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Abstract

Today’s autonomous robotic systems have a significant impact on industrial
applications and in academic disciplines. This dissertation considers a broad
range of topics, from formal methods, sensor fusion, image processing, non-
linear control to controller synthesis of motion tasks with applications in un-
derwater, mobile and underground robots.

One of the most significant challenges in the robotics area lies in the area of
motion and task planning. Motion planning is the robot able to move in the
workspace while at the same time avoiding obstacles. On the other hand, task
planning refers to the robot’s ability to execute a specific task in the workspace.
The main aim is to be able for a given task in a high-level language the robot
to compile this specification into low-level descriptions in order to accomplish
a task.

Autonomous underwater robots typically have to accomplish missions in an
unknown and usually unstructured environment. The mission complexity grows
considering to limited robot sensing systems as well as the limited on-line
communications. For instance, GPS is not applicable due to the inefficient un-
derwater electromagnetic transmission. In addition, vision-based systems are
limited due to poor visibility in murky waters. The actuating system is usually
composed of thrusters and control surfaces; all of them have non-linear dynam-
ics and are strongly affected by the hydrodynamic effects. The ocean currents
and flows imply additional difficulties for the ROV control system making the
robot to deviate away from its desired state or path. Estimates of the flow ve-
locity provided by various sensors or techniques may be incorporated into the
control loop to compensate for the drift phenomenon. In this thesis, we ad-
dress the problem of underwater visual inspection task as a combination of (i)
a problem of localization and state estimation of the ROV with respect to the
target by fusing information from different sources; (ii) a problem of control
of an under-actuated underwater vehicle in the proximity to the target; (iii) a
problem of full coverage of fishnet cages.



Autonomous multi-agent coverage of large-scale under-ground sewer networks
is also addressing in this dissertation. Sewer network systems are typically den-
dritic networks converging in the downstream direction without closed loops.
In network systems theory such networks are characterized as a tree or more
precisely directed tree networks where the directionality is inherited from the
sewage flow direction. Sewer network flow channels dimensions are typically
restricted, allowing only a single inspection robot at a given position. Robots
operating in such networks can only interchange positions at channel junctions.
Wireless communications in underground sewer networks are much more chal-
lenging than in above-ground settings. The main transmission path is through
the underground network’s channels, usually non-line-of-sight and with severe
attenuation over corridor bends and turns and there are also issues related to
multi-path reflections.

The performance of the proposed methodologies is verified in realistic simula-
tions in 2D and 3D virtual environments. Furthermore, extensive experimental
validation on the actual hardware was carried out in a controlled environment
at Robotics, Control, and Decision Systems (RCDS) laboratory and in the field
(open sea) under real conditions.
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Περίληψη

Τα αυτόνομα ρομποτικά συστήματα παίζουν σημαντικό ρόλο στις βιομηχανικές εφαρ-

μογές και στους ακαδημαϊκούς κλάδους τα τελευταία χρόνια. Η παρούσα διδακτορική

διατριβή εξετάζει ένα ευρύ φάσμα θεμάτων, από τις επίσημες μεθόδους, τη συγχώνευση

αισθητήρων, την επεξεργασία εικόνων, τον μη γραμμικό έλεγχο και την σύνθεση αυ-

τόματων ελεγκτών κυρίως για διαδικασίες κίνησης με εφαρμογές σε υποβρύχια, κινητά

και υπόγεια ρομπότ.

Μία από τις σημαντικότερες προκλήσεις στον τομέα της ρομποτικής έγκειται στον

τομέα της κίνησης και του προγραμματισμού των εργασιών. Ο σχεδιασμός κινήσεων

έγκειται το ρομπότ να μπορεί μετακινηθεί στον χώρο εργασίας, αποφεύγοντας ταυτόχρο-

να εμπόδια. Από την άλλη πλευρά, ο σχεδιασμός εργασιών αναφέρεται στην ικανότητα

του ρομπότ να εκτελέσει μια συγκεκριμένη διαδικασία στο χώρο εργασίας. Ο κύριος

στόχος είναι το ρομποτ να μπορεί να εκτελέσει μια διαδικασία από μια γλώσσα υψηλού

επιπέδου, να καταρτίσει αυτή την προδιαγραφή σε περιγραφές χαμηλού επιπέδου για να

ολοκληρώσει μια διαδικασία.

Τα αυτόνομα υποβρύχια ρομπότ συχνά καλούνται να πραγματοποιούν αποστολές

σε ένα άγνωστο και αδόμητο περιβάλλον. Η πολυπλοκότητα της αποστολής αυξάνε-

ται λόγω των περιορισμένων συστήματων ανίχνευσης των υποβρυχίων ρομπότ και στις

περιορισμένες επικοινωνίες. Για παράδειγμα, το GPS σύστημα δεν είναι εφαρμόσιμο ε-

ξαιτίας της δυσκολίας της ηλεκτρομαγνητικής μετάδοσης σε υποβρύχια περιβάλλοντα.

Επιπλέον, το σύστημα όρασης του υποβρύχιου ρομπότ είναι περιορισμένο λόγω της χα-

μηλής ορατότητας σε θολά νερά και μακρινές αποστάσεις. Το σύστημα ενεργοποίησης

αποτελείται συνήθως από προωθητήρες, οι οποίοι περιγράφονται από μη γραμμικά δυνα-

μικά μοντέλα και επηρεάζονται έντονα από την υδροδυναμική. Τα ρεύματα και οι ροές

των ωκεανών επιφέρουν πρόσθετες δυσκολίες για το σύστημα ελέγχου του ROV , επη-

ρεάζοντας με αυτό τον τρόπο το ρομπότ να αποκλίνει από την επιθυμητή κατάσταση

ή διαδρομή. Οι εκτιμήσεις της ταχύτητας ροής που παρέχεται από διάφορους αισθη-

τήρες ή τεχνικές μπορούν να ενσωματωθούν στο βρόχο ελέγχου για να αντισταθμιστεί

το φαινόμενο της ολίσθησης. Σε αυτή τη διατριβή, αντιμετωπίζουμε το πρόβλημα της
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υποβρύχιας οπτικής επιθεώρησης ως συνδυασμό : (ι) ενός προβλήματος εντοπισμού

και εκτίμησης της κατάστασης του ROV σε σχέση με τον στόχο με τη συγχώνευση

πληροφοριών από διαφορετικές πηγές αισθητήρων, (ιι) ένα πρόβλημα ελέγχου ενός υπο-

επενεργοποιημένου υποβρυχίου οχήματος προς τον εγγύς στόχο, (ιιι) πρόβλημα πλήρους

κάλυψης/επιθεώρησης δίκτυα ιχθειοκαλειεργιών. ΄Ενα άλλο πολύ σημαντικό πρόβλημα

στην υποβρύχια ρομποτική είναι η συνεργασία μεταξύ πολλαπλών ρομπότ. Αυτό έχει ως

πλεονέκτημα να επεκτείνει τη χρήση υποβρύχιων ρομποτικών συστημάτων. Οι κύριες

προκλήσεις στην συνεργασία πολλαπλών υποβρυχίων συστημάτων είναι η χαρτογράφη-

ση των ακτών ή θαλάσσιων ζωνών, μεταφορά αντικειμένων και εγκατάσταση αυτών σε

μεγάλα βάθη και η κάλυψη περιοχών με σκοπό την εξερεύνηση ή την προστασία των θα-

λασσών και ωκεανών. Η συνεργασία μεταξύ των υποβρυχίων ρομποτικών συστημάτων

είναι πολύ σημαντική όταν τα αντικείμενα πρέπει να εγκατασταθούν ή να μεταφερθούν

κατά τη διάρκεια υποβρύχιων επιχειρήσεων.

Η αυτόνομη κάλυψη πολλαπλών πρακτόρων σε υπόγεια δίκτυα υπονόμων παρουσι-

άζεται επίσης σε αυτή τη διατριβή. Τα συστήματα δικτύου αποχέτευσης είναι συνήθως

δενδριτικά δίκτυα. Τα κανάλια ροής δικτύου αποχέτευσης είναι χαρακτηριστικά γιατί

σε πολλές περιπτώσεις επιτρέπουν μόνο ένα μόνο ρομπότ επιθεώρησης σε μια δεδο-

μένη θέση λόγω των περιορισμένων διαστάσεων. Τα ρομπότ που λειτουργούν σε τέτοια

δίκτυα μπορούν να ανταλλάξουν θέσεις μόνο στις διασταυρώσεις διαύλων. Οι ασύρμα-

τες επικοινωνίες σε υπόγεια δίκτυα αποχέτευσης είναι πολύ πιο απαιτητικές από ότι σε

εφαρμογές στην επιφάνεια. Ο κύριος δίαυλος μετάδοσης γίνεται μέσω των καναλιών

του υπόγειου δικτύου, συνήθως χωρίς οπτική επαφή και με σοβαρή εξασθένηση στις

στροφές του διαδρόμου και, φυσικά, ζητήματα που σχετίζονται με τις αντανακλάσεις

των διαδρομών.

Η απόδοση των προτεινόμενων μεθοδολογιών επαληθεύεται από ρεαλιστικές προσο-

μοιώσεις σε εικονικά περιβάλλοντα δύο και τριών διαστάσεων (2D και 3D). Επιπλέον, η

εκτεταμένη πειραματική επικύρωση του πραγματικού υλικού πραγματοποιήθηκε σε ελεγ-

χόμενο περιβάλλον στο εργαστήριο Ρομποτικής, Αυτομάτου Ελέγχου και Συστημάτων

Αποφάσεων και σε πραγματικό περιβάλλον (σε ανοιχτή θάλασσα) υπό πραγματικές συν-

θήκες.
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Chapter 1

Introduction

Autonomous robots are making a considerable impact on many aspects of modern life such
as industrial manufacturing, surgical robots, transportation, and exploration of the deep
space and seas. As technology growth is continuous, more and more advances being made
in the area of robotics. For example, embedded controllers (computers) have become more
efficient and powerful in terms of size, capacity, processing power and the same time more
affordable. Recently robotic development receives increased interest from both academia
and industrial disciplines. Robots are now more reliable and they can be used in many
applications supporting humans during complex operations and expanding our limitations
giving new horizons for exploration and understandings such as space explorations, haz-
ardous environments, and precision tasks. The figures below show robotic applications in
every day life; Fig. 1.1(a) shows the amazon warehouse where robots transport the pallets
for one location to another, helping in the classification of the products while in Fig. 1.1(b)
an amazon drone delivers a package.

(a) Amazon warehouse (b) Amazon drone for package delivering

Figure 1.1: Amazon is using robots for warehouse applications

The automobile industry used industrial robot manipulators for the assembly car lines
Fig. 1.2(a). Fig. 1.2(b) shows RCDS Lab’s an underwater robot inspecting an aquaculture
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for the fisheries’ industry needs.

(a) RCDS Lab’s underwater robot for aqua-
culture inspection

(b) Industrial manipulators in automobile
industry

Figure 1.2: Examples for robots usage in industrial sector

Robots also help for planet exploration Fig. 1.3(a). Another growing area for robot
applications is the medical robotic systems where they support doctors in surgery tasks
Fig. 1.3(b). This dissertation covers a wide range of the robotics field from vision-based
algorithms, sensor fusion techniques, controllers development to high-level motion task
planning. Even though the major focus of this thesis is underwater robotic systems it is not
limited to this area since the algorithms were being developed in a framework in order to
satisfy the general area of robotics including mobile and underground robots.

(a) NASA Mars rover (b) The Smart Tissue Autonomous Robot
(STAR), Sheikh Zayed Institute For Pedi-
atric Innovation

Figure 1.3: Robots for space exploration and medical sector
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(a) Google autonomous car (b) Promobot service robot

Figure 1.4: Robots in every day life

1.1 Motivating Applications

The motivation of this work comes from real-world application problems in the robotics
field. In this section, we are presenting the motivations of this work.

