯⁄  values for the case 
of sliding (figure (a, c, e)) and overturning wall (figures (b, d, f)). 
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Figure 6.25: Continued. 

 
Figure 6.26: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example curves for various 𝜽𝜽 𝑯𝑯⁄   and 𝒙𝒙 𝑯𝑯 = 𝟎𝟎⁄  (smooth wall) 
for the case of (a) sliding and (b) overturning wall. 

6.3.2.2 Effect of Wall Roughness 

The effect of wall roughness on the location of the optimal sampling point is examined 

here. The optimal sampling distance was also found to be at 𝑥𝑥 𝐻𝐻⁄ =0.5, therefore, results 

are presented only for this case. From Figure 6.27 it is inferred that the wall roughness 

has no effect on the optimal sampling depth or on the optimal sampling location for the 

sliding and rotating case respectively. However, comparing Figure 6.26 with Figure 6.27 

(for perfectly smooth and perfectly rough wall respectively) it is inferred that, by choosing 

the proper sampling depth, smaller 𝑝𝑝𝑓𝑓 can be obtained when the wall is smooth. 
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Figure 6.27: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example curves for various 𝜽𝜽 𝑯𝑯⁄   and 𝒙𝒙 𝑯𝑯 = 𝟎𝟎⁄  (perfectly rough 
wall) for the case of (a) sliding and (b) overturning wall; please compare with Figure 6.26 
(perfectly smooth wall). 

6.3.2.3 Effect of Wall Height 

The variation of 𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑝𝑝 𝐻𝐻⁄  for various wall height values , i.e. 𝐻𝐻 =1.4, 1.9, 2.4, 2.9m, 

is shown in Figure 6.28. From this figure it is clear that, the wall height has a minor 

influence on the location of the optimal sampling point.  

 
Figure 6.28: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example curves for different wall heights, H, and 𝜽𝜽 =20 m for 
the case of (a) sliding and (b) overturning wall. 
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6.3.2.4 Effect of COV of 𝝓𝝓′ 

In this paragraph, five 𝐶𝐶𝐶𝐶𝐶𝐶values for 𝜙𝜙′ were considered, i.e. 𝐶𝐶𝐶𝐶𝐶𝐶 = 0.1, 0.2, 0.3, 0.4 

and 0.5. The optimal sampling distance from the wall was found not to be affected by the 

𝐶𝐶𝐶𝐶𝐶𝐶of 𝜙𝜙′, where again the 𝑥𝑥 𝐻𝐻⁄ = 0.5 case leads to the smaller statistical error. Thus, 

only the 𝑥𝑥 𝐻𝐻⁄ = 0.5 case will be presented here. From Figure 6.29 it is, generally, inferred 

that the 𝐶𝐶𝐶𝐶𝐶𝐶 of 𝜙𝜙′ has no effect on the optimal sampling depth both for the sliding and 

rotating cases. 

6.3.2.5 Effect of 𝝁𝝁𝝓𝝓′ value 

The influence of 𝜇𝜇𝜙𝜙′ on the optimal sampling location is examined here. In this respect, 

three 𝜇𝜇𝜙𝜙′ values were considered, i.e. 𝜇𝜇𝜙𝜙′ = 20, 30 and 40°. The 𝐶𝐶𝐶𝐶𝐶𝐶of 𝜙𝜙′ was set equal 

to 0.3, while the 𝐶𝐶𝐶𝐶𝐶𝐶of 𝛾𝛾 was set to zero. The authors found that, the optimal sampling 

distance was again at 𝑥𝑥 𝐻𝐻⁄ = 0.5 for any 𝜇𝜇𝜙𝜙′ value. In addition, from Figure 6.30 it is 

inferred that the 𝜇𝜇𝜙𝜙′ of soil has no effect on the optimal sampling depth both in the case 

of translating and rotating wall.  

6.3.2.6 Effect of the Factor of Safety (𝑭𝑭𝑭𝑭) 

The variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑝𝑝 𝐻𝐻⁄  for different 𝐹𝐹𝐹𝐹 values is shown in Figure 6.31; 

the optimal sampling distance from the wall face was also found to be at 𝑥𝑥 𝐻𝐻⁄ = 0.5 for 

any 𝐹𝐹𝐹𝐹 value. Thus, only the 𝑥𝑥 𝐻𝐻⁄ = 0.5 case is presented here. From Figure 6.31, it is 

obvious that the failure probability decreases as 𝐹𝐹𝐹𝐹 increases, but what is not trivial is 

that the positive effect of targeted field investigation on the reduction of the statistical 

error is greater for greater 𝐹𝐹𝐹𝐹 values. For example, considering the case of the translating 

wall, as shown in Figure 6.31a, the 𝑝𝑝𝑓𝑓 value when 𝐹𝐹𝐹𝐹 = 1.05 is approximately 0.47 and 

independent of the 𝑑𝑑𝑝𝑝 𝐻𝐻⁄  ratio. For the same soil–wall system, if 𝐹𝐹𝐹𝐹 = 1.45, 𝑝𝑝𝑓𝑓 ranges 

from 0.14 for 𝑑𝑑𝑝𝑝 𝐻𝐻⁄ = 0 (and 1.4) to 0.03 for 𝑑𝑑𝑝𝑝 𝐻𝐻⁄ ≈ 0.8. 
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Figure 6.29: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example relationships considering different values of COV of 
𝝓𝝓′ for the case of (a) sliding and (b) overturning wall. 

 
Figure 6.30: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example relationships for (a) sliding and (b) overturning wall 
considering different 𝝁𝝁𝝓𝝓′  values. 

 

 



91 

 

 
Figure 6.31: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄  example curves for different 𝑭𝑭𝑭𝑭 values for the case of (a) sliding 
and (b) overturning wall. 

6.3.2.7 Effect of Soil Anisotropy 

The effect of soil anisotropy on the optimal sampling location will be investigated here 

by comparing the 𝜃𝜃ℎ = 𝜃𝜃𝑣𝑣 case with the 𝜃𝜃ℎ = 10𝜃𝜃𝑣𝑣 case (see also 2.1.1.7). The reference 

wall-soil system with 𝜃𝜃𝑣𝑣 𝐻𝐻 =⁄ 𝜃𝜃ℎ 𝐻𝐻⁄ =2.08 will be compared with a respective one 

having 𝜃𝜃𝑣𝑣 𝐻𝐻 = 2.08⁄  and 𝜃𝜃ℎ 𝐻𝐻 = 20.8⁄ . The variation of  𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑝𝑝 𝐻𝐻⁄  for various 𝑥𝑥 𝐻𝐻⁄  

values is shown in Figure 6.32. From this figure it is inferred that, the horizontal distance 

plays, generally, no role in the statistical uncertainty, especially when 𝑥𝑥 is smaller than 

𝐻𝐻. Regarding the optimal sampling location, the soil anisotropy seems to have no effect 

on the optimal sampling depth both in the case of translating and rotating wall. However, 

for the anisotropic case smaller 𝑝𝑝𝑓𝑓 are obtained.  
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Figure 6.32: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑯𝑯⁄   example curves for various 𝒙𝒙 𝑯𝑯⁄  values for (a) sliding and (b) 
overturning wall considering anisotropic soil (to be compared with Figure c and Figure d 
respectively). 

6.3.3 Sampling from a Domain 

The minimum and maximum sampling domain length considered were 0.1m (rather 

referring to a single point) and 3.4m respectively. It is noted that, for all cases examined 

in this section the optimal sampling distance was found again to be at 𝑥𝑥 𝐻𝐻⁄ = 0.5. Thus, 

the analysis below, generally, refers to the 𝑥𝑥 𝐻𝐻⁄ = 0.5 case. 

6.3.3.1 Effect of Spatial Correlation Length (𝜽𝜽) 

From the 𝑝𝑝𝑓𝑓 versus 𝑑𝑑𝑑𝑑 𝐻𝐻⁄  charts of Figure 6.33 it is clear that the optimal horizontal 

sampling distance from the wall is again for 𝑥𝑥 𝐻𝐻⁄ =0.5. Indeed, when the spatial 

correlation length is very small, a different sampling distance seems not to affect greatly 

the statistical error. On the contrary, as theta increases the role of horizontal distance 

becomes more and more significant. In the figure in question, 𝑥𝑥 𝐻𝐻⁄  values ranging from 

0 to 2 were considered, whilst 𝐹𝐹𝐹𝐹 was set equal to 1.25 (recall Equation (6.2)). In addition, 

it is advisable that the entire domain length for 𝑥𝑥 𝐻𝐻⁄ =0.5 to be considered for minimizing 

the statistical error. Indeed, this practice may significantly reduce the statistical error. It 

is also interesting that, extending the sampling domain beyond the maximum depth of 

wall (i.e. 𝑑𝑑𝑑𝑑 𝐻𝐻⁄ >1), the statistical error remains constant. Finally, from Figure 6.33 it is 

inferred that, a “worst case theta” exists. This is more obvious in Figure 6.34 showing the 

variation of 𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑑𝑑 𝐻𝐻⁄  for various 𝜃𝜃 𝐻𝐻⁄  values and 𝑥𝑥 𝐻𝐻⁄ =0.5. 
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Figure 6.33: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄  example relationships for different values of scaled correlation 

length (𝜽𝜽 𝑯𝑯)⁄  and lateral distance from the wall face (𝒙𝒙 𝑯𝑯⁄ ). Figure (a, c, e) shows the

variation for the case of sliding and (b, d, f) to the case of overturning wall. 

 
. 

 

fp
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Figure 6.34: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄  example relationships for the case of (a) sliding and (b) 
overturning wall by considering different scaled 𝜽𝜽 𝑯𝑯⁄  values. 

6.3.3.2 Effect of Wall Roughness 

Generally, the wall roughness has minor effect on the optimal sampling domain length, 

although, as expected (see Figure 6.35), it noticeably affects the failure probability. As 

shown in Figure 6.35, smaller 𝑝𝑝𝑓𝑓 can be obtained when the wall is smooth, with the 

optimal sampling domain length being the entire wall height. Characteristically it is 

mentioned that, the minimum failure probability is obtained for 𝑑𝑑𝑑𝑑 𝐻𝐻⁄ =1 and that, this 

probability remains constant for greater 𝑑𝑑𝑑𝑑 𝐻𝐻⁄  values. 

6.3.3.3 Effect of Wall Height 

In this paragraph four wall heights were considered, i.e. 𝐻𝐻 =1.4, 1.9, 2.4, 2.9m. Figure 

6.36 presents the variation of 𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑑𝑑 𝐻𝐻⁄  for these four cases. From this figure it is 

clear that the wall height largely affects the statistical error with the higher walls requiring 

greater sampling domain length, especially in the case of sliding wall. For sliding walls, 

it is advisable that the whole domain length be taken into account, whilst for rotating 

walls at least the half wall height. 
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Figure 6.35: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄  example curves for 𝜽𝜽 𝑯𝑯⁄ = 8.3 and 𝒙𝒙 𝑯𝑯⁄ = 𝟎𝟎 (rough and 
smooth wall) for the case of (a) sliding and (b) overturning wall. 

 
Figure 6.36: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄  example curves for different wall heights 𝑯𝑯 and 𝜽𝜽 = 𝟐𝟐𝟐𝟐𝟐𝟐 for 
the case of (a) sliding and (b) overturning wall. 

6.3.3.4 Effect of COV of 𝝓𝝓′ 

In this paragraph, five 𝐶𝐶𝐶𝐶𝐶𝐶values for 𝜙𝜙′ were considered, i.e. 𝐶𝐶𝑂𝑂𝑂𝑂 = 0.1, 0.2, 0.3, 0.4 

and 0.5. The optimal horizontal sampling distance from the wall was found not to be 

affected by the 𝐶𝐶𝐶𝐶𝐶𝐶 of 𝜙𝜙′, where again the 𝑥𝑥 𝐻𝐻⁄ = 0.5 case leads to the smaller 

probabilities of failure. Thus, only the 𝑥𝑥 𝐻𝐻⁄ = 0.5 case will be presented here. From 

Figure 6.37 it is, generally, inferred that the 𝐶𝐶𝐶𝐶𝐶𝐶 of 𝜙𝜙′ has minor effect on the sampling 

domain length for both the case of sliding or rotating wall.  
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Figure 6.37: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄  example relationships considering different values of COV of 
𝝓𝝓′. Figure (a) refers to the case of sliding wall, whilst figure (b) to the case of overturning 
wall. 

6.3.3.5 Effect of the Factor of Safety (𝑭𝑭𝑭𝑭) 

The variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑑𝑑 𝐻𝐻⁄  for different 𝐹𝐹𝐹𝐹 values is shown in Figure 6.38; 

the optimal sampling distance was also found to be at 𝑥𝑥 𝐻𝐻⁄ = 0.5 for any 𝐹𝐹𝐹𝐹 value, thus, 

only this case is presented here. From Figure 6.38 it is obvious that the failure probability 

decreases as 𝐹𝐹𝐹𝐹 increases. However, the 𝐹𝐹𝐹𝐹 has no effect on the optimal sampling 

domain. 

 
Figure 6.38: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄  example curves for different 𝑭𝑭𝑭𝑭 values for the case of (a) sliding 
and (b) overturning wall. 
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6.3.3.6 Effect of Soil Anisotropy 

In this paragraph the retaining soil is considered to be anisotropic having 𝜃𝜃ℎ 𝐻𝐻 =⁄ 20.8 

and 𝜃𝜃𝑣𝑣 𝐻𝐻 =⁄ 2.08; for the isotropic case is stands that 𝜃𝜃ℎ 𝐻𝐻 =⁄ 𝜃𝜃𝑣𝑣 𝐻𝐻 =⁄  𝜃𝜃 𝐻𝐻⁄ = 2.08. As it 

is inferred from Figure 6.39, the soil anisotropy has minor effect both on the failure 

probability and the optimal sampling domain length. For both cases (translating and 

rotating wall) the statistical error remains relatively constant for horizontal sampling 

distances less than the wall height. By taking samples in distance greater than that, the 

statistical error increases slightly. 

 
Figure 6.39: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑯𝑯⁄  example curves for the case of (a) sliding and (b) overturning 
wall considering anisotropic soil (𝜽𝜽𝒉𝒉 𝑯𝑯 =⁄ 20.8 and 𝜽𝜽𝒗𝒗 𝑯𝑯 =⁄ 2.08) and isotropic soil 
(𝜽𝜽𝒉𝒉 𝑯𝑯 =⁄ 𝜽𝜽𝒗𝒗 𝑯𝑯 =⁄  𝜽𝜽 𝑯𝑯⁄ = 2.08).  

 

6.3.4 Discussion 

6.3.4.1 Optimal sampling locations 

One of the main outcomes derived from the present analysis is that, the optimal horizontal 

sampling distance in the passive state of stress was found to be at 𝑥𝑥 𝐻𝐻⁄ =0.5. Regarding 

the depth of the optimal sampling point, it was found that this lies at depth greater than 

the 2/3 or 1/2 of the wall height for the sliding and rotational mode of failure respectively; 

the exact depth depends on the spatial correlation length of the soil. This location lies on 

or in the close vicinity of Rankine’s 45°-𝜙𝜙′ /2 failure plane passing through the lower 

point of the wall. For the optimal sampling domain length, it is advisable that the entire 

wall height be considered. 
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6.3.4.2 The Importance of Targeted Field Investigation in Practice 

The importance of targeted field investigation, where samples are taken from a priory 

known optimal locations, is highlighted here. For the three examples presented in this 

paragraph, the reference wall (and the finite element mesh) of Figure 6.24 will be used, 

whilst the material properties are given in Table 6.2. These materials differ from each 

other, in essence, in the spatial correlation length and only for the first material, in addition 

to the friction angle of soil, the unit weight is random field. Besides, as stated earlier, the 

mean and 𝐶𝐶𝐶𝐶𝐶𝐶 values of 𝜙𝜙′ have no effect on the optimal sampling location. The random 

field of 𝜙𝜙′ used in each example is shown in Figure 6.24, Figure 6.40 and Figure 6.41 

respectively. The FS value is assumed unity (recall Equation (6.4)); this factor is 

discussed in the next paragraph.  
Table 6.2: Summary of the characteristics of the soils used in the three examples (wall height 
H= 2.4 m). 

Example 
Random 
field(s) 

Distribution 𝜇𝜇𝜙𝜙′ 𝜇𝜇𝛾𝛾 COV 𝜃𝜃 𝐻𝐻⁄  Figure (1) 

#1 𝜙𝜙′, 𝛾𝛾 Log-normal 30o 20 kN/m3 0.3 8.3 Figure 6.24 
#2 𝜙𝜙′ Log-normal 30o 20 kN/m3 0.3 4.2 Figure 6.40 
#3 𝜙𝜙′ Log-normal 30o 20 kN/m3 0.3 0.42 Figure 6.41 

(1) Figures shown the random fields of 𝜙𝜙′. 

 
Figure 6.40: Graphical representation of the random field of 𝝓𝝓′ of Example #2 (𝜽𝜽 𝑯𝑯⁄ = 4.2; 
see Table 6.2). Light areas correspond to lower friction angles and vice versa. 
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Figure 6.41: Graphical representation of the random field of  𝝓𝝓′ of Example #3 (𝜽𝜽 𝑯𝑯⁄ = 0.42; 
see Table 6.2). Light areas correspond to lower friction angles and vice versa. 

As on the active state analysis, the predicted resultant driving force (F) or moment (M) 

acting on the wall is compared against the respective “actual” ones. The predicted F and 

M values derive from a homogenous soil field characterized by the mean of the values 

sampled from the original (random) field. The results are presented in Figures 20-22 in 

Fpredicted/F”actual” or Mpredicted/M”actual” versus x/H form for various 𝑑𝑑𝑑𝑑/H values; the relative 

difference Rd defined as Fpredicted/F”actual”-1 and Mpredicted/M”actual”-1 for the forces and 

moments respectively is also given in each chart (secondary vertical axis; a negative value 

indicate design on the safe side and vice versa).  

If the suggestions related to the horizontal distance from the wall and the domain length 

(x/H=0.5 and dd/H=1 respectively) are valid, the Fpredicted/F”actual” and Mpredicted/M”actual” 

ratios for this specific sampling scenario should, logically, be equal to unity or very close 

to this value.  

As shown in Figures 20-22, the Fpredicted/F”actual” and Mpredicted/M”actual” ratio values for 

x/H=0.5 are very close to unity or equal to unity, indicating the validity of author’ 

suggestions. Indicatively it is mentioned that the abrupt increase of the Fpredicted/F”actual” 

(or Mpredicted/M”actual”) versus x/H curves in Figure 6.42 between x/H=1 and 2 is attributed 

to the “dark” (strong) area appearing at this particular location, as shown in Figure 6.24. 

From Figure 6.42- Figure 6.44 it is also confirmed that a vertical sampling domain of 

length equal to the wall height gives better prediction for the destabilizing forces acting 

on the wall. 
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Comparison between the figures given in Section 3.1 with the respective ones given in 

Section 3.2, shows clearly that statistical uncertainty does not necessarily decreases with 

increasing number of samples. Indeed, the opposite may easily happen. For example, 

comparing the 𝑝𝑝𝑓𝑓 ≈0.015 value for x/H=0.5 shown in Figure 6.25e (single point 

case;𝑑𝑑𝑝𝑝 𝐻𝐻⁄ = 0.7) with the 𝑝𝑝𝑓𝑓 ≈0.17 value for x/H=2 (case of 24 sampling points; 

𝑑𝑑𝑑𝑑 𝐻𝐻⁄ =1) shown in Figure 6.33e, it is obvious that statistical uncertainty can only be 

minimized by targeted field investigation. Such examples can also be found in the present 

section; please compare the case of {x/H =2.5, dd/H=1} with the {x/H =0.5, dd/H =0.25} 

in Figure 6.44b giving Rd,M≈ -0.52 and -0.04 respectively. 

 
Figure 6.42: Example #1: Fpredicted/F”actual” and Mpredicted/M”actual” vs x/H curves for various dd/H 
values and for both the sliding and overturning failure case (see also Table 6.2 and Figure 
6.24). 

 
Figure 6.43: Example #2: Fpredicted/F”actual” and Mpredicted/M”actual” vs x/H curves for various dd/H 
values and for both the sliding and overturning failure case (see also Table 6.2 and Figure 
6.40). 
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Figure 6.44: Example #3: Fpredicted/F”actual” and Mpredicted/M”actual” vs x/H curves for various dd/H 
values and for both the sliding and overturning failure case (see also Table 6.2 and Figure 
6.41). 

6.3.4.3 Designing with Load and Resistance Factor Design (LRFD) Codes 

The discussion on the design of earth retaining structures based on characteristic soil 

property values instead of the respective mean values is facilitated by the two example 

charts of Figure 6.45 (see also discussion of Chapter 3 and the relevant equations (2.1) 

and (2.2)). These charts refer to the case #3 presented in the previous paragraph (see also 

Table 6.2). Two cases are presented, the dd/H=1 and the dd/H=0.25. The figure in question 

refers to the sliding mode of failure, however, the respective curves for the overturning 

mode of failure do not differ appreciably. It is also mentioned that, in the example 

presented here, the partial material factor for the friction angle 𝛾𝛾𝛭𝛭=𝛾𝛾𝜙𝜙 was set equal to 

unity.  