1.1.1 Motion and Task Planning

One of the most significant challenges in the robotics area lies in the area of motion and task
planning [20]. Motion planning [69], [68] is the robot’s ability to move in the workspace
while avoiding the obstacles. On the other hand, task planning refers to the robot’s ability
to execute a specific task in the workspace. For example, you can imagine that you have
several robots in your house and you want them to execute some tasks:

• Robot 1 could you bring me a cup of coffee;

• Robot 2 go and clean the kids’ room;

• Robot 3 go outside and cut the grass

However, even for a simple task, its execution by a robot, is not trivial. A simple example
is given below:

Example 1 Consider a mobile robot that is located in specific workspace W and it has to

move from an arbitrary initial position to the desired destination avoiding some obstacles

in the environment, and visiting first the location B, then go to A and finally go to C as

shown in Fig. 1.5.

The Fig. 1.5 indicates the robot R as a blue triangle, the Region of Interests (RoI) in the
workspace W with yellow cycles RoI : {A, B, C} and the elliptic obstacles with red color
O.
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Figure 1.5: Simple example of robot motion task

In the Example. 1 the goal is to be able for a given task specification in a high-level
language, the robot has to automatically translate this specification into a set of low-level
motion controllers in order to accomplish the task Fig. 1.6. A high-level specification is
given by a temporal logic formula [84] (i.e Linear Temporal Logic (LTL) [79]) over envi-
ronmental and controller predicates. Based on the specification, a set of possible solutions
to the problem can be constructed. An LTL formula can be translated in Buchi Automa-
ton [98], [43] taking also into account the robot constraints. The robot control strategy can
be implemented as a hybrid automaton [49] giving the control strategy for the robot.
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Figure 1.6: Motion Task Planning Scheme

1.1.2 Underwater Robotic Systems

Underwater robots are often complex systems that combine mechanical elements as pro-
pellers/thrusters, electromechanical devices such as motors, digital circuits such as proces-
sors and sensors, and software programs such as embedded controllers Fig. 1.7.

Autonomous underwater robots [106], [5] have to accomplish missions in an unknown
and unstructured environment. The mission complexity grows with limitations in robot
sensing and communications. For instance, GPS (Global Positioning System) is not ap-
plicable due to the inefficiency of underwater electromagnetic transmission. In addition,
the vision-based system is limited due to poor visibility in murky waters (even in clean
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Figure 1.7: Saab Seaeye’s Cougar XT

waters visibility is limited to several meters). The actuating system is usually composed
of thrusters and control surfaces; all of them have non-linear dynamics and are strongly
affected by the hydrodynamic effects. One of the major problems in underwater robotic
systems is the localization task due to the communication constraints, and most impor-
tantly the absence of GPS. Due to limited communications of underwater vehicles, they are
obliged to operate independently, without continuous human control, and in many cases,
the vehicles should operate completely autonomously. AUVs and ROVs are currently used
for scientific survey tasks, oceanographic sampling, underwater archeology, aquacultures
inspection, and under-ice survey. Also, underwater vehicles are used for military applica-
tions, such as mine detection and more ambitious applications such as long-term undersea
surveillance. Presently, AUVs are not typically used for sampling or manipulation tasks
like those done routinely by ROVs, as typical work environments tend to be complex and
challenging even to skilled human pilots.

The main sensors that usually are used by underwater robotic systems are as follows:

• Compass. A gyrocompass can provide an estimate of geodetic north accurate to a
fraction of a degree. Magnetic compasses can provide estimates of magnetic north
with an accuracy of less than 1◦.

• Gyroscope. The term gyroscope denotes any instrument measuring inertial angular
rotation;

• Inertial measurement unit (IMU). An IMU provides information about the vehicle’s
linear acceleration and angular velocity. These measurements are combined to form
estimates of the vehicle’s attitude including an estimate of geodetic (true) north from
the most complex units;
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• Depth sensor. The depth sensor measures the water pressure and gives the vehicle’s
depth. These estimates are reliable and accurate;

• Vision systems. Cameras can be used to obtain estimates of relative, and in some
cases absolute, motion and used to perform tasks such as visual tracking of pipelines,
visual inspection tasks, visual servoing or image mosaicking.

In this thesis, the contributions towards an underwater system suitable for visual inspection
tasks for fishnets fault detection as follows:

• The development of advanced sensing for the underwater robot calculating the rela-
tive posture of the ROV with respect to the target with the accompanied software and
hardware development.

• The localization and state estimation problem of the ROV with respect to the target
by fusing information from different sources and sensors.

• The control of an under-actuated underwater vehicle in the proximity to the target.

• The full coverage of fishnet cages by the ROV.

1.1.3 Multi-Agent Coverage

Another interesting topic that is analyzed in the current work is the coverage task un-
der communication constraints in an underground environment by multiple underground
robots. Multi-agent coverage algorithms have been successfully applied by robotic sys-
tems in the past [40] in order to explore a specific area of interest. In underground en-
vironments like sewers and mining, the communication constraints problem between the
agents remains a challenging problem. Distributed algorithms using Voronoi partitions and
Lloyd’s algorithm have been utilized in [27], [28] to tackle the problem. Solutions to the
constrained coverage problem based on virtual potential fields were proposed in [85], [51].
A perimeter surveillance problem using a set of cooperative robots with heterogeneous
speed capabilities under communication constraints is presented in [2] while an investiga-
tion into how a team of robotic agents can self-organize for the exploration of a building,
subject to the constraint of maintaining line-of-sight communications for reactive multi-
agent robotic teams is proposed in [7]. In [83] a multi-agent territory exploration task with
communication constraints is presented.
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1.2 List Of Publications

Journal Papers

1. C.C. Constantinou, S.G. Loizou and G.P. Georgiades, ”A Laser Vision System for
Relative 3-D Posture Estimation of an Underwater Vehicle with Hemispherical Op-
tics”. (under revision, IEEE Journal of Oceanic Engineering)

2. C.C. Constantinou, S. Potyagaylo, S.G. Loizou, ”Towards Multi- Sensor UKF-based
Localization of an Underwater Robotic Vehicle for Aquaculture Inspection Opera-
tions”. (under submission)

3. C.C. Constantinou, S. Potyagaylo, S.G. Loizou, ”Modeling and Control for Under-
water Inspection Operations”. (under submission)

4. C.C. Constantinou and Savvas G. Loizou, ”Automatic Controller Synthesis of Motion-
Tasks with Real-Time Objectives for multi-agent system”. (under preparation)

Conference Papers

1. Christos C. Constantinou and Savvas G. Loizou, ”Cooperative manipulation task by
multiple underwater robots”, (under preparation)

2. Christos C. Constantinou and Savvas G. Loizou, ”Automatic Controller Synthesis
of Motion-Tasks with Real-Time Objectives”, IEEE Conference on Decision and
Control (CDC), Miami, USA, December 17-19, 2018.

3. Savvas G. Loizou and Christos C. Constantinou,” Multi-Robot Coverage on Den-
dritic Topologies Under Communication Constraints”, 55th IEEE Conference on De-
cision and Control(CDC), Las Vegas, USA, December 12-14, 2016.

4. C.C. Constantinou, S.G. Loizou , and G.P. Georgiades, “A Laser Vision System for
Relative 3-D Posture Estimation of an Underwater Vehicle to Mesh-like Targets”,
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Dae-
jeon, Korea, October 9-14, 2016.

5. S. Potyagaylo, C.C. Constantinou, G.P. Georgiades, S.G. Loizou, “Asynchronous
UKF-based Localization of an Underwater Robotic Vehicle for Aquaculture Inspec-
tion Operations”, OCEANS 2015, October 19-22, 2015.
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6. C.C. Constantinou, S.G. Loizou, G.P. Georgiades, S. Potyagaylo, D. Skarlatos, “Adap-
tive calibration of an underwater robot vision system based on hemispherical optics”,
IEEE Autonomous Underwater Vehicles (AUV), Oxford, MS, USA, October 6-9,
2014

1.3 Contributions and Outline

This dissertation comprises both theoretical and applied contributions in the field of Robotics
and Autonomous Systems.

Fig. 1.8 shows the main contributions of this thesis in the field of robotics. The orange
color denotes the contributions of this thesis in each area.
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Figure 1.8: Contribution Scheme

In each chapter, we are introducing the basic notations and preliminaries of the pro-
posed methodologies. The first part of this dissertation consisted of Chapter 2 where a novel
methodology for automatic controller synthesis of motion-tasks with real-time objectives is
presented. In the second part, three chapters present an underwater system suitable for un-
dersea inspection operations. More specifically, in Chapter 3 a Laser Vision System (LVS)
for relative 3-D posture estimation of an underwater vehicle with hemispherical optics is
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presented while in Chapter 4 a sensor fusion methodology for the underwater vehicle lo-
calization is proposed. Chapter 5 presents a hybrid controller for the aquaculture coverage
inspection task. In the third part, Chapter 6 presents a multi-robot coverage methodology
on dendritic topologies under communication constraints. Finally, conclusions and future
work are provided in Chapter 7.

The outline of this dissertation accompanied with the contributions in each chapter is
following below:

In Chapter 2 a novel approach for an automatic controller synthesis of motion tasks
with real-time objectives is presented. One of the most significant challenges in robotics
lies in the area of automatic motion-task planning. The main aim is to be able to specify
a task in a high-level language and the robot compiles this specification into low-level
descriptions in order to accomplish a task. A simple example is a robot being able to
move from an initial position to the desired destination avoiding some obstacles or visiting
specific regions while avoiding some other regions. New applications in the robotics field
such as cooperative tasks from multiple robots and tasks that should be completed in a
specific time interval bring new considerations that have to be addressed in the design
of motion task planning algorithms, due to constraints, and uncertainties of the physical
world. This chapter presents a novel methodology that is able to address some of these
problems and in addition, allows the execution of timed tasks. More specifically, a novel
methodology for synthesizing motion tasks with real-time objectives is presented.

• Christos C. Constantinou and Savvas G. Loizou, ”Automatic Controller Synthesis of

Motion-Tasks with Real-Time Objectives”, IEEE Conference on Decision and Con-

trol (CDC), Miami, USA, December 17-19, 2018.

• Christos C. Constantinou and Savvas G. Loizou, ”Automatic Controller Synthesis of

Motion-Tasks with Real-Time Objectives for multi-agent system”. (under prepara-

tion)

In Chapter 3 the development of one of the sensing modalities of a robotic visual in-
spection system for underwater inspection operations is presented. The work describes the
development of an analytical model for three-medium refraction, that takes into account
the non-linear hemispherical optics for image rectification. It also describes the develop-
ment of a refractive index estimation method, for the medium external to the underwater
vehicle’s dome. The proposed system uses three line-lasers within the field of view of the
camera, thus ensuring consistency in the reflections from mesh-like targets. The algorithms
developed in this work provide appropriately filtered point-cloud data sets from each laser,
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as well as high-level information like distance and relative orientation of the target with
respect to the ROV in real-time. In addition, an automatic calibration procedure, along
with the accompanying hardware for the system has been developed in order to reduce the
calibration overhead required by regular maintenance operations for underwater robots op-
erating in sea-water. Furthermore, an image spatial filter was developed for discriminating
between mesh and non-mesh like targets in the LVS measurements.

• C.C. Constantinou, S.G. Loizou and G.P. Georgiades, ”A Laser Vision System for

Relative 3-D Posture Estimation of an Underwater Vehicle with Hemispherical Op-

tics”. IEEE Journal of Oceanic Engineering (under revision)

• C.C. Constantinou, S.G. Loizou , and G.P. Georgiades, ”A Laser Vision System for

Relative 3-D Posture Estimation of an Underwater Vehicle to Mesh-like Targets”,

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Dae-

jeon, Korea, October 9-14, 2016.