From Figure 6.45 it is clear that, the benefit from a targeted field investigation is much 

greater as compared to the benefit gained using characteristic values. The same 

conclusion as on the active state of failure can be drawn, i.e. the safety level can be 

increased by applying a statistical uncertainty partial factor (similar to the model factor 

γR used by Eurocode 7) or a unified and more conservative model factor to the resistances, 

which will absorb the statistical uncertainties related to the soil. In this respect, a partial 

factor equal to 1.25 has also been applied (FS=1.25; recall Equation (6.4)) in the present 

example. As shown in Figure 6.45, the use of such a factor simply displaces downwards 

(that is, to the safe side) the Fpredicted/F”actual” (or Mpredicted/M”actual”) versus x/H curves.  
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Figure 6.45: Fpredicted/F”actual” vs. x/H curves using both mean and characteristic values 
(dashed and solid lines respectively) for FS=1 and 1.25. Figure referring to the case of a 
sliding wall and to two sampling domain cases (dd/H = 1 (figure a) and to dd/H = 0.25 (figure 
b)). The reference wall was used. Soil characteristics as shown in Table 6.2 (Example #3). 

6.4 Conclusions 

The present research clearly shows that statistical uncertainty inserted in to analysis of 

retaining structures, related to soil properties, may be significant and that it can only be 

minimized by performing targeted field investigation; the latter is defined by the number 

and location of sampling points. Two main sampling strategies were investigated, namely, 

sampling from a single point and sampling from a domain, through an extensive 

parametric analysis.  

One of the main findings of the present Chapter is that the optimal horizontal sampling 

location in the active state is at x H =0 -that is, immediately adjacent to the wall face, 

while the optimal horizontal sampling location in the passive state is half wall height 

away from the wall face. Regarding the depth of the optimal sampling point, for both 

states it was found that this lies at depth greater than the 2/3 or 1/2 of the wall height for 

the sliding and rotational mode of failure respectively; the exact depth depends on the 

spatial correlation length of the soil. For the optimal sampling domain length, it is 

advisable that the entire wall height be considered.  

In addition, it was observed that, the benefit from a targeted field investigation is much 

greater as compared to the benefit gained using characteristic soil property values. 

Moreover, despite the conservatism which is inserted in the analysis using the 
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characteristic value concept, the characteristic values alone, as shown, cannot guaranty a 

conservative enough engineering study. The safety level can be increased by applying a 

statistical uncertainty partial factor (similar to the model factor γR used by Eurocode 7) or 

a unified and more conservative model factor to the resistances, which will absorb the 

statistical uncertainties related to the soil. 
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7 Reducing statistical uncertainty in elastic settlement and bearing 

capacity analysis of shallow foundations relying on targeted field 

investigation 

The present chapter deals with the practical problem of reducing statistical uncertainty in 

elastic settlement and bearing capacity analysis of shallow foundations relying on targeted 

field investigation aiming at an optimal design. This is done in an advance probabilistic 

framework using the Random Finite Element Method (RFEM) [61] properly considering 

sampling of soil properties. In this respect, the open source RSETL2D and RBEAR2D 

programs, has been modified as to include the function of sampling of soil property values 

from the generated random fields and return the failure probability of footing against 

excessive settlement and bearing capacity respectively. Two sampling strategies are 

examined: a) sampling from a single point and b) sampling a domain. The present analysis 

will show that the statistical error in an elastic settlement and bearing capacity analysis 

can be effectively minimized only when targeted field investigation is carried out. 

7.1 Elastic settlement analysis 

7.1.1 Two-dimensional probabilistic elastic settlement analysis based on RFEM 

As mentioned, the present analysis was based on the open source RSETL2D program. 

The program involves generation and mapping of the elastic modulus of soil (E; which is 

treated as random field) onto a finite element mesh using the Local Average Subdivision 

method. The RSETL2D program calculates the settlement induced by a single strip 

footing (or a pair of strip footings) founded on a soil having spatially random E; the 

RSETL2D program can return the settlement induced at any finite element node, 

however, in the parametric analysis that follows, the settlement is calculated at the centre 

of the footing. The procedure is repeated 𝑚𝑚 times; 𝑚𝑚 is the number of realizations, where, 

each RFEM realization refers to a new random field of E. 

The footing(s) is (are) assumed to be founded on a soil layer underlain by bedrock. The 

physical problem is represented using a two-dimensional (plane-strain) model as shown 

in Figure 7.1. The soil mass is discretized into 4-noded quadrilateral elements. The nodes 

along the left and right boundary of the finite-element model are constrained against 
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horizontal displacement but are free to slide vertically, while the nodes on the horizontal 

boundary are fixed. The footing(s) is (are) assumed to be rough and rigid, undergoing no 

rotation. A unit force P (per unit length in the out-of-plane direction) is applied to each 

footing — since elastic settlement is directly proportional to P.  

For the needs of the present research, the original RSETL2D program has been extended 

by the author as to:  

• virtually sample elastic modulus values from the random field generated in each 

RFEM realization,  

• calculate the footing settlement (again in each RFEM realization) considering that 

the soil is homogenous, having E equal to the mean of the values sampled (this 

settlement is calculated in addition to the settlement of footing lying on spatially 

random soil) and 

• estimate the failure probability of the footing. 

The latter is defined by the fraction of the realizations resulted in failure over the total 

number of realizations. In each RFEM realization, “failure” is considered to have 

occurred when the “actual” settlement value, referring to the spatially random soil, is 

greater than the respective predicted value, referring to the spatially uniform soil. That is, 

it stands that 

  "actual"f predictedp P ρ ρ = >   (7.1) 

where, the symbol 𝜌𝜌 denotes footing settlement.  

The modified program was validated as follows. First a given footing was solved using 

in the original RSETL2D program a deterministic soil modulus value. Then the same 

footing was solved with the modified program using values sampled from various points 

(because the same deterministic soil modulus value was spread out in the finite element 

mess, all E values sampled were the same). The two programs gave exactly the same 

results, indicating that the sampling function was correctly embedded into the original 

program.  
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Figure 7.1: Typical deformed mesh considering 𝜽𝜽/𝜝𝜝 = 10. Figure showing the 20-element 
footing on the surface of the 88 x 40 (H x V) mesh. The darker elements indicate stiffer soil 
(greater E value). 

 

Figure 7.2: Stress regime in the vicinity under the footing. Contours of major principal 
stress (σ1) obtained from the elastic analysis performed using the Rocscience software RS2 
[183]. Figure referring to homogenous material field.         

7.1.2 Parametric study for determining the optimal sampling strategy 

This Chapter deals with the case of a single strip footing. Both the sampling from a single 

point and the sampling from an entire domain strategies are investigated through an 

extensive parametric analysis of the factors controlling the magnitude of settlement for 
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defining the optimal sampling  strategy that minimizes the probability of failure and thus 

the statistical error. The error is quantified comparing the probability of failure value 

obtained based on different sampling scenarios.  

In the finite analysis that follows, the soil mass is discretized into a 88 (horizontal 

direction) by 40 (vertical direction) mesh, consisting of four-noded square elements 

having edge 0.05m. The strip footing occupies width on the surface of the finite element 

mesh equal to 20 elements (i.e. B=20 x 0.05m=1 m, called hereafter “reference footing”; 

other footing widths will also be considered in a later sections). A typical deformed mesh 

is shown in Figure 7.1. The effect of the distance between the edge of the footing and the 

respective lateral boundary was investigated prior to the analysis. As shown in Appendix 

IV, the error inserted considering a 20-element footing centered on the surface of a 88-

element mesh is negligible; that makes a free distance between each edge of footing and 

the respective lateral boundary equal to 1.7B. The same distance of 1.7B was kept the 

same for the other footing widths considered (i.e. B=1, 2 and 3m); however, the element 

size for the B= 2 and 3m footings was 0.1 m and 0.15 m respectively. 

In the present Section, only E is treated as random field. According to Fenton and Griffiths 

[61], the Poisson’s ratio, ν, have a smaller relative spatial variability and only a second-

order importance to settlement statistics. Generally, when not mentioned herein, ν=0.25, 

whilst 𝜇𝜇𝐸𝐸 = 1Pa (E is assumed that follows a log-normal distribution). Moreover, it is 

mentioned that the footing is subjected to a centrally applied vertical force of 𝑃𝑃 =1 N/m 

(unit force per unit length in the out-of-plane direction). A Markovian spatial correlation 

function has been adopted (see Equation (5.2)).  

Aiming at finding the optimal sampling strategy, the following parameters will be 

examined: the sampling depth (𝑑𝑑𝑝𝑝) and horizontal distance for the case of sampling from 

a single point (measured from the soil surface and the axis of strip footing respectively), 

the sampling length (𝑑𝑑𝑑𝑑) and horizontal distance of the continuous probing test location 

for the case of sampling an entire domain (measured as in the previous case), the spatial 

correlation length of soil (𝜃𝜃), the footing width (𝐵𝐵), the coefficient of variation (COV) 

of 𝐸𝐸 of soil, the effect of the Poisson’s ratio (ν) value of soil and the anisotropy of soil 

mass (𝜃𝜃ℎ ≠ 𝜃𝜃𝑣𝑣).  Four sampling scenarios are indicatively shown in Figure 7.3 (scenarios 

A and B refer to a single sampling point, whilst scenarios C and D to continuous probing 

tests).  
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The optimal sampling point or domain will be identified by comparing the failure 

probability values (𝑝𝑝𝑓𝑓) derived from various sampling strategies. The number of 

realizations was set equal to 10,000; this number, as shown in Appendix IV, can be 

considered adequate for the needs of the present analysis. 

 

 
 

Figure 7.3: Graphical representation of single sampling point (𝒅𝒅𝒑𝒑; Scenario A and B) and 
sampling domain length (𝒅𝒅𝒅𝒅; Scenario C and D) sampling strategies. 

7.1.3 Sampling from a single point 

7.1.3.1 Effect of spatial correlation length (𝜽𝜽) 

Example charts showing the variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑝𝑝 𝐵𝐵⁄  for various 𝜃𝜃 𝐵𝐵⁄  values 

are given in Figure 7.4. The soil mass is considered isotropic. From the figure in question 

it is inferred that the optimal sampling location lies at the center of strip foundation 

(𝑥𝑥 𝐵𝐵⁄ = 0) and at depth approximately 0.7B. It is also observed that, as 𝜃𝜃 𝐵𝐵⁄  tends to zero, 

the 𝑝𝑝𝑓𝑓 value tends to a single value, that is, 𝑝𝑝𝑓𝑓 becomes independent of the sampling 

depth. The effect of soil anisotropy (for more details about soil anisotropy please see 

Chapter 4 , Section 2.1.1.7) on the optimal sampling location is investigated herein by 

comparing the 𝜃𝜃ℎ = 𝜃𝜃𝑣𝑣 case with the 𝜃𝜃ℎ = 10𝜃𝜃𝑣𝑣 case, i.e. the reference footing-soil 

system with 𝜃𝜃𝑣𝑣 𝐵𝐵 =⁄ 𝜃𝜃ℎ 𝐵𝐵⁄ =5 will be compared with a respective one having 𝜃𝜃𝑣𝑣 𝐵𝐵 = 5⁄  

and 𝜃𝜃ℎ 𝐵𝐵 = 50⁄ . In this respect, the optimal sampling location was found not to be 

affected by soil anisotropy (see heavy bold line in Figure 7.4c).  
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Figure 7.4: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example curves for various 𝜽𝜽 𝑩𝑩⁄  and 𝒙𝒙 𝑩𝑩⁄  values. The thick 
continuous line in Figure c is for the anisotropic case and refers to the 𝒙𝒙 𝑩𝑩⁄ =0 case. 