• C.C. Constantinou, S.G. Loizou, G.P. Georgiades, S. Potyagaylo, D. Skarlatos, ”Adap-

tive calibration of an underwater robot vision system based on hemispherical op-

tics”, IEEE Autonomous Underwater Vehicles (AUV), Oxford, MS, USA, October

6-9, 2014.

In Chapter 4 a methodology for localizing an autonomous tethered underwater robotic
vehicle deployed for inspection operations in an underwater environment is presented. The
developed methodology is based on an Unscented Kalman Filter (UKF) to fuse informa-
tion from onboard sensors along with a priori knowledge about the aquaculture’s geometry
and the underwater robot’s hydrodynamics. The proposed algorithm incorporates several
modifications that take into account the sensors’ measurements that are available asyn-
chronously and with varying frequency. The performance of the proposed methodology is
assessed through accuracy and consistency metrics generated from simulation benchmarks.

• S. Potyagaylo, C.C. Constantinou, G.P. Georgiades, S.G. Loizou, ”Asynchronous

UKF-based Localization of an Underwater Robotic Vehicle for Aquaculture Inspec-

tion Operations”, OCEANS 2015, October 19-22, 2015.

• C.C. Constantinou, S. Potyagaylo, S.G. Loizou, ”Towards Multi- Sensor UKF-based

Localization of an Underwater Robotic Vehicle for Underwater Inspection Opera-

tions”. (under submission)
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The next Chapter 5 proposes the development of a robotic underwater system for aqua-
culture inspection tasks and algorithms and techniques for its localization and control in
underwater GPS-denied environments. The localization algorithm uses information from
several sources including an onboard inertial sensor, an onboard camera combined with
line lasers and a priory knowledge about the aquaculture geometry. The control hybrid ar-
chitecture includes an online estimator of the flow velocity around aquaculture provided by
various sensors to compensate for the drift and necessary controllers required to track the
virtual moving target. The proposed algorithms are validated through several simulations
for small-scale aquaculture under a realistic level of noises and disturbances.

• S. Potyagaylo, C.C. Constantinou, S.G. Loizou, ”Visual-Inertial Control of an Un-

derwater Vehicle for Underwater Inspection Operations”, (under submission, con-

ference paper)

• C.C. Constantinou, S. Potyagaylo, S.G. Loizou, ”Trajectory Tracking Control of

an Underwater Vehicle for Underwater Inspection Operations”, (under submission,

journal paper )

Chapter 6 presents a novel algorithm for performing multi-robot coverage on networks
with a dendritic topology where the communication topology is location-dependent and
where the motion of each robot is constrained by the presence of the other robots in the
network. The algorithm provides complete network coverage by the minimum number of
robots, maintenance of communication constraints and robot collision avoidance. The min-
imum number of robots required for coverage is a by-product of the proposed algorithm.
The efficiency of the algorithm is demonstrated through simulation studies.

• Savvas G. Loizou and Christos C. Constantinou, ”Multi-Robot Coverage on Den-

dritic Topologies Under Communication Constraints”, 55th IEEE Conference on

Decision and Control(CDC), Las Vegas, USA, December 12-14, 2016.
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Chapter 2

Automatic Controller Synthesis of
Motion-Tasks with Real-Time Objectives

In this chapter, a novel approach for an automatic controller synthesis of motion tasks with
real-time objectives is presented. One of the most significant challenges in robotics lies in
the area of automatic motion-task planning. The main aim is to be able to specify a task
in a high-level language that can be automatically broken down into low-level controller
descriptions in order to accomplish a task. A simple example is a robot moving from
an initial position to the desired destination avoiding some obstacles or visiting specific
regions while avoiding some other regions. New applications in the robotics field such
as cooperative tasks from multiple robots and tasks that should be completed in a specific
time interval bring new considerations that have to be addressed in the design of motion task
planning algorithms. Since robots belong to our physical world are subject to physical laws,
constraints, and uncertainties. This chapter presents a novel methodology that is able to
address some of these problems and in addition, allows the execution of timed tasks. More
specifically, a novel methodology for synthesizing motion tasks with real-time objectives
is presented. The proposed methodology utilizes Linear Temporal Logic (LTL) to define
the motion task sequencing. Timed motion objectives are handled by an underlying hybrid
automaton that utilizes the concept of Navigation Transformation (NT) to provide a time-
abstraction of the navigation tasks. This enables real-time execution of the navigation tasks
with analytical guarantees on the safety and the execution time. The resulting system is
correct-by-construction and the performance of the proposed methodology is demonstrated
through non-trivial simulations. The results in this chapter were originally presented by the
author in [24].
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2.1 Introduction

One of the most interesting and challenging topics in the field of robotics is the motion
task planning. During the last decade the use of formal methods has played a leading role
in the development of the field. Formal high level languages such as Linear Temporal
Logic (LTL) [89], [79], Computational Tree Logic (CTL) [21], Metric Temporal Logic
(MTL) [64], and Metric Interval Temporal Logic (MITL) [4] have been successfully used
for motion task specification and motion planning.

Several studies have tackled the problem of robot motion planning utilizing model
checking techniques to satisfy formulas expressible in LTL such as in [34]. In [45], utiliz-
ing model checking, the authors present a systematic way for synthesizing a hybrid control
strategy for motion and action planning for an autonomous robot under LTL task specifica-
tions. A fully automated framework for control of linear systems under LTL specifications
is proposed in [62] and [95]. In [65] a methodology for controlling a group of robots sat-
isfying a high-level user-specified behavior is proposed, where the behaviors are expressed
in a subset of LTL, capturing reactive tasks. In [33], the authors present a design of closed-
loop hybrid controllers that guarantee the generation of continuous robot trajectories that
satisfy temporal specification but not real-time objectives. An efficient reactive controller
synthesis for a fragment of linear temporal logic that can be used to specify common mo-
tion planning tasks such as safe navigation, response to the environment, surveillance, and
persistent coverage is proposed in [103]. In [73] a methodology for automatically synthe-
sizing motion tasks based on LTL specifications is described.

One important objective for the motion task planning problem is to be able to specify
motion tasks with real-time constraints, and this is the main topic of the current work. Con-
sider a scenario, where a robot is given a specific time frame to complete a task. For exam-
ple, a worker robot has to continuously cycle through a motion task that requires going to
work-cell B from anywhere on the work floor after exactly 20 seconds, picking up a pack-
age and then delivering it to work-cell A after exactly 10 seconds. Several works toward
this goal have appeared in the literature. In [70], MTL is utilized for switching controller
synthesis on finite-state abstractions of dynamical systems. In [77], [4], [14], the use of
MITL is proposed, that leads to non-deterministic Timed Automata. The non-determinism
complicates the task of controller synthesis problems and typically model checking tech-
niques are utilized to derive a solution. In [110], [82] model checking techniques were
utilized to find a feasible solution. The main aim of the current work is the development
of a methodology which is able to tackle timed tasks in a real-time in a more efficient way
(in terms of correctness by construction, absence of non-determinism related issues, and
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increased computational efficiency) compared to real-time languages (e.g. MTL, MITL),
and without the need to resort to model checking techniques.

The main contributions of this work are :

• The Time Abstracting Hybrid Automaton (TAHA) gives us the advantage of com-
bining the Navigation Transformation (NT) [71] with a fragment of LT L, the LT L−u.
The timed navigation problem and the task sequencing can thus be decoupled, pro-
viding simple and efficient solutions.

• The proposed methodology provides to a correct by construction solution for auto-
matic synthesis of motion tasks problem with real-time objectives.

The concept of Navigation Transformation [71] which provides an analytically guaran-
teed time abstracted solution to the motion planning problem, provides the required ma-
chinery, to enable automatic controller synthesis approaches like [73], after appropriate
adaptation, to tackle the problem of controller synthesis of motion tasks, with real-time ob-
jectives. The rest of this chapter is organized as follows: Section 2.2 presents preliminary
notions and definitions while section 2.3 introduces the approach. Section 2.4 presents the
simulation results and finally Conclusions are provided in section 2.5.

2.2 Preliminaries

In this section, we will introduce the necessary terminology and definitions for the devel-
opment of the proposed methodology.

2.2.1 Fragment of Linear Temporal Logic (LT L−u)

A fragment of LTL that the ”Until” U operator is not considered, is presented below. Note
that φ1U φ2 guarantees that the φ2 will eventually occur. In our case a weaker property is
needed, which states that φ1 holds continuously either until the next occurrence of φ2 or
throughout the sequence.

Definition 1 An LT L−u formula over the set P of atomic proposition is formed according

to the following grammar:

φ ::= true | p | φ1∧φ2 | ¬φ | © φ | φ1W φ2

where p ∈ P. The Boolean connectors ”conjunction” ∧ and ”negation” ¬, and two basic

temporal modalities © (next) and W (Unless). The atomic proposition p ∈ P stands for

the state label p in a transition system.
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From the basic LTL operators we can derive additional standard Boolean and temporal
operators. More specific, we can derive the ”always” � operator as follows:

�φ = φW false

Additionally, other operators such as ∨ ”disjunction” and⇒ ”implication” can be derived.
From the set of atomic proposition P we can define the well formed formulas (wff) as
follows:

• true, false, p,¬p are wff for all p ∈ P;

• if φ1 and φ2 are wff, then φ1∧φ2 and φ1∨φ2 are wff;

• if φ1 and φ2 are wff, then© φ1, and φ1W φ2 are wff formulas;

The wff are interpreted over sequences of states σ : N→ 2P and position j. For any p ∈ P,
wff formulas φ1, φ2 and i ∈ N :

• (σ , j) |= p iff (σ ,0) |= p

• (σ , j) |= ¬p iff (σ , j) 2 p

• (σ , j) |= φ1∧φ2 iff (σ , j) |= φ1 and (σ , j) |= φ2

• (σ , j) |= φ1∨φ2 iff (σ , j) |= φ1 or (σ , j) |= φ2

• (σ , j) |=© φ1 iff (σ , j+1) |= φ1

• (σ , j) |= φ1W φ2 iff (σ , j) |= φ1U φ2 or (σ , j) |= �φ1

The full syntax and semantics of the LTL formula can be found in App. A.1.

2.2.2 System Model

In this work we assume that the system is described by the first order holonomic kinematic
model as:

ẋ = u (2.1)

where x ∈ Rn is the robot’s position, and u ∈ Rn is the control input. Let W be the robot’s
workspace. The initial configuration of the robot is denoted as x0 ∈

◦
W , and the destination

configuration as xd ∈
◦

W .
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2.2.3 The Navigation Transformation

We will need some definitions from [71]. The Navigation Transformation is defined as
follows.

Definition 2 [71] A Navigation Transformation is a diffeomorphism Φ :
◦

W→Pn ( Φ :
◦

W→
P̃n), that maps the interior of the workspace to a point-world (with spherical boundary).

Definition 3 [71] (Time Abstraction of the Motion Planning Problem): Given a static

workspace and a finite duration T > 0, determine (if it exists) the set of control actions

u(t), t ∈ [t0, t0 +T ] that will drive system (2.1) from any initial configuration x(t0) = x0 to

a given destination configuration x(t0 +T ) = xd , avoiding collisions.

We will be using the time abstracting controller

u = uNT (x,xd, t,T )

that is proposed in Proposition 3 of [71] with the scheduling function sT (t) as defined
in Definition 8 of [71]. This controller analytically guarantees that for almost all initial
conditions, a time abstracted solution to the motion planning problem with duration T will
be provided.

2.2.4 Hybrid Automaton

A Hybrid Automation is a dynamical system that describes the evolution in time of the
values of a set of discrete and continuous variables [3], [16]. We will need the following
definition:

Definition 4 (Hybrid Automaton) A hybrid automaton H [16] is an eleven tuple H =

(Q,X ,E,U, f ,δ , Inv,guard,ρ,q0,x0) where,

• Q is a set of discrete states or modes;

• X is a set of continuous state space (normally Rn);

• E is a finite set of events;

• U is a set of admissible controls (normally U ⊆ Rm);

• f is a vector field, f : Q×X×U → X;

• δ is a discrete state transition function, δ : Q×X×E→ Q;
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• Inv is a set defining an invariant condition (also called domain), Inv⊆ Q×X;

• guard is a set defining a guard condition, guard ⊆ Q×Q×X;

• ρ is reset function, ρ : Q×Q×X×E→ X;

• q0 is an initial discrete state;

• x0 is an initial continuous state.

2.3 Approach

To better demonstrate the proposed approach, consider the following simple example:
Assume a robot that has to navigate from its current location to xi

d in T i time units, in
an obstacle cluttered environment. Let predicate Cxi

d ,T
i be active when controller u =

uNT (x,xi
d, t,T

i) is fulfilling the above task. The set of predicates P can be defined as :

P = Cxi
d ,T

i (2.2)

where Cxi
d ,T

i is the controller predicates parameterized with the goal xi
d and time constraints

T i.

2.3.1 The Time Abstracting Hybrid Automaton (TAHA)

From Def. 4 we can derive the TAHA T as illustrated in Fig. 2.1. Let q ∈ Q, z =[
x(t)>, τ(t)

]> ∈ X where τ(t) denotes a real-time clock. In the starting state, q = 0 and z
remains unchanged since ż = f (0,z,0) = 0. A transition to q = 1 can only occur when an
exogenous event α ∈ E is activated. The transition function δ at this location is defined as:

δ (0,z,e) =

{
1 if e = α

0 otherwise

to indicate that a transition from state 0 to 1 takes place when event α occurs independent
of the values of z. When in state q = 1, the real-time clock is started with τ̇ = 1 and ẋ = u,
i.e. ż = f (1,z,u) = [u> 1]>, where the time abstracting controller u is parameterized with
the destination configuration and the duration T , i.e. u = u(xd,T ). The invariant condition
[τ < T ] associated with q = 1 is satisfied while the system is in this state. The guard
condition τ = T is activated when the time is out in state q = 1. The guard indicates that
the operation is finished at the pre-defined time and the system has to move in another
state. This acts as an endogenous time out event which causes the transition to state 2. The
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navigation task completion at the specific time instant is guaranteed by the underlying time
abstracting controllers u. The state transition function in this location takes the form:

δ (1,z,e) =

{
2 if τ = T
1 τ < T

The reset condition is τ ′ = 0 while the real-time clock is stopped in state 2.
In state 2, the system is waiting an exogenous event β ∈ E. When the event β occurs

then the automaton goes back to the state 0 and it is waiting for event α to repeat the
procedure.

δ (2,z,e) =

{
0 if e = β

2 otherwise

Figure 2.1: The Time Abstracting Hybrid Automaton (TAHA) T

2.3.2 Predicates and Formulas

Since the current work deals with single robot motion task planning, a predicate pi signi-
fying motion to a specific destination configuration (within a specific time) should exclude
any other destination configuration predicate being true at the same time. Hence we define
the individual destination predicate Pi as:

Pi = pi
∧
j 6=i

¬p j (2.3)
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Let P= {P1, . . . ,Pn} be the individual destination predicate set. The following formula
is useful for defining sequences:

Seq(P) = P1∧©(P2∧©(. . .∧©Pn)...)

Define the set rotation operator:

roti(P) = {Pi, . . . ,Pn,P1, . . . ,Pi−1}

where |roti(P)| = |P|, where | · | denotes the cardinality of the set. The following formula
is useful for defining cycles:

Cycle(P) =
∨

i∈{1...|P|}
Seq(roti(P)) (2.4)

2.3.3 LTL Specifications to Büchi Automaton

Definition 5 A Büchi Automaton (BA) is a tuple A = (S,Σ,δb,S0,F) where:

• S is the finite set of states,

• Σ is a finite alphabet,

• S0 ⊆ S is a set of initial states,

• δb : S×Σ→ S gives the set of transitions and,

• F ⊆ S is a set of accepting states

The language accepted by such automaton is L(A) = {σ | there is a run ρ over σ such that

in f (ρ)∩F 6= /0}. A language L ⊆ Σω is said to be ω − regular if it is accepted by some

Büchi automaton.

Several LTL to Büchi automaton translators are available in the literature, e.g. [32], [41].
Following similar arguments and analysis as in [73], define the driving function:

∆ : Σ×Q→ Rn×R+×E

where E = {α,β} is the TAHA driving component. We can state the following: The
driving function here is used to activate transitions in the BA and TAHA based on the
outgoing labels available at the current state of BA and the current state of TAHA. The
system architecture is depicted in Fig. 2.2. In each state i ∈ S of a BA, let ls,i ⊂ Σ be the set
of available labels (since BA can be non-deterministic). Let li = ls,i[1] be the first element
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of ls,i. Each label li corresponds to a destination predicate pi = Cxi
d ,T

i . Let Xd(li) = xi
d , and

T (li) = T i. Then the transition function is defined as follows:

∆(li,0) =
[
xi

d, Ti, α

]
∆(li,2) =

[
xi

d, Ti, β

]
The system starts with all controller predicates being false. In each state the sequence

generator, using the driving function provides the controller parameters and appropriate
events to TAHA. Every time the driving function returns a β event the sequence generator
converts the corresponding transition label to truth enabling the transition to the next state
of the BA.

Buchi Automaton

Sequence
Generator

TAHA

System

Predicate
 truth vector 

Outgoing transition 
label 

       State
    Control 

 

LTL formula

Figure 2.2: Information flow diagram for the proposed architecture
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2.4 Simulation Results

In order to demonstrate the effectiveness of our methodology, we have set up a simulation.
In the following case study, let us consider the environment with obstacles as shown in Fig.
2.4.

Assume we have a surveillance robot that has to continuously cycle through a motion
task that requires going to location A from anywhere on the workspace after exactly 5
seconds, and then visiting location B after exactly 8 seconds, and then going to location C
in 3 seconds and finally returning to location A in exactly 5 seconds. Note that kinematic
constraints are beyond the scope of the current work.

The table I shows the destination configuration and the duration tasks. Consider the

Xd(Pi) T i(Pi)(sec)
p1 [-4, 1] (location A) 5
p2 [3, -1] (location B) 8
p3 [2, 1] (location C) 3

Table 2.1: Destination configuration and the duration

following LT L−u formula :
φ = P1∧�Cycle(P) (2.5)

The resulting Büchi automaton from the formula above according Eqs. 2.3 and 2.4 and the
tasks table 2.1 is shown in Fig. 2.3.

s0start

s1

s2

P1 P2

P3

Figure 2.3: The resulting Büchi automaton under φ

where P1,P2,P3 can be derived from Eq. 2.3 as follow:

P1 = (p1)∧¬(p2)∧¬(p3)

P2 = (p2)∧¬(p1)∧¬(p3)

P3 = (p3)∧¬(p1)∧¬(p2)
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Figure 2.4: The complete trajectory of robot

The Fig. 2.4 shows the trajectory of the robot avoiding the obstacles in the workspace.
The arrows denote the direction of the robot and the A, B and C are the goals location that
robot cycles through in specific time durations. The blue ellipsoidal shapes illustrate the
obstacles. The simulation results show that the robot could successfully complete the tasks
under real time specifications.

Figs. 2.5-2.8 illustrate the time that the robot needs to move to each location. More
precisely, Figs. 2.5-2.8 show that the robot can successfully satisfy the motion task with
real-time constraints i.e. (move from a random initial position in workspace to the goal
destination A, avoiding obstacles in specific time).

2.5 Conclusions

In this chapter, we propose a novel methodology for synthesizing motion tasks with real-
time objectives. The main advantages of the presented methodology is a correct by con-
struction solution and the utilization of the Navigation Transformation by a fragment of
LTL. This approach decouples the time abstracted navigation problem from the task se-
quencing problem, simplifying the solution. The proposed methodology was verified by
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Figure 2.5: Initial position to A
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Figure 2.6: A to B

non-trivial simulation results.
Further research issues include addition of allowed and forbidden regions in the set of

predicates, agents with input constraints, and real world hardware experiments. Moreover,
cooperative tasks with multiple agents are under investigation.
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Figure 2.7: B to C
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Figure 2.8: C to A
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Part III

Underwater Robotic Systems
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Chapter 3

A Laser Vision System for Relative 3-D
Posture Estimation of an Underwater
Vehicle with Hemispherical Optics

This chapter presents a novel Laser Vision System (LVS) for underwater vehicles. It is suit-
able for measuring the relative posture from both mesh-like and solid targets in underwater
environments. The system was developed in the framework of the AQUABOT project [6]1,
a research project dedicated to the development of an underwater robotic system for in-
spection of offshore aquaculture installations. The work describes the development of an
analytical model for three-medium refraction, that takes into account the non-linear hemi-
spherical optics for image rectification. It also describes the development of a refractive
index estimation method, for the medium external to the underwater vehicle’s dome. The
proposed system uses three line-lasers within the field of view of the camera, thus ensur-
ing consistency in the reflections from mesh-like targets. The algorithms developed in this
work provide appropriately filtered point-cloud data sets from each laser, as well as high-
level information like distance and relative orientation of the target with respect to the ROV
in real-time. In addition, an automatic calibration procedure, along with the accompanying
hardware for the system has been developed in order to reduce the calibration overhead
required by regular maintenance operations for underwater robots operating in sea-water.
Furthermore, an image spatial filter was developed for discriminating between mesh and
non-mesh like targets in the LVS measurements. Finally, a set of experimental results in
controlled laboratory environment as well as in real conditions at offshore aquaculture in-
stallations demonstrate the performance and robustness of the system. The results in this
chapter were originally presented by the author in [26], [25] and [22].

1This work was supported by the European Regional Development Fund and the Republic of Cyprus
through the Research Promotion Foundation under research grant AEIΦOPIA/ΓEΩPΓO/0311(BIE)/08.
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3.1 Introduction

Underwater Robotics have received an increasing interest from research and industry dur-
ing the last years. Currently, underwater robotic vehicles are used in a wide range of appli-
cations ranging from exploration and mapping of underwater environments to monitoring
and inspection of undersea infrastructures such as pipes and ships [105], [102] and [12].
Underwater operations typically raise more challenges than equivalent ground or air opera-
tions. Typical examples of such challenges relate to communications, localization, multiple
mediums inside and outside the robot and also medium variations with the depth, temper-
ature and presence of pollutants, mechanical strength and operation issues, low visibility,
corrosive environment, etc.

The motivation of this work was the development of one of the sensing modalities of
a robotic visual inspection system for offshore aquaculture installations. The particular
modality, that is based on visual information, enables the relative posture estimation of the
underwater robot with respect to the aquaculture fish-net without having to introduce any
modifications on the aquaculture’s structure.

The main contributions of this work are:

1. An analytical model for a three-medium refraction that takes into account the non-
linear hemispherical optics for image rectification and refractive index estimation of
the external medium.

2. An automatically calibrated Laser Vision System (LVS) suitable for measuring the
relative posture from both solid and mesh-like targets in underwater environments.

3. A spatial filter for discriminating LVS measurements from mesh-like structures and
measurements from other artifacts in the environment.

The problem of the camera calibration in air has been widely investigated in several re-
search works [97], [48]. In underwater environments, implementation of these techniques
is non-trivial due to multi-medium refraction, particularly when cameras are housed. An
examination of the flat refractive geometry for underwater applications is presented in [96].
The refractive index determines how much light is bent, or refracted, when light moves
from one medium to another. In [55] a camera calibration method is presented, includ-
ing a parameterization of a flat port underwater housing. The method used an analysis by
synthesis approach in order to become independent from errors in corner detection for the
geometric parameters. However, underwater robots are typically designed with hemispher-
ical domes to be able to mechanically withstand high pressures in deep waters. In addition,
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this design mitigates the effects of hydrodynamics by reducing the drag coefficient. In [66]
it is analyzed why the perspective model is not valid for hemispherical optics and a com-
parative study of the errors induced by refraction is provided, when cameras are mounted
behind hemispherical or planar air/water interfaces.