 

 



110 

 

7.1.3.2 Effect of footing width (B) 

The variation of 𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑝𝑝 𝐵𝐵⁄  is shown in Figure 7.5 for three footing widths, i.e. 𝐵𝐵 =1, 

2 and 3 m. The analysis showed that, the optimal sampling depth is not affected by the 

footing width, whilst again the 𝑥𝑥 𝐵𝐵⁄ =0 case leads to the smaller statistical error. The 

three curves in Figure 7.5 refer to 𝑥𝑥 𝐵𝐵⁄ =0. 

 

Figure 7.5: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example curves for different footing widths B and 𝜽𝜽 𝑩𝑩 = 𝟏𝟏𝟏𝟏⁄  . 

7.1.3.3 Effect of COV of the elastic constants of soil 

In this paragraph five COV values of soil modulus, 𝐸𝐸, were considered, namely 𝐶𝐶𝐶𝐶𝐶𝐶 = 

0.1, 0.2, 0.3, 0.4 and 0.5. The analysis showed that the optimal sampling depth is not 

affected by the COV of E, where again the smaller statistical error is found for 𝑥𝑥 𝐵𝐵⁄ =0. 

The five curves in Figure 7.6 refer to 𝑥𝑥 𝐵𝐵⁄ =0. 

7.1.3.4 Effect of the elastic constant values of soil 

For all cases considered above, the Poisson’s ratio of soil was equal to 0.25. Parametric 

study on the effect of the ν on the optimal sampling location, however, showed that the 

latter is not affected by the parameter in question. The following ν values were 

considered, i.e. ν= 0, 0.1, 0.25, 0.4 and 0.495. The five curves shown in Figure 7.7 refer 

to 𝑥𝑥 𝐵𝐵⁄ =0. Similarly to the Poisson’s ratio value, the optimal sampling location is not 

affected by the mean value of the elastic modulus of soil.   
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Figure 7.6: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example relationships by considering different values of COV 
of E. 

 

Figure 7.7: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example curves for different v values and 𝜽𝜽 𝑩𝑩 = 𝟏𝟏𝟏𝟏⁄ . 

 

7.1.4 Sampling from an entire domain 

In the parametric analysis carried out, three footing widths were considered, i.e. B=1, 2 

and 3 m, whilst the distance between two successive sampling points (in the vertical 

direction) was B/20 for all cases. The maximum sampling domain length considered was 

always two times the footing width B. The arithmetic mean of the soil elastic modulus 

values sampled was used in the analysis. It is noted that, for all cases examined, the 

optimal sampling distance was found again to be at 𝑥𝑥 𝐵𝐵⁄ =0. Thus, the analysis below 

generally refers to 𝑥𝑥 𝐵𝐵⁄ =0. 
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7.1.4.1 Effect of spatial correlation length (𝜽𝜽) 

Example charts showing the variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑑𝑑 𝐵𝐵⁄  for various 𝜃𝜃 𝐵𝐵⁄  and 

𝑥𝑥 𝐵𝐵⁄  values are given in Figure 7.8. From this figure it is inferred that the optimal 

horizontal sampling distance from the footing center for every 𝜃𝜃 𝐵𝐵⁄  value is again for 

𝑥𝑥 𝐵𝐵⁄ =0. It is also observed that the required domain length is smaller for greater θ values 

of soil. Given now that, soil samples will be taken from 𝑥𝑥 𝐵𝐵⁄ =0, it is advisable a domain 

length at least 2B to be considered. This practice may significantly reduce the statistical 

error. The variation of 𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑑𝑑 𝐵𝐵⁄  for the case of anisotropic soil mass (𝜃𝜃𝑣𝑣 𝐵𝐵 = 5 ⁄ and 

𝜃𝜃ℎ 𝐵𝐵 = 50⁄ ) is shown in Figure 7.8c (heavy bold line). Generally, it can be said that, the 

required sampling domain length was found to be somewhat smaller as compared to the 

case of the isotropic soil mass. 

 
Figure 7.8: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example curves for various 𝜽𝜽 𝑩𝑩⁄  and 𝒙𝒙 𝑩𝑩⁄  values. The thick 
continuous line in Figure 7.8c is for the anisotropic case and refers to the 𝒙𝒙 𝑩𝑩⁄ =0 case. 
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Figure 7.8: Continued. 

7.1.4.2 Effect of footing width (B) 

In this paragraph three footing widths were considered, i.e. 𝐵𝐵 =1, 2, 3m. Figure 7.9 

presents the variation of 𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑑𝑑 𝐵𝐵⁄  for these three cases. From this figure, it is clear 

that the footing width has only minor influence on the required sampling domain length. 

 

Figure 7.9: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example curves for different footing widths B and 𝜽𝜽 𝑩𝑩⁄ = 𝟏𝟏𝟏𝟏. 

7.1.4.3 Effect of COV of the elastic constants of soil 

In this paragraph, five 𝐶𝐶𝐶𝐶𝐶𝐶 values of 𝐸𝐸 were considered, i.e. 𝐶𝐶𝐶𝐶𝐶𝐶 = 0.1, 0.2, 0.3, 0.4 and 

0.5. The optimal horizontal sampling distance from the footing center was found not to 
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be affected by the 𝐶𝐶𝐶𝐶𝐶𝐶 of 𝐸𝐸, whilst again the 𝑥𝑥 𝐵𝐵⁄ =0 case leads to the smaller 

probabilities of failure. Thus, only the 𝑥𝑥 𝐵𝐵⁄ =0 case will be presented here. From Figure 

7.10 it is generally inferred that the 𝐶𝐶𝐶𝐶𝐶𝐶of 𝐸𝐸 largely affects the optimal sampling domain 

length. More specifically, as the 𝐶𝐶𝐶𝐶𝐶𝐶of 𝐸𝐸 increases the sampling domain length required 

to minimize the statistical error also increases. 

 

Figure 7.10: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example relationships by considering different values of COV 
of E. 

7.1.4.4 Effect of the elastic constant values of soil 

The variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑑𝑑 𝐵𝐵⁄  for different Poisson’s ratio values is shown is 

Figure 7.11; the optimal sampling distance was also found to be at 𝑥𝑥 𝐵𝐵⁄ =0 for any ν 

value, thus, only this case is presented in this paragraph. From Figure 7.11 it is obvious 

that the Poisson’s ratio value has no effect on the optimal sampling domain length. The 

same stands for the mean value of elastic modulus of soil.  
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Figure 7.11: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example curves for different v values and 𝜽𝜽 𝑩𝑩⁄ = 𝟏𝟏𝟏𝟏. 

7.1.5 Discussion 

7.1.5.1 The importance of targeted field investigation in practice 

In the four examples presented below, the footing and the mesh / boundary conditions are 

the same with those presented in Section 7.1.2 of the current Chapter (i.e. the reference 

footing). The four examples, in essence, differ in the spatial correlation length, since as 

shown in the present research, the mean and 𝐶𝐶𝐶𝐶𝐶𝐶 values of E have no effect on the 

optimal sampling location. The random field of E used in each example is shown in 

Figures 7.1, 7.12, 7.13 and 7.14 respectively. It is reminded that, the darker elements 

indicate stiffer soil and vice versa.  
Table 7.1: Summary of the characteristics of the soils used in the four examples (footing 
width B= 1 m). 

Example 
Random 
field(s) 

Distribution 
𝜇𝜇𝐸𝐸 (Pa) v COV 𝜃𝜃 𝐵𝐵⁄  Figure (1) 

#1 E Log-normal 1 0.25 0.3 10 Figure 7.1 
#2 E Log-normal 1 0.25 0.3 0.5 Figure 7.12 
#3 E Log-normal 1 0.25 0.3 5 Figure 7.13 
#4 E Log-normal 1 0.25 0.3 50 Figure 7.14 

(1) Figures shown the random fields of E. 
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Figure 7.12: Graphical representation of the random field of E of Example #2 (𝜽𝜽 𝑩𝑩⁄ =0.5; see 
Table 7.1).  

 
Figure 7.13: Graphical representation of the random field of E of Example #3 (𝜽𝜽 𝑩𝑩⁄ =0.5; see 
Table 7.1).  

 

Figure 7.14: Graphical representation of the random field of E of Example #4 (𝜽𝜽 𝑩𝑩⁄ =0.5; see 
Table 7.1). 
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The predicted settlement (𝜌𝜌) is compared against the respective “actual” one. For each 

one of the examples presented herein, the latter derives from the respective random field 

of 𝐸𝐸 using the RFEM method. The predicted 𝜌𝜌 value derive from a homogenous soil field 

characterized by the mean of the values sampled from the original (random) field. The 

results are presented in Figure 7.15 in 𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜌𝜌"𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"⁄  versus x/B form for various 

𝑑𝑑𝑑𝑑/B values; the relative difference Rd defined as𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜌𝜌"𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"⁄ ” -1 is also given in 

each chart (see secondary vertical axis; a positive value indicate design on the safe side 

and vice versa).  

If the suggestions related to the horizontal distance from the footing centre and the domain 

length (x/B=0 and dd/H=2 respectively) are valid, the 𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜌𝜌"𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"⁄  ratio for this 

specific sampling scenario should, logically, be equal to unity or very close to this value. 

As shown in Figure 7.15 the 𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜌𝜌"𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙"⁄  ratio value for x/B=0 are very close to 

unity or equal to unity, indicating the validity of author’ suggestions. Indicatively it is 

mentioned that, some locations (x/B) present a high 𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜌𝜌"𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"⁄  ratio values and 

these are attributed to the "light" (weak) areas appearing at these particular locations (see 

Figures 7.12 and 7.14). From Figure 7.15 it is confirmed that a vertical sampling domain 

of length equal to 2B leads to significantly lower statistical uncertainty. Also, sampling 

away from the center of footing may lead to significant statistic error, especially if the 

optimal sampling domain length is not used. 

Finally, comparison between the figures given in Section 7.1.3 and 7.1.4 with the 

respective ones given in Section 7.1.5, shows clearly that statistical uncertainty does not 

necessarily decreases with increasing number of samples. Indeed, the opposite may easily 

happen. For example, comparing the 𝑝𝑝𝑓𝑓 ≈0.2 value for x/B=0 shown in Figure 7.4c 

(single point case; isotropic soil) with the𝑝𝑝𝑓𝑓 ≈0.32 value for x/B=2 (case of 40 sampling 

points; also isotropic soil) shown in Figure 7.8c, it is obvious that statistical uncertainty 

can only be minimized by targeted field investigation. Such examples can also be found 

in the present section; please compare the case of {x/B =1, dd/B=2} with the {x/B =0, dd/B 

=0.5} in Figure 7.15b giving Rd≈ +0.27 and -0.045 respectively. 
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Figure 7.15: 𝝆𝝆𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝝆𝝆"𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂"⁄  vs x/B curves for various dd/B values for Example a) #1, b) 
#2, c) #3 and d) #4, (see also Table 7.1 and Figure 7.1, 7.12, 7.13 and 7.14). 