Structured light systems are widely used in vision-based systems to perform a wide
range of applications such as 3D reconstruction, scanning and range measurements [93]
and [94]. Previous studies describe underwater ranging systems which project a laser stripe
or line [29], [58], [100]. In [58] a methodology for defining the position vector of an ROV is
proposed, using its own camera signal and the information provided by two laser pointers.
In [29] a methodology of orientation estimation is also introduced, projecting a laser stripe
on the image plane. A low cost underwater laser range-finder based upon a simple camera
and parallel laser line setup is proposed by [15], where the distance calculation is based
on the pinhole camera model. In [46] a solution that utilizes each laser independently
is presented, thus a range estimate is achieved for each laser. A stereo structured light
system is proposed in [74] for underwater inspection operations. More specifically, two
methods for calibrating a stereo structured light system for perception in dry or underwater
environments are presented. An underwater LVS is proposed by [81] using a single laser
pointer when the camera is housed by a dome. Nevertheless, the authors do not consider
the refractive index problem with the restrictive assumptions on the setup, that the camera
lens must be mounted at the center of the dome and no camera tilting is accounted for.
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(a) CAD Model of ROV.

(b) Integrated System with Laser Vision System.

Figure 3.1: Design and Integration of the LVS on the Videoay Pro-4 platform.

This work tackles the development of an analytical model for the hemispherical optics
physics, that describes the path of light rays which are refracted through three different
interfaces; air, acrylic(dome) and water. This is required for appropriately interpreting the
laser reflection images from an array of line lasers and producing the relative posture of
the robot with respect to a mesh-like target, that can then be utilized for underwater local-
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ization, tracking and navigation tasks. The developed methodology provides the capability
of on-line estimation of the refractive index of the external medium and on-line adaptation
of the model to the estimated refractive index. This is particularly useful in operational
scenarios where the robot is operating close to aquacultures (due to the presence of dis-
solved/liquid biomass in their proximity) or for the detection of leaks or pollutants that
affect the refractive index of sea water. Utilizing the analytical model, a methodology is
proposed to automate the LVS calibration process in air, a task that is typically required af-
ter every maintenance cycle. Determining the posture with respect to mesh-like structures
is non-trivial in environments where additional artifacts cause laser reflections (e.g. fish,
air-bubbles, undissolved waste products, etc.). To this extend we developed a spatial filter
for discriminating reflections from mesh and non mesh-like structures in order to correctly
determine the relative posture of the ROV.

The developments presented in this work were carried out for partially fulfilling the
needs of the AQUABOT project [6]. A VideoRay Pro-4 ROV was used as the base platform
for the experiments and a custom laser system was designed, constructed and integrated
with the VideoRay Pro-4 platform (see Fig. 3.1 (a) and (b)).

The rest of the chapter is organized as follows: Section 3.2 provides the analytical
model for a light ray that it is refracted in three different mediums before it reaches the
camera sensor, Section 3.3 provides a novel LVS that considers the hemispherical optics
suitable for measuring the relative posture for solid and mesh-like structures in underwater
environments. In Section 3.4 a spatial filter for mesh-like targets identification is pre-
sented while Section 3.5 demonstrates the proposed system in controlled laboratory and
real applications experiments. Finally, Section 3.6 concludes with a summary discussion,
conclusions, and future work.

3.2 Three-medium refractive model, calibration and adap-
tation

3.2.1 Analytical Model

In this section we describe the camera calibration procedure for a system with hemispheri-
cal optics. The intrinsic camera matrix [47] is described below:

K =

 fx α cx
0 fy cy
0 0 1


where fx and fy are the focal length, cx and cy are the image center in pixels and α is a

skew factor.
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Assuming that the camera has been calibrated in air (single medium) to determine its in-
trinsic and extrinsic parameters (e.g. following [48]) with respect to the < S′ > coordinate
system, we can substitute the camera optics in the air with the pinhole model. Hereafter
when we are referring to the image plane it will understood as the image plane correspond-
ing to the pinhole model after the camera has been calibrated.

Assume a light ray traveling through a certain route through three different mediums
until it reaches the image plane. From Snell’s law it is known that every time a light ray
changes medium, it is refracted with a certain angle. Fig. 3.2 shows the propagation of a
light ray from the point U that is located in the water until the point P that lies in the image
plane. The red line represents the actual light ray path. The purple dashed lines represent
the internal and external radii of the hemispherical dome. < S′ > indicates the origin of
the dome coordinate system and the point L′ = [X ′l ,Y

′
l ,Z
′
l ]

T is the center of the lens of the
camera. Point U ′ is the point viewed outside the dome, and corresponds to the point P′

in the image plane, that has coordinates with respect to the < S′ > coordinate system as
follows:

P′ = L′+R ·

 u
− f
v

 (3.1)

where R is image-plane rotation matrix (camera extrinsic parameter), u and v are in the
pixel positions in image-plane attached coordinate system, and f is the focal length of the
camera. Let < S > be the coordinate system resulting from rotating < S′ >, according to
R. Then

P = L+

 u
− f
v

 (3.2)

where P = [Xc,Yc,Zc]
T and L = [Xl,Yl,Zl]

T are the pixel location in the image-plane and
lens position in the < S > coordinate system. For the rest of the analysis in this subsection
will assume that the reference coordinate system is < S > unless otherwise stated.

Points A and pS
D are the intersection points of the light ray with the medium’s bound-

aries. The position vector of a point on the radius of the internal dome r̄ with spherical
coordinates (r,θ ,φ) is given in Cartesian coordinates as:

x = r cosθ cosφ (3.3a)

y = r sinθ cosφ (3.3b)

z = r sinφ (3.3c)
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Figure 3.2: Geometric setup of the hemispherical refraction problem. The angles are exag-
gerated for demonstration purposes.

The position of point A can be expressed with the position vector d̄i1(λ1) as follows:

d̄i1(λ1) = P̄+λ1(L̄− P̄) λ1 ≥ 0 (3.4)

Using the Eqns. (3.2)-(3.4) we arrive at the following system:

Xc +u+λ1(Xl−Xc−u) = r cosθ cosφ (3.5a)

Yl− f +λ1 f = r sinθ cosφ (3.5b)

Zc + v+λ1(Zl−Zc− v) = r sinφ (3.5c)

The solution of the system gives the expression of the unknown λ1. Substituting λ1 we
evaluate the angles φ and θ as shown below:

φ = sin−1
(

Zc + v+λ1(Zl−Zc− v)
r

)
(3.6)

θ = sin−1
(

Yl− f +λ1 f
r cosφ

)
(3.7)
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The refraction is governed by the Snell’s law to relate the light paths of incident light
and refracted light with respect to the surface normal of the refractive plane:

sinδ1

sinδ2
=

u1

u2
=

nd

na

Applying Snell’s Law we determine the refractive angle:

δ2 = sin−1
(

na

nd

)
sin(δ1) (3.8)

where

δ1 = cos−1
(

d̄i1 · r̄
|d̄i1||r̄|

)
(3.9)

We introduce the perpendicular vector C1 on the plane that is defined by the vectors r̄

and d̄i1,

C1 = r̄× d̄i1 (3.10)

where (×) denotes the vectors cross product. We assume that C1 is also perpendicular on a
unit vector ρ̂2 that lies in the refracted light ray. Therefore,

C1 · ρ̂2 = 0 (3.11)

r̄ · ρ̂2 = cosδ2 (3.12)

where (·) denotes the vectors dot product.
In order to complete the picture we need to enter the equation of the unit vectors,

‖(ρ̂2)‖= 1 (3.13)

The solution of the system above determine the vector ρ̂2 which means that the only
unknown to evaluate the second vector is λ2, which is satisfied the equation below:

d̄i2(λ2) = A+λ2ρ̂2 λ2 ≥ 0 (3.14)

We deal this problem in a similar manner of the first point on the domain of the exterior
hemisphere and we arrive at the equation that calculates the scalar function λ2,

λ
2
2 +2λ2(A · ρ̂2)+ |A2|−R2 = 0 (3.15)
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Since we get the value of λ2 we determine through the Snell’s law the angles of refrac-
tion δ3 and δ4 and continue with the third point U outside of the dome. The equation below
describes the light ray from point pS

D to U:

d̄i3(λ3) = pS
D +λ3ρ̂3 λ3 ≥ 0 (3.16)

Note that the point pS
D is calculated by the Eq. 3.14. Now we can provide a generic function

for the hemispherical dome model of the form:

D(u,v)→ (n̂S′
D , pS′

D) (3.17)

where (u,v) is the pixel coordinates on the image-plane, nS′
D is a unit vector directed to the

light source U ′ rooted at the point pS′
D on the dome surface, all in the < S′ > coordinate

system.

3.2.2 Model Calibration and Adaptive Refractive Index

The accuracy of the model, depends heavily on the accuracy of the various dome parameters
used. For this reason a procedure for calibration of the analytical dome model was devised
and is described below. The procedure consists of two steps. In the first step a series of
images of chessboards were taken from different, known locations with respect to < S′ >

as shown in Fig. 3.3.
The images were analyzed using ROS and OpenCV, and a file was produced containing

a series of image-plane points matched with their corresponding (x, y, z) coordinates in
3D space. This file was used for the second step of the dome calibration procedure. For
the second step, a function of the dome projecting each image-plane point on the corre-
sponding plane of known distance from the dome was developed. The function contains
best known values for all dome parameters including image-plane position and orientation,
lens position with respect to image-plane, dome size and refractive index, and air refractive
index as it is described in previous Section 3.2.1. In order to determine each point U and
perform the camera calibration, each ccd point is traced towards a plane of known position
from the origin of the dome < S′ >. The plane (chessboard placement) is perpendicularly
placed along the y-axis of the ROV as shown in Fig. 3.1(a) .

The chessboard plane Pcb in the < S′ > coordinate system is provided by:

rb,in̂S′
b,i = dS′

b (3.18)
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(a) (b)

(c) (d)

Figure 3.3: Chess board patterns at know locations for the calibration of the dome model.

where rb,i is any point living on Pcb and dS′
b , n̂S′

b can be determined since Pcb is known.
The combination of Eq. 3.16 and Eq. 3.18 eliminates the λ3 parameter and gives the ex-
pression below:

pS′
b,i = pS′

D ,i +

(
dS′

b − pS′
D ,in̂

S′
b

n̂S′
D ,in̂

S′
b

)
n̂S′

D ,i (3.19)

where pS′
b,i is the intersection point between the line di3 and the Pcb . As the chessboard

and its squares are of known dimensions and placement, the actual point pact is of known
( x, y, z) coordinate.

An error function was developed to represent the difference between the actual and
the estimated 3D points (pact − pb,i). The Levenberg-Marquardt algorithm [75] was used
to minimize the error in the function parameter values, thus fine tunning the parameters,
getting the minimum error values based on the input points. In order to determine the
refractive index of the medium during a normal operation of the ROV, a target is fixed at a
known location in view of the image-plane (fixed on ROV) as shown in Fig. 3.4. A similar
algorithm to the one used for dome calibration above was developed with the only variable
parameter being the refractive index of the medium (outside the dome). A background code
runs the algorithm while the ROV is operated, indicating the estimated refractive index on
screen in real time.
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Figure 3.4: The fixed target for refractive index calculation.

3.3 Laser Vision System (LVS)

3.3.1 Approach

In this section we describe the LVS as it shows in Fig. 3.1. The lasers housed by aluminium
cases, were custom designed and built by the authors for the needs of the underwater op-
erations. Each laser is mounted in a different direction for covering a wide range of appli-
cations such as the seabed, the sea surface, obstacles avoidance, object geometry recovery
and range measurements of particular targets. The OpenCV library [13] was used for the
laser light detection by the camera sensor. More particular, we use a threshold filter on the
rectified image as shown in Fig. 3.11(b). Since we have three lasers, we have to classify
which points belong to which laser. For this reason we partition the thresholded image
into three partitions and apply a mask to throw away pixels that belong to intersecting laser
images in the same region.

The procedure for recovering the distance measurements form the laser images is as
follows:

Let pPi be the i’th image-plane pixel corresponding a laser reflection on the target.
Then from the dome model (Eq. 3.17) we have:

D(pPi)→ (n̂S′
D i, pS′

D i) (3.20)

Hence the line Li connecting point pS′
D i with the reflection target U is provided by:

Li(λ ) = pS′
D i +λ n̂S′

D i, λ ≥ 0 (3.21)

The laser plane for laser ` in the < S′ > coordinate system is provided by:

r`n̂S′
` = dS′

` (3.22)
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where r` is any point living on the laser ` plane and parameters n̂S′
` and dS′

` are the
parameters of each laser determined via the calibration procedure. Then the target position
U in < S′ >, denoted by pS′

w,i is determined by taking the intersection of line Li with the
laser ` plane by eliminating λ as:

pS′
w,i = pS′

D ,i +

(
dS′
` − pS′

D ,in̂
S′
`

n̂S′
D ,in̂

S′
`

)
n̂S′

D ,i (3.23)

where dS′
` , nS′

` are laser calibration parameters for each laser `. Eq. (3.17) combined with
eq. (3.23) provide a target relative localization function of the form:

T`(px, py)→ pS′
w (3.24)

Table 3.1: Laser Specifications

Wavelength Power Supply Dimensions
532nm < 20 mW,cw 3 VDC Ø(12 x 33.5 x 51.5) mm

3.3.2 Relative 3-D Posture Estimation to Mesh-Like Targets

In order to estimate the relative posture to a mesh-like target as shown in Fig. 3.5 the
adopted approach is to fit the LVS measurements to a 3-D surface and then deduce the
relative posture to the surface. In the current work we will fit the LVS measurements from
at least two line-lasers’ target reflections to a 3-D plane.

Assume laser ` induces n` of image-plane pixels to light up by its reflection on the
target. Denote by P` the n`× 2 matrix containing the pixel coordinates of the n` pixels.
Then from eq. (3.24) and with a slight abuse of notation we have that T`(P`) = PS′

w,` are the
3-D positions of the laser reflections in < S′ >. Given k non co-planar line lasers `1, . . . `k

we can produce the augmented matrix:

PS′
w =

 PS′
w,`1
...

PS′
w,`k

 (3.25)

Since the target plane cannot physically pass from the origin, the plane equation in the
< S′ > frame can be written as:

r̄S′ ·
n̂S′

p

dS′ = 1 (3.26)

41



(a) Mesh-like target. (b) Fishnet Structure.

(c) Aquaculture Fishnet.

Figure 3.5: Using a line-laser based LVS to determine the relative posture to a mesh-like
target.

where r̄S′ is any vector connecting < S′ > with a point on the target. Then

n̂S′
p

dS′ = (PS′
w )

†

 1
...
1

 (3.27)

where (PS′
w )

† is the left pseudo-inverse of PS′
w that is guaranteed to be non-singular as

long as our lasers are non co-planar and have non co-linear target projections. From this we
can immediately extract the relative posture to the mesh like target that comprise the plane’s
normal n̂S′

p and the distance to the plane dS′ > 0, by noting that
∥∥∥n̂S′

p

∥∥∥= 1. We have to note
here that due to the planar symmetry assumption, only relative pitch and relative yaw can
be determined i.e. rotation of the ROV along the plane’s normal cannot be evaluated. This
can be achieved only in the case of asymmetric (non-planar and non-spherical) targets.
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However, this is beyond the scope of the current work.
Now, using the unit direction vectors x̂S′, ŷS′, ẑS′ of the coordinate system < S′ >, the

relative pitch can be extracted by projecting the plane’s normal vector along the y−z plane,
as:

θS′ =
π

2
−acos

[
(n̂S′

p )
T · (I− x̂S′ · x̂T

S′) · ẑS′∥∥(n̂S′
p )

T · (I− x̂S′ · x̂T
S′)
∥∥
]

(3.28)

and the relative yaw can be extracted by projecting the plane’s normal vector along the
y− x plane, as:

ψS′ =
π

2
−acos

[
(n̂S′

p )
T · (I− ẑS′ · ẑT

S′) · x̂S′∥∥(n̂S′
p )

T · (I− ẑS′ · ẑT
S′)
∥∥
]

(3.29)

3.3.3 Automatic Calibration

Underwater vehicles are often exposed in harsh conditions i.e sea water (salinity), sun and
overworked by pressure. To this end, system and components require regular maintenance
after operations such as cleaning and sealing tests. Maintenance procedures require regular
disassembly of the LVS as well, which in turn requires re-calibration to ensure accurate
readings. In this subsection we present an automatic calibration procedure developed for
the LVS. Fig. 3.6 shows the developed calibration box which is used for the LVS re-
calibration procedure.

A coordinate system < G > is defined for the box. The four box planes ((L)eft, (R)ight,
(F)orward, (D)own) are defined as:

rb · n̂G
b = db, b ∈ {L,R,F,D} (3.30)

The ROV is fixated in an initially unknown position SG and with an initially unknown
orientation RG

S in the calibration box. A set of np patterns are applied at known positions
PG

i , i ∈
{

1, . . .np
}

in the box. Let pPi be the pixel corresponding to pattern i. Then from
the dome model we have:

D(pPi)→ (n̂S′
D i, pS′

D i), i ∈
{

1, . . .np
}

(3.31)

Hence the line Li connecting point pS′
D i with Pi is provided by:

Li(λ ) = pS′
D i +λin̂S′

D i, λ ≥ 0 (3.32)

The laser plane for laser ` in the < S′ > coordinate system is provided by:

r`n̂S′
` = dS′

` (3.33)
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(a) Laser’s Calibration Box as seen by the ROV camera.

(b) ROV with Laser Vision System.

Figure 3.6: Calibration box for the LVS.

The automatic laser calibration then consists of the procedure to determine the param-
eters n̂S′

` and dS′
` of each laser `. To achieve this however first we need to determine SG and

RG
S . For each pattern we have that:

PG
i = SG +RG

S (pS′
Di
+λin̂S′

Di
), i ∈

{
1, . . .np

}
(3.34)

Since the rotation matrix RG
S is a function of three Euler angles, the above equations

form a system of 3np equations with np +6 unknowns. This implies that we need at least
3 patterns to solve this problem. However additional patterns will increase the accuracy of
the calibration, also removing ambiguity issues. Hence we form a potential function as:

V (SG,RG
S ,λ1, . . .λnp) =

np

∑
i=1

∥∥∥−PG
i +SG +RG

S (pS′
Di
+λin̂S′

Di
)
∥∥∥2

(3.35)

Hence we can get SG,RG
S ,λ1, . . .λnp as the solution of the non-linear minimization prob-
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lem:
(SG,RG

S ,λ1, . . .λnp) = argmin
{

V (SG,RG
S ,λ1, . . .λnp)

}
(3.36)

The next step requires the projection of each laser on at least two box planes. From
SG,RG

S that were calculated in the previous step, and using the plane equations, for each
reflected target point jb from plane b, we have:

(SG +RG
S (pS′

D jb
+λ jb n̂S′

D jb
) · n̂G

b = db (3.37)

However, since by construction d` 6= 0, λ jb should also satisfy:

(pS′
D jb

+λ jb n̂S′
D jb

) ·
n̂S′
`

dS′
`

= 1 (3.38)

Solve eq. (3.37) for λ jb and substitute all λ jb’s in eq. (3.38). Now write each result as
a row of the matrix Y . Then:

n̂S′
`

dS′
`

= Y †

 1
...
1

 (3.39)

where Y † is the left pseudo-inverse of Y . From this we can immediately extract the laser
calibration parameters (n̂S′

` and dS′
` ) by noting that

∥∥∥n̂S′
`

∥∥∥= 1.

3.4 A Filter for Mesh-Like Structures

3.4.1 Preliminaries

In this section a spatial filter is developed to discriminate mesh-like structures from other
artifacts in the LVS measurements. This is useful in the case that the relative posture is
sought with respect to mesh-like structures like fish-nets Fig. 3.5, where the LVS should be
able to discern the difference between fish-net, fish and air bubble reflections. The aim of
the proposed filter is to only allow reflections from the mesh-like spatial structure that is
being observed as target. Fig. 3.11 shows the laser lines’ reflections from the target (green
dots) and the water tank (solid green lines). Also, note the additional (faint) reflections from
the water tank surface to the water tank wall. Spatial filtering using Fourier Transformation
has been reported for the identification of fabric structures in images in [104]. In our
approach, we exploit the point cloud produced by the LVS in the < S′ > coordinate system.
We assume that multi-path reflections (e.g. light beams that reflect on the water surface and
then hit a target) either do not exist, or that they are weaker than single path reflections. In
our lab and sea experiments we have seen that this is a valid assumption. Now observing
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that all LVS measurements (excluding multi-path reflections) are co-planar, i.e. they reside
in the laser plane, we create a binary image containing the laser-plane reflections which is
co-planar with the laser-plane. We can thus develop an appropriate filter to discern between
reflections that belong to the mesh-like structure and ones that do not.

3.4.2 Approach

Mesh-like structure have the characteristic of being periodic in 2-dimensions. Intersecting
such structures with a straight line yields intersection points that appear with predetermined
regularity. Depending on the mesh geometry a maximum and a minimum distance can be
derived for the intersection points as we traverse the intersecting line. Thus, the distance
between consecutive intersections will lie between a maximum and a minimum range. This
observation is applicable for almost all positions of the intersecting line. Singular2 posi-
tions occur only when the intersecting line is collinear with edges on the target. Assuming
a laser plane hitting such a target, we can define a minimum and a maximum distance be-
tween consecutive reflections from the target in the 3D space, irrespective of the target’s
orientation. In the development of the filter we will ignore reflections from target features
that are collinear with the laser line, as such features are considered to be either singulari-
ties or non mesh-like targets. For example, in Fig. 3.7(a) the maximum distance between
consecutive reflections is the diameter of the hexagon and the minimum distance is the side
of the hexagon. In Fig. 3.7(b) the maximum distance is the diagonal of the rectangle and
the minimum distance is half the diagonal. Hence every reflection from such targets will
always fall between the minimum and the maximum period with one of its neighboring
reflections.

Laser plane image

The first step is to create the binary image of the LVS reflections in the laser plane. To do
this we rotate the point cloud pS′

w that lives in the laser plane, to the x− y plane. First let
us fix an ortho-canonical coordinate system < ` > on the laser plane, with direction unit
vectors expressed in the < S′ > frame as ex,`,ey,`,ez,`:

Let
ez,` = n̂S′

`

Then

ey,` =
ey,S′

(
I− ez,`eT

z,`

)
∥∥∥ey,S′

(
I− ez,`eT

z,`

)∥∥∥ (3.40)

2i.e. in the sense that such an occurrence has zero probability when randomly placing the intersecting line
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a. b.