7.1.5.2 Designing with Load and Resistance Factor Design (LRFD) codes.   

The discussion on the design of foundation against settlement based on characteristic soil 

property values instead of the respective mean values is facilitated by the two example 

charts of Figure 7.16 (see also discussion of Chapter 3 and the relevant equations (2.1) 

and (2.2)). These charts refer to the case #2 presented in the previous paragraph (see also 

Table 7.1). This specific case was chosen because of the relatively low θ value (i.e. 

θ/B=0.5), which indicates a rather highly spatially variable soil; thus, the use of the 

characteristic value makes more sense. Two cases are presented, the dd/B=2 and the 

dd/B=0.5.  

From Figure 7.16 it is clear that, the benefit from a targeted field investigation is much 

greater as compared to the benefit gained using characteristic values. Moreover, despite 

the conservatism which is inserted in the analysis using the characteristic value concept, 
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the characteristic values alone, as shown, cannot guaranty a conservative enough 

engineering study. The inclusion of the “characteristic value” in the RSETL2D code has 

also been done by the author. 

 
Figure 7.16: 𝝆𝝆𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝝆𝝆"𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂"⁄  vs x/B curves using both mean and characteristic values 
(solid and dashed lines respectively). 

7.2 Bearing capacity analysis 

The present Chapter deals with the practical problem of reducing statistical uncertainty 

in bearing capacity analysis of shallow foundations relying on targeted field investigation, 

aiming at an optimal design. This is done in an advance probabilistic framework using 

the RFEM [61] method properly considering sampling of soil properties. In this respect, 

the open source RBEAR2D program, which combines elasto-plastic finite element 

analysis with the random field theory, has been modified as to include the function of 

sampling of soil property values from the generated random fields and return the failure 

probability of footing against bearing capacity failure. The present analysis will show that 

the statistical error in an bearing capacity analysis can be effectively minimized only 

when targeted field investigation is carried out. 

7.2.1 Brief description of the RFEM program used 

As mentioned, the present analysis was based on the open source RBEAR2D program. 

The RBEAR2D program calculates the ultimate bearing capacity of a smooth strip footing 

(or a pair of strip footings) founded on a soil having spatially random properties. The 

procedure is repeated 𝑚𝑚 times; 𝑚𝑚 is the number of realizations, where, each RFEM 

realization refers to a new random field of soil properties. 
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The footing(s) is (are) assumed to be founded on a soil layer underlain by bedrock. The 

physical problem is represented using a two-dimensional (plane-strain) model as shown 

in Figure 7.17. The finite-element bearing capacity analysis in RBEAR2D uses an elastic-

perfectly plastic stress-strain law with a Mohr-Coulomb failure criterion. Plastic stress 

redistribution is accomplished using a viscoplastic algorithm [174]. The program uses 8-

node quadrilateral elements and reduced integration in both the stiffness and stress 

redistribution parts of the algorithm. In particular, the footing is incrementally displaced 

vertically into the soil and the sum of the nodal reactions back-figured from the converged 

stress stated. When the sum of the nodal reactions levels out to within quite strict 

tolerances, “failure” is said to have occurred and the sum of the nodal reactions is 

considered to be the “bearing capacity” of the particular realization [184].   

For the needs of the present research, the original RBEAR2D program has been extended 

by the author as to:  

• virtually sample soil property values from the random fields generated in each 

RFEM realization,  

• calculate the footing bearing capacity (again in each RFEM realization) 

considerring that the soil is homogenous, having soil property values equal to the 

mean of the values sampled (this bearing capacity is calculated in addition to the 

bearing capacity of footing lying on spatially random soil) and 

• estimate the failure probability of the footing. 

The latter is defined by the fraction of the realizations resulted in failure over the total 

number of realizations. In each RFEM realization, “failure” is considered to have 

occurred when the “actual” bearing capacity referring to the spatially random soil, is 

smaller than the respective (factored or unfactored) predicted value, referring to the 

spatially uniform soil. That is, it stands that 

  "actual"f u u predictedp P q q FS = <    (7.2) 

where, 𝑞𝑞𝑢𝑢 is the ultimate bearing capacity and 𝐹𝐹𝐹𝐹 is the user-defined safety factor.  

The modified program was validated as follows. First a given footing was solved with the 

original RBEAR2D program using deterministic property values. Then the same footing 

was solved with the modified program using values sampled from various places (because 

the same deterministic soil properties value was spread out in the finite element mess, all 
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sampled values had the same value). The two programs gave exactly the same results, 

indicating that the function of sampling was embedded correctly into the original 

program. 

 
Figure 7.17: Typical random finite element meshes of (a) cohesion, , and (b) friction angle, 
𝝓𝝓 , considering 𝜽𝜽/𝜝𝜝 = 𝟓𝟓. Figure showing the 10-element footing on the surface of the 60 x 
20 (H x V) mesh. The soil's spatially random shear strength parameters (𝒄𝒄 and 𝝓𝝓) are shown 
qualitatively using a grayscale representation, where lighter regions indicate weaker soil. 

 
Figure 7.18: Displacement vector plot of bearing failure on spatially variable soil. 

7.2.2 Parametric study for determining the optimal sampling strategy 

This Chapter deals with the case of a single strip footing. Both the sampling from a single 

point and the sampling from an entire domain strategies are investigated through an 

 
c
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extensive parametric analysis of the factors controlling the bearing capacity for defining 

the strategy that minimizes the probability of failure and thus, the statistical error (this 

strategy is called hereafter “optimal sampling strategy”). The error is quantified 

comparing the probability of failure value obtained based on different sampling scenarios. 

In the finite analysis that follows, the soil mass is discretized into a 60 (horizontal 

direction) by 20 (vertical direction) mesh consisting of eight-noded square elements with 

side length equal to 0.1m. The strip footing occupies width on the surface of the finite 

element mesh equal to 10 elements, giving it a width of B=1m (caller hereafter “reference 

footing”; other footing widths will also be considered in a later sections). A typical 

random finite element mesh of cohesion and friction angle is presented in Figure 7.17. 

The 60-element mesh in the horizontal direction was chosen so that the failure mechanism 

in the RFEM analysis not to be affected by the proximity of the side boundaries. The 

effect of the distance between the edge of the footing and the respective lateral boundary 

was investigated prior to the analysis. As shown in Appendix IV, the error inserted 

considering a 10-element footing centered on the surface of a 60-element mesh is 

negligible; that makes a free distance between each edge of footing and the respective 

lateral boundary equal to 2.5B. The same distance of 2.5B was kept the same for the other 

footing widths considered (i.e. B=1, 2 and 3m); however, the element size for the B= 2 

and 3 m footings was 0.2 m and 0.3 m respectively. 

In the present analysis, 𝑐𝑐 and 𝜙𝜙 are treated as random fields assuming that they follow a 

log-normal distribution; the soil is assumed weightless with 𝜇𝜇𝑐𝑐 = 100 kPa and 𝜇𝜇𝜙𝜙 =25°, 

whilst various standard deviation and θ values are examined. In addition, it is mentioned 

that, based on a preliminary parametric analysis carried out by the author, the modulus of 

elasticity 𝐸𝐸 have no influence on the optimal sampling strategy. Thus, 𝐸𝐸 have been kept 

constant and equal to 105 kN/m2 throughout the entire analysis presented herein. 

Furthermore, it is assumed that the random fields have the same spatial correlation length 

and the same type of correlation function; in this respect, Markovian spatial correlation 

function has been adopted (see Equation (5.2)).  

Aiming at finding the optimal sampling strategy, the following parameters will be 

examined: the sampling depth (𝑑𝑑𝑝𝑝) and horizontal distance for the case of sampling from 

a single point (measured from the soil surface and the axis of strip footing respectively), 

the sampling length (𝑑𝑑𝑑𝑑) and horizontal distance of the geotechnical borehole for the case 
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of sampling an entire domain (measured as in the previous case), the spatial correlation 

length of soil (𝜃𝜃), the footing width (𝐵𝐵), the coefficient of variation (COV) of 𝑐𝑐 and 𝜙𝜙, 

the effect of Poisson’s ratio (v) value of soil and the soil mass anisotropy (𝜃𝜃ℎ ≠ 𝜃𝜃𝑣𝑣). Four 

sampling scenarios similar to those presented in Figure 7.3 were consider. The number of 

realizations was set equal to 3000; this number, as shown in Appendix IV, can be 

considered adequate for the needs of the present research. Finally, a safety factor FS equal 

to 1.2 is generally assumed in the analysis. 

7.2.3 Sampling from a single point 

7.2.3.1 Effect of spatial correlation length (𝜽𝜽) 

Example charts showing the variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑝𝑝 𝐵𝐵⁄  for various 𝜃𝜃 𝐵𝐵⁄  values 

are given in Figure . The soil mass is considered isotropic. From the figure in question it 

is inferred that the optimal sampling location lies at the center of the strip footing (𝑥𝑥 𝐵𝐵⁄ =

0) and at depth approximately 0.8B. Isolating the curves for 𝑥𝑥 𝐵𝐵⁄ = 0 it seems that, there 

is a “worst case spatial correlation length”, where, the failure probability becomes 

maximum; for example, for the various 𝜃𝜃 𝐵𝐵⁄  ratios shown in Figure 7.20 (ranging from 

𝜃𝜃 𝐵𝐵⁄ =0.2 to 50), the 𝜃𝜃 𝐵𝐵⁄ =1 case gives the higher 𝑝𝑝𝑓𝑓 values. This outcome is in 

agreement with the conclusions made by Fenton and Griffiths [31,61]. Moreover, from 

Figure 7.20 it is inferred that, as 𝜃𝜃 tends to zero the 𝑝𝑝𝑓𝑓 value tends to a single value for 

any depth (that is, 𝑝𝑝𝑓𝑓 is independent of the sampling depth). However, as 𝜃𝜃 increases, the 

𝑝𝑝𝑓𝑓 value becomes more dependent on the sampling depth. 

Furthermore, the effect of soil anisotropy on the optimal sampling location is investigated 

herein by comparing the 𝜃𝜃ℎ = 𝜃𝜃𝑣𝑣 case with the 𝜃𝜃ℎ = 10𝜃𝜃𝑣𝑣 case, i.e. the reference footing-

soil system with 𝜃𝜃𝑣𝑣 𝐵𝐵 =⁄ 𝜃𝜃ℎ 𝐵𝐵⁄ =5 will be compared with a respective one having 

𝜃𝜃ℎ 𝐵𝐵 = 50⁄ and 𝜃𝜃𝑣𝑣 𝐵𝐵 = 5⁄ . In this respect, the soil anisotropy has only a minor influence 

on the location of the optimal sampling point (see Figure 7.19d, heavy bold line). 