Figure 3.7: Mesh-like geometries: a. hexagonal mesh and b. rectangular mesh.

where ey,S′ is the y-direction in the < S′ > frame (forward laser looking direction) and,

ey,` = ez,`× ex,` (3.41)

Now create the rotation matrix from frame < ` > to frame < S′ > as:

RS′
` =

[
ex,`

... ey,`
... ez,`

]T

(3.42)

Then the 3-D positions of the laser reflections PS′
w can be translated and rotated to fall

in the x− y plane of < S′ > as follows:

pS′,S′
w,i = RS′

` (pS′
w,i− ez,` ·dS′

` ) (3.43)

Notice that the z-component of pS′,S′
w,i is zero, and PS′,S′

w is a 2D point-cloud. Hence PS′,S′
w

can be represented with a binary image.
Define qx

i , pS′,S′
w,i · [1 0 0]T and qy

i , pS′,S′
w,i · [0 1 0]T . Let xL =mini qx

i , xR =maxi qx
i , yU =

maxi qy
i , yD = mini qy

i represent the four boundaries of the laser plane. Let dx, dy represent
the spatial discretization of the binary image (this depends primarily on the characteristics
of the target- i.e. thread diameter, assuming the LVS has adequate resolution).

Assume a grid with discretization dx, dy with nx = dxR−xL
dx e columns and ny = dyU−yD

dy e
rows. Create an array of index sets Sidx as follows:

Sidx(m,n) =
{

i
∣∣ m ·dx≤ qx

i − xL < m ·dx+1 ∧ n ·dy≤ qy
i − yL < n ·dy+1

}
(3.44)

Now define the binary image as follows:

Im(m,n) =
{

1 |Sidx(m,n)|> 0
0 |Sidx(m,n)|= 0 (3.45)

where | · | denotes the set cardinality.
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Binary Image Processing Filter

The aim of the proposed filter is to identify points that belong to the mesh-like structure.
Let dθ be the thread diameter of the mesh-like structure. Let rmin be the minimum distance
between consecutive threads (center-to-center) as these are intersected in the laser plane
and rmax the corresponding maximum distance. Then a reflection from a target thread will
have a size of rdθ = dθ

cosθlt
where θlt the angle between the laser plane and the target thread.

The choice of θlt should be such that rdθ < rmax otherwise the target periodicity assumption
will not be valid. In practice we want to have rdθ << rmin which is achievable for typical
mesh-like targets assuming appropriate configuration of the laser-plane roll angle. We can
now start constructing the structuring elements of our filter (see Fig. 3.8) by defining three
regions via three concentric circles: Region A with diameter rdθ , region B with radius
rmin− rdθ

2 that excludes region A, and region C with radius rmax+
rdθ

2 that excludes regions
B and A. Regions A, B and C define three binary valued structuring elements StrA, StrB

Figure 3.8: Structuring element regions.

and StrC, with the same discretization as the binary image, that are 1 in their respective
regions and 0 outside.

We can now start defining our filtering algorithm. We pad the binary image Im with
ρpad = drmax+

rdθ

2 e cells to get the image Im′. We will now establish the limits required to
determine the morphological operations.
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Algorithm 1 Mesh Filter Algorithm

Require: Im′, StrA, StrB, StrC
Ensure: Mesh Reflections from mesh-like structure

1: loop (m,n) ∈
{

1 . . .nx×1 . . .ny
}

2: (m′,n′)← (m+ρpad,n+ρpad)

3: if ddgθ

2 e ≤ |Im′∩StrA(m′,n′)| ≤ dgθ then
4: if 0≤ |Im′∩StrB(m′,n′)| ≤ dgθ −|Im′∩StrA(m′,n′)| then
5: if d3dgθ

2 e ≤ |Im′∩StrC(m′,n′)| ≤ 2dgθ then
6: Im′′(m,n)← 1
7: end if
8: end if
9: end if

10: end loop
11: k← 1
12: loop (m,n) ∈

{
1 . . .nx×1 . . .ny

}
13: if Im′′(m,n) then
14: Idx← Sidx(m,n),
15: L← |Idx|
16: loop j ∈ {1 . . .L}
17: PS∗

w,k ← pS′
w, j

18: k← k+1
19: end loop
20: end if
21: end loop
22: return PS∗

w
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Assume now that we have a laser reflection from the center of a thread of a mesh like
target centered at the m,n pixel of Im′ and we place StrA at that location, i.e. StrA(m,n).
Considering the grid discretization, and assuming dx = dy = dd the thread reflection will
encompass at most dgθ = d rdθ

dd e+ 1 grid cells and this is the maximum number of cells
we expect to be active in Im′∩StrA(m,n). Then Im′∩StrB(m,n) will be empty and Im′∩
StrC(m,n) will contain at most 2dgθ cells.

Assume now that we have a laser reflection from the edge of a thread of a mesh like
target centered at the m,n pixel of Im′ and we place StrA at that location. Then only from
ddgθ

2 e up to dgθ cells will be active in Im′∩StrA(m,n). In Im′∩StrB(m,n) we can have at
most ddgθ

2 e cells active, and in Im′∩StrC(m,n) will contain at least d3dgθ

2 e+1 cells active.
Almost all reflections (excluding singularities) from the mesh-like target will fall within

the ranges provided above. A new binary image Im′′ can now be created that only contains
pixels that belong to the mesh-like structure. The set of actual points that correspond to the
mesh-like structure can be recovered by feeding into Sidx(m,n) the pixels of Im′′ that are
active. The filtering algorithm provided by Algorithm 1, returns the 3-D positions of the
laser reflections only from the mesh-like structure, PS∗

w .

3.5 Experiments

3.5.1 Experimental Setup

In this section, we describe the experimental setup for the system and the experimental
results obtained during performance evaluation of the system. The validity of the proposed
system is verified both in a laboratory-controlled environment setting Fig. 3.9, as well as
in real-condition at an offshore aquaculture installation Fig. 3.10.

A Videoray Pro IV (ROV) was used for the experiments. The robot is equipped with a
CCD camera, a Tilt Compensated Compass (TCC) sensor capable of providing roll, pitch
and yaw measurements, the LVS that was analyzed in this work and a custom developed
control station. Furthermore, the robot was retrofitted with an inertial measurement unit
(IMU) providing it’s acceleration and angular rates. The ROV camera resolution is 720
x 576p and it is an 160◦ wide angle camera with a frame-rate of 25 fps. The system
software was developed in C/C++, using the Robotic Operating System (ROS) [91] and
OpenCV [13] on a 12.04 Ubuntu Linux OS. The PC that was used for the experiments was
an Intel i7, dual-core laptop, with 8GB RAM memory. The ROV is powered by a boat-
mounted generator through a tether whereas the laser system is powered by a dedicated
battery.
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(a) Laboratory water tank.

(b) Mock-up environment.

Figure 3.9: Laboratory mock-up experiment.
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(a) The ROV operates an inspection task at aquaculture installation.

(b) Aquaculture inspection operation by the proposed system.

Figure 3.10: Offshore aquaculture installations experiment.
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3.5.2 Experimental Evaluation of the Mesh Filter Algorithm

In this section the experimental validation of the methodology that is proposed in Section
3.4 is presented. In Fig. 3.11(a) a mesh like target as seen from the ROV camera is depicted,
while Fig. 3.11(b) depicts the corresponding thresholded image. Using the hemispherical
dome model 3.17, the laser point clouds are extracted. The point cloud corresponding to
the horizontal laser is depicted in Fig. 3.12.

(a) Mesh-like tarket as seen by the ROV camera.

(b) Thresholded Image.

Figure 3.11: Mesh-like target.
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Figure 3.12: Laser point-cloud data (only for the horizontal laser).

As can be seen in Fig. 3.12, the laser point-cloud contains reflections from the mesh-
like structure, the water tank floor and walls and the solid (non-mesh) object. From Fig.
3.12, we can distinguish the different reflections from the the laser point cloud. Consid-
ering only the horizontal laser line for this experiment, the reflections from the water tank
floor can be easily recognized and eliminated because they are beyond the limits of the
operational range zone. Note that the operational range zone is between 100mm - 1000mm
since beyond this range the accuracy provided by the camera (pixels/cm2 on the target)
and, more importantly, the laser beam scattering, cause the algorithm to fail, since the laser
(thin) plane assumption is no longer valid. The operational range can be improved using
better laser optics for the same medium and camera analysis. Hence, reflections that appear
beyond these limits, are not taken into account in the mesh filter algorithm. In the oper-
ational range the algorithm should be able to detect the mesh like structure and eliminate
other artifacts.

In order to identify which of the laser points belong to the mesh-like target, the Mesh
Filter algorithm (Algorithm 1) was used. For the mesh-like structure we used we had the
following parameters:

Fig. 3.13 depicts the result after applying the Mesh Filter algorithm. As can be seen the
algorithm has rejected all reflections that did not belong to the mesh-like structure.
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Table 3.2: Parameters

dθ rdθ dd rmin rmax
2mm 10mm 1mm 15mm 35mm

(a) The pink points denote all the reflections while the blue points indi-
cate the mesh like structure points after the algorithm has been applied.

(b) Mesh-like Structure Points. Notice the ±2.5mm separation of the
same point target reflection, caused due to the scattering of the laser
beam e.g. at (50mm,643mm).

Figure 3.13: Mesh filter algorithm’s results.

55



3.5.3 Adaptive Calibration Experiments

In this section we will address the issue of on-line adaptation of the robot vision system
to variations in the refractive index of the ambient fluid. Such variations may indicate
different cases like leaks from oil pipes, fish excretions at the vicinity of aquacultures or
the salt-fresh water interface. Depending on the task, the AUV vision system has to be
able to adapt its operation to correctly interpret the received image stream primarily for
navigation purposes. An on-line adaptive algorithm was developed to dynamically adjust
the vision system of the ROV to changes in the refractive index of the fluid. This algorithm
utilizes the calibration model described earlier and is based on an iterative procedure. In
this approach we assumed that the ROV and the environment (aquaculture) are static and
the only refraction index of the third medium (water) has been changed. Since the ROV is
observing the same underwater features all the time, the image on the CCD plane should
remain the same as well. However, the variations of the fluid refraction index may lead
to changes in the CCD image as well. Considering the identity of the images as a basis,
we can estimate the new refraction index of the ambient fluid. The developed adaptive
calibration algorithm makes use of a discrepancy of the coordinates of the point P as a
residual function required to be vanished:

f = Pold−Pnew, (3.46)

where Pold is the position of the point P observed earlier for the known refraction index
nold

3 , Pnew is the new guess position of the point P. The input to the algorithm is two images
of the same underwater scene but taken in the fluids with different refraction indices. The
refractive index of one fluid is known and, as a consequence, the coordinates of the points
P and S are known as well. The coordinates of the point P may serve as an initial guess
Pnew (nnew

3
)

for the algorithm.
The resulting problem is non-linear with three unknowns and may be solved using

an iterative numerical method. We applied the Levenberg-Marquardt [75] algorithm as
one of the common schemes for finding solutions of non-linear systems. However, the
convergence issues should be taken into account since the problem is very sensitive to the
choice of the image features. Usually, the variations of water refraction index of the water
are small but lead to significant distortion of the image. When only one point (pixel) of
the environment image is taken as an input to the algorithm, the issues of inaccuracy of
the estimation or divergence of the algorithm may arise. In order to increase the accuracy,
several pixels that form a sub-pixel may be used as initial conditions. However, in this case,
the complexity of the problem will increase as well.
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As one of our future work directions, we consider to use a subpixel accuracy that enable
to significantly increase the precision of the calibration process. This algorithm is generally
based on different interpolation techniques for interpolation intensity of the image or an
error function of the image matching. The sub-pixel accuracy algorithm may also be useful
for the tracking problem as well. Although we assume the static problem for this case, in the
real-world conditions the small relative movements between the ROV and the aquaculture
structure can take place as well.

3.5.3.1 Simulation Results

The developed model was fitted with the known parameters of the dome and camera. The
model was set to calculate the displacement in pixels of a target positioned on a projection
plane 82mm from the dome base line, 25mm off the dome vertical centerline and sitting on
the horizontal centerline .