124 

 

 
Figure 7.19: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example curves for various 𝜽𝜽 𝑩𝑩⁄  and 𝒙𝒙 𝑩𝑩⁄  values. The thick 
continuous line in Figure d is for the anisotropic case and refers to the 𝒙𝒙 𝑩𝑩⁄ =0 case. 
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Figure 7.20:

 
𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example curves for various 𝜽𝜽 𝑩𝑩⁄  values and 𝒙𝒙 𝑩𝑩⁄ = 𝟎𝟎. 

7.2.3.2 Effect of footing width (B) 

The variation of 𝑝𝑝𝑓𝑓 with pd B  is shown in Figure 7.21 for three footing widths, i.e. 𝐵𝐵 =1, 

2 and 3m. From this figure, it is inferred that the footing width has only a minor influence 

on the location of the optimal sampling point. The three curves in Figure 7.21 refer to 

𝑥𝑥 𝐵𝐵⁄ = 0. 

 
Figure 7.21: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example curves for different footing widths B and 𝜽𝜽 𝑩𝑩⁄ = 𝟏𝟏𝟏𝟏. 

7.2.3.3 Effect of COV of 𝒄𝒄 and 𝝓𝝓 

In this paragraph, five COV values for 𝑐𝑐 and 𝜙𝜙 were considered, namely, 𝐶𝐶𝐶𝐶𝐶𝐶 = 0.1, 0.2, 

0.3, 0.4 and 0.5. From Figure 7.22, it is obvious that the failure probability increases as 

𝐶𝐶𝐶𝐶𝐶𝐶of 𝑐𝑐 and 𝜙𝜙 increases, but what is not trivial is that the positive effect of targeted field 
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investigation on the reduction of the statistical error is greater for smaller 𝐶𝐶𝐶𝐶𝐶𝐶values. For 

example, considering the different values of COV of 𝑐𝑐, as shown in Figure 7.22a, the 𝑝𝑝𝑓𝑓 

value when COV(c) = 0.5 is approximately 0.48 and independent of the 𝑑𝑑𝑝𝑝 𝐵𝐵⁄  ratio. In 

contrast, if COV(c) = 0.1, 𝑝𝑝𝑓𝑓 ranges from 0.074 for 𝑑𝑑𝑝𝑝 𝐵𝐵⁄ = 0 to 0.04 for 𝑑𝑑𝑝𝑝 𝐵𝐵⁄ = 0.8. 

The curves in Figure 7.22 refer to 𝑥𝑥 𝐵𝐵⁄ =0.  

 
Figure 7.22: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example relationships by considering different values of COV 
of (a) cohesion (c) and (b) friction angle (𝝓𝝓). 

 

7.2.3.4 Effect of the elastic constant values of soil 

For all cases considered above, the Poisson’s ratio of soil was equal to 0.3. Parametric 

study on the effect of the elastic modulus E on the optimal sampling location, however, 

showed that the latter is not affected by the parameter in question. The influence of v on 

the optimal sampling location is examined herein. In this respect, six v values were 

considered, i.e. v= 0, 0.1, 0.2, 0.3, 0.4 and 0.495. The six curves shown in Figure 7.23 

refer to 𝑥𝑥 𝐵𝐵⁄ =0. From Figure 7.23 it is inferred that the v has no effect on the optimal 

sampling depth. However, it is interesting that there is a unfavourable v value where the 

failure probability becomes maximum; for example, for the various v values shown in 

Figure 7.23, the v=0.2 case gives the maximum 𝑝𝑝𝑓𝑓value.  
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Figure 7.23: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒑𝒑 𝑩𝑩⁄  example curves for different v values and 𝜽𝜽 𝑩𝑩⁄ = 𝟏𝟏𝟏𝟏. 

7.2.4 Sampling from an entire domain 

In the parametric analysis carried out, three footing widths were considered, i.e. B=1, 2 

and 3m, whilst the distance between two successive sampling points (in the vertical 

direction) was B/10 for all cases. The maximum sampling domain length considered, was 

always two times the footing width B. It is noted that, for all cases examined, the optimal 

sampling distance was found again to be at 𝑥𝑥 𝐵𝐵⁄ =0. Thus, the analysis below, generally, 

refers to 𝑥𝑥 𝐵𝐵⁄ =0. 

7.2.4.1 Effect of spatial correlation length (𝜽𝜽) 

Example charts showing the variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑑𝑑 𝐵𝐵⁄  for various 𝜃𝜃 𝐵𝐵⁄  and 

𝑥𝑥 𝐵𝐵⁄  values are given in Figure 7.24; it is reminded that 𝐹𝐹𝐹𝐹 was set equal to 1.2 (recall 

Equation (7.2)). From this figure it is inferred that, the optimal horizontal sampling 

distance from the footing center is again for 𝑥𝑥 𝐵𝐵⁄ =0, although for very small theta values 

the horizontal sampling distance makes no noticeably difference. However, as theta 

increases the role of horizontal distance becomes more significant. Given now that, soil 

samples will be taken from 𝑥𝑥 𝐵𝐵⁄ =0, it is advisable, a domain length at least 2B to be 

considered. Indeed, this practice may significantly reduce the statistical error. Finally, 

from Figure  it is inferred that, a “worst case theta” exists. This is more obvious in Figure 

7.25 showing the variation of 𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑑𝑑 𝐵𝐵⁄  for various 𝜃𝜃 𝐵𝐵⁄  values and 𝑥𝑥 𝐵𝐵⁄ = 0; see also 

the relevant discussion in single point sampling strategy (Section 7.2.3.1). 
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The variation of 𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑑𝑑 𝐵𝐵⁄  for the case of anisotropic soil mass (𝜃𝜃ℎ 𝐵𝐵 = 50⁄  and 

𝜃𝜃𝑣𝑣 𝐵𝐵 = 5⁄ ) is shown in Figure 7.24d (heavy bold line). Generally, it can be said that, the 

anisotropic soil mass affects the optimal sampling domain length in a manner that it calls 

for greater domain length compared to the isotropic soil mass. 

 
Figure 7.24: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑩𝑩⁄  example curves for various 𝜽𝜽 𝑩𝑩⁄  and 𝒙𝒙 𝑩𝑩⁄  values. The thick 
continuous line in Figure d is for the anisotropic case and refers to the 𝒙𝒙 𝑩𝑩⁄ =0 case. 
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Figure 7.24: Continued. 

 
Figure 7.25: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑩𝑩⁄  example curves for various 𝜽𝜽 𝑩𝑩⁄  and 𝒙𝒙 𝑩𝑩⁄ =0. 

7.2.4.2 Effect of footing width (B) 

In this paragraph three footing widths were considered, i.e. 𝐵𝐵 =1, 2, 3m. Figure 7.26 

presents the variation of 𝑝𝑝𝑓𝑓 with 𝑑𝑑𝑑𝑑 𝐵𝐵⁄  for these three cases. From this figure, it is inferred 

that the footing width has only a minor influence on the location of the optimal sampling 

point.  
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Figure 7.26: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑩𝑩⁄  example curves for different footing widths B and 𝜽𝜽 𝑩𝑩⁄ = 𝟏𝟏𝟏𝟏. 

7.2.4.3 Effect of COV of 𝒄𝒄 and 𝝓𝝓 

In this paragraph, five 𝐶𝐶𝐶𝐶𝐶𝐶values of 𝑐𝑐 and 𝜙𝜙 were considered, i.e. 𝐶𝐶𝐶𝐶𝐶𝐶 = 0.1, 0.2, 0.3, 

0.4 and 0.5. The optimal horizontal sampling distance from the footing center was found 

not to be affected by the 𝐶𝐶𝐶𝐶𝐶𝐶 of 𝑐𝑐 and 𝜙𝜙, where again the 𝑥𝑥 𝐵𝐵⁄ =0 case leads to the 

smaller probabilities of failure. Thus, only the 𝑥𝑥 𝐵𝐵⁄ =0 case will be presented here. From  

Figure 7.27 it is, generally, inferred that the required sampling domain length decreases 

as the 𝐶𝐶𝐶𝐶𝐶𝐶of 𝑐𝑐 or 𝜙𝜙 increases. However, as discussed earlier, a domain length of at least 

2B may significantly reduce the statistical error. 

 
Figure 7.27: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑩𝑩⁄  example relationships by considering different values of COV 
of 𝒄𝒄 and 𝝓𝝓. 
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7.2.4.4 Effect of the elastic constant values of soil 

The variation of 𝑝𝑝𝑓𝑓 with respect to 𝑑𝑑𝑑𝑑 𝐵𝐵⁄  for different Poisson’s ratio values is shown in 

Figure 7.28; the optimal sampling distance was also found to be at 𝑥𝑥 𝐵𝐵⁄ =0 for any v 

value, thus, only this case is presented here. From Figure 7.28 it is obvious that the 

Poisson’s ratio value has no effect on the optimal sampling domain length. The same 

stands for the mean value of elastic modulus of soil. 

Although, from the curves of the figure in question it seems that, there is a “unfavorable” 

Poisson’s ratio value, where, the failure probability becomes maximum; see also the 

relevant discussion in single point sampling strategy (Section 7.2.3.4).  

 
Figure 7.28: 𝒑𝒑𝒇𝒇 versus 𝒅𝒅𝒅𝒅 𝑩𝑩⁄  example curves for different v values and 𝜽𝜽 𝑩𝑩⁄ = 𝟏𝟏𝟏𝟏. 

7.2.5 Discussion 

7.2.5.1 The importance of targeted field investigation in practice 

In the four examples presented below, the footing and the mesh / boundary conditions are 

the same with those presented in Section 7.2.2 (i.e. the reference footing). The material 

properties are given in Table 7.2. The four examples, in essence, differ only in the spatial 

correlation length. The random field of 𝑐𝑐 and 𝜙𝜙 used in each example is shown in Figures 

7.17, 7.29, 7.30 and 7.31. It is reminded that, the light areas correspond to lower shear 

strength values and vice versa. The FS value is assumed unity (recall Equation (7.2)); this 

factor is discussed in the next paragraph.  

 



132 

 

Table 7.2: Summary of the characteristics of the soils used in the four examples (footing 
width B= 1 m). 

Example 
Random 
field(s) 

Distribution 𝜇𝜇𝜙𝜙 𝜇𝜇𝑐𝑐 COV 𝜃𝜃 𝐵𝐵⁄  Figure (1) 

#1 𝜙𝜙, 𝑐𝑐 Log-normal 25o 100 kPa 0.3 5 Figure 7.17 
#2 𝜙𝜙, 𝑐𝑐 Log-normal 25o 100 kPa 0.3 0.5 Figure 7.29 
#3 𝜙𝜙, 𝑐𝑐 Log-normal 25o 100 kPa 0.3 10 Figure 7.30 
#4 𝜙𝜙, 𝑐𝑐 Log-normal 25o 100 kPa 0.3 50 Figure 7.31 

(1) Figures shown the random fields of 𝑐𝑐 and φ . 
 

 
Figure 7.29: Graphical representation of the random fields of (a) cohesion, 𝒄𝒄, and (b) friction 
angle, 𝝓𝝓, of Example #2 (𝜽𝜽 𝑩𝑩⁄ =0.5; see Table 7.2).  

 



133 

 

 
Figure 7.30: Graphical representation of the random fields of (a) cohesion, 𝒄𝒄, and (b) friction 
angle, 𝝓𝝓 , of Example #3 (𝜽𝜽 𝑩𝑩⁄ =10; see Table 7.2). 

 
Figure 7.31: Graphical representation of the random fields of (a) ) cohesion, 𝒄𝒄, and (b) 
friction angle, 𝝓𝝓 ,  of Example #4 (𝜽𝜽 𝑩𝑩⁄ =50; see Table 7.2). 

The predicted bearing capacity (𝑞𝑞𝑢𝑢) is compared against the respective “actual” one. For 

each one of the examples presented herein, the latter derives from the respective random 
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fields of 𝑐𝑐 and 𝜙𝜙 using the RFEM method. The predicted 𝑞𝑞𝑢𝑢 value derive from a 

homogenous soil field characterized by the mean of the values sampled from the original 

(random) fields. The results are presented in Figure 7.32 in 𝑞𝑞𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞𝑢𝑢 "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"⁄ versus 

x/B form for various 𝑑𝑑𝑑𝑑 𝐵𝐵⁄ values; the relative difference Rd defined 

as𝑞𝑞𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞𝑢𝑢 "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"⁄ ” -1 is also given in each chart (see secondary vertical axis; a 

negative value indicate design on the safe side and vice versa). 

If the suggestions related to the horizontal distance from the footing centre and the domain 

length (x/B=0 and 𝑑𝑑𝑑𝑑 𝐵𝐵⁄ =2 respectively) are valid, the 𝑞𝑞𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞𝑢𝑢 "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"⁄  ratio for 

this specific sampling scenario should, logically, be equal to unity or very close to this 

value. As shown in Figure 7.32 the 𝑞𝑞𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞𝑢𝑢 "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"⁄  ratio value for x/B=0 are very 

close to unity or equal to unity, indicating the validity of authors’ suggestions. 

Indicatively it is mentioned that, some locations (x/B) present a high 

𝑞𝑞𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞𝑢𝑢 "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"⁄  ratio values and these are attributed to the "dark" (strong) areas 

appearing at these particular locations (see e.g. Figure 7.30 and Figure 7.31). From Figure 

7.32 it is confirmed that a vertical sampling domain of length equal to 2B leads to 

significantly lower statistical uncertainty. Also, sampling away from the center of footing 

may lead to significant statistic error, especially if the optimal sampling domain length is 

not used. 

Finally, comparison between the figures given in Section 7.2.3 and 7.2.4 with the 

respective ones given in Section 7.2.5, shows clearly that statistical uncertainty does not 

necessarily decreases with increasing number of samples. Indeed, the opposite may easily 

happen. For example, comparing the 𝑝𝑝𝑓𝑓 ≈0.21 value for x/B=0 shown in Figure 7.19e 

(single point case; isotropic soil) with the 𝑝𝑝𝑓𝑓 ≈0.30 value for x/B=2.5 (case of 20 

sampling points; also isotropic soil) shown in Figure 7.24e, it is obvious that statistical 

uncertainty can only be minimized by targeted field investigation. Such examples can 

also be found in the present section; please compare the case of {x/B =1, dd/B=2} with 

the {x/B =0, dd/B =0.5} in Figure 17b giving Rd≈ +0.49 and 0.11 respectively. 
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Figure 7.32: 𝒒𝒒𝒖𝒖 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒒𝒒𝒖𝒖 "𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂"⁄  vs x/B curves for various dd/B values for Example a) #1, 

b) #2, c) #3 and d) #4, (see also Table 7.2 and Figures 7.17, 7.29, 7.30 and 7.31). 

7.2.5.2 Designing with Load and Resistance Factor Design (LRFD) Codes 

The discussion on the bearing capacity design of shallow footings based on characteristic 

soil property values (please see equations (2.1) and (2.2) in the literature review of this 

Thesis) instead of the respective mean values is facilitated by the two example charts of 

Figure 7.33. These charts refer to the case #2 presented in the previous paragraph (see 

also Table 7.2). This specific case was chosen because of the relatively small θ value (i.e. 

θ/B=0.5), which indicates a rather highly spatially variable soil; thus, the use of the 

characteristic value makes more sense. Two cases are presented, the dd/B=0.5 and the 

dd/B=2. It is also mentioned that, in the example presented here, the partial material factor 

𝛾𝛾𝛭𝛭 for the shear strength parameters was set equal to unity. 
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From Figure 7.33 it is clear that, the benefit from a targeted field investigation is much 

greater as compared to the benefit gained using characteristic values. Moreover, despite 

the conservatism which is inserted in the analysis using the characteristic value concept, 

the characteristic values alone, as shown, cannot guaranty a conservative enough 

engineering study. The safety level can be increased by applying a statistical uncertainty 

partial factor (similar to the model factor γR used by Eurocode 7) or a unified and more 

conservative model factor to the resistances, which will absorb the statistical uncertainties 

related to the soil. In this respect, a partial factor equal to 1.2 has also been applied 

(FS=1.2; recall Equation (7.2)) in the present example. As shown in Figure 7.33, the use 

of such a factor simply displaces downwards (that is, to the safe side) the 

𝑞𝑞𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞𝑢𝑢 "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"⁄ versus x/B curves. The inclusion of the “characteristic value” in 

the RBEAR2D code has also been done by the author.  

 
Figure 7.33: 𝒒𝒒𝒖𝒖 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒒𝒒𝒖𝒖 "𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂"⁄ vs. x/B curves using both mean and characteristic values 

(solid and dashed lines respectively) for FS=1 and 1.2. Figure referring to two sampling 
domain cases (dd/H = 1 (figure a) and to dd/H = 0.25 (figure b)). The reference footing was 
used. Soil characteristics as shown in Table 7.2 (Example #2). 

7.3 Summary and conclusions 

The present Chapter deals with the practical problem of reducing statistical uncertainty 

in elastic settlement and bearing capacity analysis of shallow foundations relying on 

targeted field investigation aiming at an optimal design. The results of the present 

research clearly show that statistical uncertainty may significantly affect the reliability of 
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shallow foundations and that it can only be minimized by adopting the proper sampling 

strategy; the latter is defined by the number and location of sampling points. As samples 

are taken from a material field (i.e. the ground), which simultaneously is a stress field 

(stresses caused by the footing), the location of the optimal sampling points is affected by 

the coexistence of these two fields. Two main sampling strategies were investigated, 

namely, sampling from a single point and sampling from a domain, through an extensive 

parametric analysis. 

One of the main findings of the present analysis is that for the case of a single footing, 

the geometric centre on its plan-view is the optimal sampling location. Regarding the 

depth of the optimal sampling point, it was found that it lies at depth equal to 

approximately 0.8B; the exact depth depends on the spatial correlation length of the soil. 

Furthermore, it was observed that, the sampling domain length strategy leads usually to 

significantly lower statistical uncertainty than the sampling from a single point strategy, 

given that an adequate sampling length will be considered. In this respect, for the optimal 

sampling domain length, it is advisable that a domain length of at least 2B to be taken into 

account in the analysis. 

In addition, it was observed that the benefit from a targeted field investigation is much 

greater as compared to the benefit gained using characteristic soil property values. 

Moreover, despite the conservatism which is inserted in the analysis using the 

characteristic value concept, the characteristic values alone, as shown, cannot guaranty a 

conservative enough engineering study. The safety level can be increased by applying a 

statistical uncertainty partial factor (similar to the model factor γR used by Eurocode 7) or 

a unified and more conservative model factor to the resistances, which will absorb the 

statistical uncertainties related to the soil. 
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8 Conclusions 

The present dissertation deals with the practical problem of reducing statistical 

uncertainty in geotechnical structures relying on targeted field investigation aiming at an 

optimal design. This is done in an advance probabilistic framework using the RFEM 

method properly considering sampling of soil properties. The RFEM method combines 

finite element analysis with the random field theory. Generally, the random field theory 

describes the inherent variability of soil properties. The inherent variability is modelled 

as a random field, which is described by the mean (μ), standard deviation (σ), spatial 

correlation length (θ) of soil properties.  θ is defined as the distance within which the soil 

property shows relatively strong correlation or persistence from point to point. As shown 

in this study, the value of θ, is a critical parameter in order to achieve a significant 

reduction of statistical uncertainty.  

Hence, this dissertation firstly examined the effectiveness of eight of the most commonly 

used methods for the estimation of the value of θ. This was done by generating 5000 one-

dimensional random fields and comparing the estimated θ values with the respective one 

used as input value on the generation of random fields. The method used for the 

estimation of sample autocorrelation function 𝜌𝜌�(𝜏𝜏) is examined. Also, the effect of 

sampling domain length and sampling interval on the estimation of θ were systematically 

investigated. The main conclusions that can be drawn are summarized as follows: (a) the 

𝜌𝜌�(𝜏𝜏) should be calculated up to the point where 𝜌𝜌�(𝜏𝜏) firstly intersect the τ axis, (b) the 

domain length 𝐷𝐷 strongly affects the performance of the methods. In general, larger 

domains improve the estimate of correlation length. In terms of the sample mean, the 

ACF and ACFA methods converge to the input theta value for smaller domains than the 

other methods, and (c) the sampling interval dx significantly affects the performance of 

the methods. Smaller intervals improve the estimate of correlation length. For θ0/dx 

greater than a specific value, say 7.5, the sample mean of the ACF, ACFA and VF methods 

is nearly constant to the best estimate allowed by the given domain length. 

Thereafter, the inherent spatial variability of the clay sites of Pentakomo and Armou 

(Cyprus) were examined through a number of Unconfined Compression Strength (UCS) 

tests on undisturbed samples and a series of dynamic penetrations with a Dynamic 

Probing Light (DPL) apparatus. The latter test was also used for the investigation of 
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spatial variability of a quarry sand-heap. For the two clay fields examined here it was 

found that θ is of the order of a few tens of centimetres and more specifically it ranges 

from 10.7 to 32.8 cm for the Pentakomo field and from 10.5 to 28.4 cm for the Armou 

field. For the sand field examined it was found that θ ranges from 91.9 to 264 cm. The 

high variability of the two clay sites is also indicated by the undrained shear strength 

values obtained in the laboratory. 

Regarding now the statistical uncertainty, the parametric analyses performed showed that 

statistical uncertainty in designing geotechnical structures can be very high and that, 

statistical error is not necessarily reduced by increasing the number of sampling points 

considered. Indeed, the opposite may happen. As shown the statistical error can be 

minimized or even, eliminated by adopting the proper sampling strategy. The problem of 

reducing the statistical uncertainty in axially loaded piles, earth retaining structures in 

active and passive state and finally in elastic settlement and bearing capacity analysis of 

shallow foundations, relying on targeted field investigation aiming at an optimal design 

was implemented in a random finite element method (RFEM) framework. The open 

source RFEM software RPILE1D, RSETL2D and RBEAR2D, have been modified as to 

include the function of sampling of soil property values from the generated random fields. 

It is noted that the REARTH2D software has been modified so as to calculate the wall 

reaction force and overturning moment based on the finite element method instead of 

Rankine’s theory. Two main sampling strategies were investigated, namely, sampling 

from a single point and sampling from a domain (the latter refers to e.g. continuous Cone 

Penetration Test, Standard Penetration Test data). Based on the results the following 

conclusions can be drawn: 

For axially loaded piles: 

1. when continuous probing test data are used and the pile stiffness is much greater 

than the stiffness of the surrounding soil, the entire pile length is advised to be 

taken into account both in the 𝑆𝑆𝑆𝑆𝑆𝑆 and the 𝑈𝑈𝑈𝑈𝑈𝑈 state, as shorter sampling domain 

lengths may insert great statistical error.  

2. weak piles, such as, timber piles, require much shorter domain lengths (measured 

from the top), as longer sampling domains may increase the error.  
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3. when the design is based on sampling points and not on continuous probing test 

data, the best practice for minimizing the statistical error is sampling from the 

mid-height of the pile in both 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑈𝑈𝑈𝑈𝑈𝑈 states.  

4. when the pile is relatively weak, the optimal sampling point for the 𝑆𝑆𝑆𝑆𝑆𝑆 state lies 

near the top of the pile. For the 𝑈𝑈𝑈𝑈𝑈𝑈 state, the optimal sampling point lies at the 

mid-height of pile, for any pile stiffness. 

5. the optimal horizontal sampling location is at location where the pile is going to 

be constructed. 

For earth retaining structures: 

1. the optimal horizontal sampling location in the active state is at 𝑥𝑥 𝐻𝐻⁄ =0 that is, 

immediately adjacent to the wall face, while the optimal horizontal sampling 

location in the passive state is half wall height (𝑥𝑥 𝐻𝐻⁄ =0.5) away from the wall 

face. 

2. regarding the depth of the optimal sampling point, for both states it was found that 

this lies at depth greater than the 2/3 or 1/2 of the wall height for the sliding and 

rotational mode of failure respectively; the exact depth depends on the spatial 

correlation length of the soil. 

3. for the optimal sampling domain length, it is advisable that the entire wall height 

to be considered. This practice may significantly reduce the statistical error.  

For elastic settlement and bearing capacity analysis of shallow foundations: 

1. for the case of a single footing (no interference with adjacent footings), the 

geometric centre on its plan-view is the optimal sampling location.  

2. regarding the depth of the optimal sampling point, it was found that it lies at depth 

equal to approximately 0.8B; the exact depth depends on the spatial correlation 

length of the soil.  

3. the optimal sampling domain length, it is advisable that a domain length of at least 

2B to be taken into account. 

4. sampling away from the centre of footing may lead to significant statistic error. 

For all problems examined above it was observed that the benefit from a targeted field 

investigation is much greater as compared to the benefit gained using characteristic soil 

property values. Moreover, despite the conservatism which is inserted in the analysis 

using the characteristic value concept, the characteristic values alone, as shown, cannot 
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guaranty a conservative enough engineering study. The safety level can be increased by 

applying a statistical uncertainty partial factor (similar to the model factor γR used by 

Eurocode 7) or a unified and more conservative model factor to the resistances, which 

will absorb the statistical uncertainties related to the soil. 

 

Appendix  

Appendix I 

The generated samples of random fields by the tstlas1 program may be validated by 

comparing the average autocorrelation function of the samples to the theoretical estimate 

given by Vanmarcke [72] for arbitrary domain length D:  
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where, the autocovariance γ is given by 
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In Figure A. 1 the average autocorrelation function of samples of 5000 random fields are 

given for four cases which are combinations of different domain lengths and sampling 

intervals. Although, the result (A.1) is derived for infinitesimal sampling interval, the 

agreement between the numerical and analytical results is excellent. The fluctuations of 

the numerical autocorrelation function are due to the finite number of realizations. 

Figure A. 2 presents the dependence of the mean and standard deviation of the samples 

of thetas, estimated by each one of the eight methods discussed here, as a function of the 

number of realizations. One may infer that 5000 realizations used are an adequate number 

for convergent results. Also, one may observe that the convergence of the standard 

deviation requires a larger number of realizations than the mean value. 
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Figure A. 1: Comparison of the sample mean ACF with the theoretical mean ACF. 
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Figure A. 2: Convergence of sample mean value and standard deviation with number of 
realizations. 

Appendix II 

Stability of numerical results (number of realizations considered for the RFEM 

models)- Axially loaded piles. 

The parametric analysis carried out is, in essence, a comparison study between different 

scenarios for determining the optimal sampling location or domain length for effectively 

designing axially loaded piles. When dealing with small differences in 𝑝𝑝𝑓𝑓, the need for 

statistically stable results is even greater. In this respect, 20,000 realizations were 

considered. As shown in the example curves of Figure B.1, this number of realizations is 

adequate.  
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Figure B. 1: 𝒑𝒑𝒇𝒇 vs number of realizations for different values of pile stiffness (𝑺𝑺𝒑𝒑), soil 
stiffness (𝑺𝑺𝒔𝒔),soil strength (𝑼𝑼𝒔𝒔) and spatial correlation length (𝜽𝜽). 

Appendix III 

Stability of numerical results (number of realizations considered in the RFEM 
models) and effect of element size of active earth pressure analysis. 
 
As shown in Figure C. 1, 3000 realizations can be deemed sufficient for the problem of 

active earth pressure analysis. Although, the 𝑝𝑝𝑓𝑓 versus number of realizations curves of 
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the figure in question refer to 𝑑𝑑𝑝𝑝 𝐻𝐻⁄ =0.667 and (when not mentioned) to 𝑥𝑥 𝐻𝐻⁄ = 0, the 

same results are taken for other sampling locations.  

 
Figure C. 1: 𝒑𝒑𝒇𝒇 versus number of realizations charts for different (a) correlation length 
values (case of isotropic field), (b) 𝒙𝒙 𝑯𝑯⁄  values (case of anisotropic field), c) COV value of 𝜸𝜸 
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(isotropic field), (d) COV value of 𝝓𝝓 (isotropic field), and (e) wall heights; figures referring 
to sampling from 𝒙𝒙 𝑯𝑯⁄ = 𝟎𝟎 and 𝒅𝒅𝒑𝒑 𝑯𝑯⁄ = 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔. 

Regarding the element size, it is recommended that this be less than the half of the spatial 

correlation length, although an element size equal to the 𝜃𝜃 does not introduce great error 

in the analysis (e.g. see the comparison chart of Figure C. 2 where the reference wall has 

been used). 

 

 
Figure C. 2: Effect of element size on the failure probability. 

Stability of Numerical Results (Number of Realizations Considered in the RFEM 

Models) of passive earth pressure analysis. 

As shown in Figure C. 3, 3000 realizations can be deemed sufficient for the problem of 

passive earth pressure analysis. Although the 𝑝𝑝𝑓𝑓 versus number of realizations curves of 

the figure in question refer to 𝑑𝑑𝑝𝑝 𝐻𝐻⁄  = 0.667 and (when not mentioned) to 𝑥𝑥 𝐻𝐻⁄ = 0.5, the 

same results are taken for other sampling locations. 
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Figure C. 3: 𝒑𝒑𝒇𝒇 versus number of realizations charts for different (a) correlation length 
values, (b) COV value of 𝝓𝝓 (isotropic field), (c) 𝒙𝒙 𝑯𝑯⁄ values and (d) wall heights; if not 
mentioned otherwise, figures referring to sampling from 𝒙𝒙 𝑯𝑯⁄ =0.25 and 𝒅𝒅𝒑𝒑 𝑯𝑯⁄ = 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔. 

Appendix IV 

Stability of numerical results (distance of lateral boundaries and number of 

realizations considered in the RFEM models) for elastic settlement analysis. 

Figure D. 1 shows the variation of 𝑝𝑝𝑓𝑓 with the number of realizations for various cases 

examined in this study. As it is inferred, the 10,000 realizations considered in the present 

analysis can be deemed sufficient. The 𝑝𝑝𝑓𝑓 versus number of realizations curves of the 

figure in question refer to 𝑑𝑑𝑝𝑝 𝐵𝐵⁄ =0.7 and 𝑥𝑥 𝐵𝐵⁄ =0, however, the same outcome is obtained 

for any sampling location.  
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The effect of the distance between the footing and the lateral boundaries in the finite 

element analysis carried out in the RFEM framework is shown in Figure D. 2. From this 

figure it is inferred that, a distance of 1.1B can be considered adequate in order to obtain 

reliable results. In this respect, the authors considered a distance equal to 1.7B.  

 
 

 
Figure D. 1: 𝒑𝒑𝒇𝒇 versus number of realizations by considering different (a) scaled correlation 
length values, (b) scaled horizontal sampling location values, c) footing widths and (d) COV 
of E; charts referring to 𝒅𝒅𝒑𝒑 𝑩𝑩⁄ = 𝟎𝟎.𝟕𝟕𝟕𝟕 and 𝒙𝒙 𝑩𝑩⁄ =0. 
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Figure D. 2: 𝒑𝒑𝒇𝒇 versus side boundaries distance from the edge of footing of width B=1m.  

Stability of numerical results (side boundaries distance and number of realizations 

considered in the RFEM models) for bearing capacity analysis. 

The effect of the distance between the footing and the lateral boundaries in the finite 

element analysis carried out in the RFEM framework is shown in Figure D. 3 . From this 

figure it is inferred that, a distance of 2B can be considered adequate in order to obtain 

reliable results. In this respect, the authors considered a distance equal to 2.5B.  

In addition, Figure D. 4 shows the variation of 𝑝𝑝𝑓𝑓 with the number of realizations for 

various cases examined in this study. As it is inferred, the 3,000 realizations considered 

in the present analysis can be deemed sufficient. The 𝑝𝑝𝑓𝑓 versus number of realizations 

curves of the figure in question refer to 𝑑𝑑𝑝𝑝 𝐵𝐵⁄ =1, however, the same outcome is obtained 

for any sampling depth.  
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Figure D. 3: 𝒑𝒑𝒇𝒇versus side boundaries distance from the edge of footing with width B=1m.  

 
Figure D. 4: 𝒑𝒑𝒇𝒇 versus number of realizations by considering different (a) scaled correlation 
length values, (b) (normalized) distance of soil sampling from the footing axis, c) footing 
width and (d) Poisson’s ratio values. 
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