Figure 3.14: Variations of the Ambient Fluid Refractive Index

Fig. 3.14 shows the results from a simulation where the refractive index of the ambient
fluid was increased from 1 to 1.33, that is from air to freshwater. The line on the figure
shows the displacement in pixels for the given target to be about 30.6 pixels (198.4-229).
From the figure, it is also obvious that the change in pixels is larger at the ends of the
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picture. Had the target been on the 30mm mark on the same normal projection plane the
movement in pixels due to the change in the ambient fluid refractive index would be larger.
This would give a higher resolution in real applications and the ability to record smaller
changes of fluid refractive index.

3.5.3.2 Experimental Setup

The methodology that was followed is described herebelow: A Videoray Pro 4 (ROV) was
used for the experiment 3.15. The dome was dismount from the ROV and the calibration
of camera took place [48], [97], [107], where the internal parameters of the camera, were
calculated in air. The physical model explains the course of a light ray as it cross the three
mediums. A parameter identification procedure is carried out to determine the parameters
of the model.

Figure 3.15: Experimental Setup

For the experiments two targets were fitted on either side of the dome as shown in
Fig 3.16 and 3.17 . These targets consist of two wires running the vertical distance of
the camera view. They are both at 25mm and on either side of the dome center making
a total distance of 50mm between their external edges.Two targets were used in order to
have double the pixel difference and the possible resolution. Both targets are fixed on the
AUV on a plane 32mm from the dome tip, or 82mm from the dome base. Images of the
targets were taken with the AUV camera in air and water. The images have shown the
targets to move an average of 36.15 pixels towards the outside of the image, as predicted
by the simulation. The magnitude difference in target displacement between simulation
and experiment is 5.55 pixels (30.6 - 36.15). The difference between the predicted and
the experimental results can be attributed to two basic factors : (a) camera rotation and (b)
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dome imperfections. These two aspects were not taken into account in the current work
and are being consider as a future work.

Figure 3.16: Targets fitted at 50mm apart on a plane 82mm from the dome base(Air)

Figure 3.17: Targets fitted at 50mm apart on a plane 82mm from the dome
base(Underwater)

Using the on-line adaptive estimation algorithm we can now on-the-fly estimate the
refractive index of the medium ROV is submerged in.

3.5.4 Experimental evaluation of the LVS in the laboratory

Two series of tests were performed in controlled environment in order to evaluate the per-
formance of the LVS system in the laboratory. The tests validated the performance of the
LVS system in linear distance and angular measurements from a fixed target in front of the
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ROV. The first series of experiments included positioning and aligning the ROV at specific
positions in the water tank and comparing the LVS measurements against the known pos-
ture of the ROV. The ROV was aligned perpendicular to the water tank wall and was fixed
underwater at 374mm, 438mm, 525mm and 659mm from the wall. At each position an array
of measurements were performed to determine the distance dS′ reported by the LVS. Fig.
3.18 depicts the error in the distance reported by the LVS. As can be seen the LVS accuracy
is within 2.3% of the measured distance.

Figure 3.18: dS error versus distance.

The second series of experiments included positioning the ROV at a fixed distance from
the water tank wall and changing the pitch and then the yaw angle of the ROV. The obtained
measurements were compared against the relative orientation obtained through the TCC
sensor. The results are depicted in Fig. 3.19 for the relative pitch validation experiment and
in Fig. 3.20 for the relative yaw validation experiment.

Figure 3.19: Relative pitch validation experiment in the laboratory water tank. The blue
line denotes the measurements of the LVS while the red line is the measurement from TCC.
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Figure 3.20: Relative yaw validation experiment in the laboratory water tank. The blue line
denotes the measurements of the LVS while the red line is the measurement from TCC.

As can be seen from both experiments the orientation error is within 14% of the orien-
tation reported by the TCC sensor. The main source of error in the experiments was caused
by the scattering of the line laser beam in the transverse to the laser plane direction. This
can be rectified by appropriately tuning the focus of the line laser beams or using better
laser line optics.

3.5.5 Experimental evaluation at an offshore aquaculture installation

In order to test the behavior of the LVS system in a real environment, experimental tests of
the LVS were performed at an offshore aquaculture installation as shown in Figs. 3.10 and
3.21.

(a) The mesh filter algorithm was not appli-
cable to some portions of the fish-net.

(b) The LVS was not applicable under intense
sunlight.

Figure 3.21: Experimental evaluation at an offshore aquaculture installation.

The experiment, demonstrating the operation of the LVS system while measuring the
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relative ROV posture to a mesh-like structure such as the aquaculture fish net. Fig. 3.22
shows the LVS measurements of distance, of the ROV to the fish-net as the ROV hovers
near the fish-net. Fig. 3.23 depicts the relative pitch of the ROV to the fish-net and Fig. 3.24
depicts the relative yaw of the ROV, as measured by the LVS system during the experiment.
The LVS interprets the variations and foldings of the fish net using the methodology pre-
sented in section 3.3.2. Since this experiment was performed on an operating aquaculture
fish net, with non-planar, time-varying geometry due to the sea currents and net flexibility
and foldings, a comparative analysis of the measurements to ground truth was not feasible
to provide an estimation of its performance. The way that we chose to evaluate the per-
formance of the LVS was by implementing a PID controller on the ROV to stabilize its
distance and yaw angle with respect to the fish net using LVS feedback. The distance set-
point was set at 550mm and the relative yaw angle set-point was set to 0o. The ROV pitch
angle is passively stable and non-actuated. Due to algae growth and increased scattering
due to higher biomass concentration in the proximity of the fish-net Fig. 3.21(a), the mesh
filter algorithm was not applicable to some portions of the fish-net, while the LVS was not
applicable under intense sunlight Fig. 3.21(b). From the experiments performed, as can be
seen from Fig. 3.22 the reported distance indeed varies around 550mm as expected. From
Fig. 3.24 the reported yaw also varies around 0o as expected. From 1s to 2.5s the perfor-
mance of the controller is much better since the LVS was reflecting on a more ”flat” region
of the fish net during that time. Regarding the relative pitch angle as can be seen from Fig.
3.23, it varies around 25o which is also as expected.

Figure 3.22: Relative distance from the ROV to mesh-like structure(fishnet) at sea.
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Figure 3.23: Relative pitch from the ROV to the target(fishnet) at sea.

Figure 3.24: Relative yaw from the ROV to the target(fishnet) at sea.

3.6 Conclusion

The work presented, details the development and experimental validation of algorithms for
a novel Laser Vision System (LVS) for measuring an ROV’s posture with respect to both
solid and mesh like targets in underwater environments. An analytical model for three-
medium refraction (air, acrylic, water) that takes into account the non-linear hemispherical
optics was developed. The system development was motivated by the need for underwater
ROV localization in close proximity to aquaculture fish-nets, and due to the analytic nature
of the solution, it is applicable to operation to mediums with varying refractive index,
extending its applicable range. The LVS is capable of generating information as point-
cloud sets from each laser and, by utilizing the proposed algorithms, high level information
like distance and relative orientation of the target with respect to the ROV can be recovered.
Due to the regular maintenance required by the system (typical for underwater vehicles
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and their components), an automatic calibration technique was developed. Furthermore, a
spatial filter was developed and demonstrated, in order to discriminate the mesh like targets
from other artifacts in the LVS measurements. The algorithms developed in this work are
appropriate for real time operation.

Experimental results both in the laboratory and field experiments at an offshore aqua-
culture installation, demonstrate the performance of the system. During field experiments,
the proposed system demonstrated the expected performance that was recorded during lab-
oratory testing, while the limitations of the system’s performance when operating near the
water surface during intense sunlight and when operating in an environment with increased
biomass were recorded.

Further development of this work includes utilizing the developed localization system
to close the feedback loop in motion task planning strategies for autonomous underwater
structure inspection and maintenance tasks for operations that include but are not limited to
aquaculture fishnet fault detection and repair. Future work also includes cooperative object
transportation by multiple underwater robots. More specifically, we are investigating the
collaborative underwater object transportation problem with only implicit communication
by underwater robots. The problem addresses the transportation of a solid object from an
initial configuration to a destination configuration by two autonomous underwater agents.
The underwater agents cannot communicate between themselves and the only means of
communicating their intentions are implicit, by observing the motion of the transported
object on their end.

Underwater robot experiments are very difficult to implement due to the underwater
environment and are also very costly. Fig. 3.25 and Fig. 3.26 shows preliminary realistic
scenarios developed in ROS/Gazebo platform based on the Unmanned Underwater Vehicle
(UUV) simulation with Gazebo [78].
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Figure 3.25: Cooperative object transportation simulation in ROS/Gazebo.

The simulations were developed in order to test the developed algorithms in realistic
scenarios.

Figure 3.26: Cooperative manipulation task simulation in ROS/Gazebo.
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Chapter 4

Towards Multi-Sensor UKF-based
Localization of an Underwater Robotic
Vehicle for Underwater Inspection
Operations

This chapter presents a methodology for localizing an autonomous tethered underwater
robotic vehicle deployed for inspection operations in an underwater environment for the
AQUABOT project [6]1. The developed methodology is based on an Unscented Kalman
Filer (UKF) to fuse information from onboard sensors along with a’priori knowledge about
the aquaculture’s geometry and the underwater robot’s hydrodynamics. The proposed algo-
rithm incorporates several modifications that take into account the sensors’ measurements
that are available asynchronously and with varying frequency. The performance of the pro-
posed methodology is assessed through accuracy and consistency metrics generated from
simulation benchmarks. The results in this chapter were originally presented with the au-
thor contribution in [86] and [23].

4.1 Introduction

Underwater robotics has experienced a dramatic growing in the last years due to its poten-
tials in different undersea applications including gathering data for oceanographic needs,
pipeline and harbor inspection, and monitoring aquacultures. In the report of the European
Commission [44], aquaculture is called to be the fastest growing food producing sector
in the world. In addition, aquaculture facilities and tasks required for their maintenance
represent a great application field for underwater robots. In aquaculture industry, the main

1This work was supported by the European Regional Development Fund and the Republic of Cyprus
through the Research Promotion Foundation under research grant AEIΦOPIA/ΓEΩPΓO/0311(BIE)/08.
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problem is considered to be escapes of fish from the fish net cages. According to the Nor-
wegian report of escape incidents [37], more than 60% of escapes are caused by structural
failures of fish farm equipment. The main reasons for such faults are abrasion and tear-
ing of mooring ropes, anchor chains, or holes in the fish nets from fish biting. In order to
prevent such incidents, the regular inspection of all subsystems and early detection of net
holes and other types of system faults are mandatory tasks in the fish producing industry.

Currently, such operations are provided by human divers. However, this task is as-
sociated with risks of human health and lives. These risks have been increasing recently
because of the tendency to push fish cage systems to far-shore sites with more severe waves
and currents [61, 109]. In this case, underwater unmanned vehicles appear to be a safe and
cost-efficient alternative to the human diving inspection by avoiding the health and human
life risks. The current work presents certain results of a research project aimed to develop
an autonomous system for visual inspection of fish farm nets and moorings by using a
tethered autonomous underwater vehicle (AUV). The GPS-denied undersea environments
make the autonomous operation of underwater vehicles to be one of the most challenging
problem. The effective and accurate localization and control is enabled by a fusion of data
from onboard sensors and a-priory knowledge about dynamic behavior of the aquaculture.

The underwater vehicle used in this project is a commercially available tethered un-
derwater vehicle a VideoRay Pro IV. Although the tether could introduce some limitations
during the underwater operation of the robot, the main benefit of its usage is power regu-
larity. In addition, it is used to transfer video information about aquaculture structure being
under inspection. The basic sensor suite of the vehicle includes a front facing camera, in-
ertial measurement unit (IMU) for measuring angular rates and body accelerations, and a
depth sensor. In order to improve the accuracy of localization and control, three line lasers
were added to the sensor suite making the vehicle be able to measure the distance to the
underwater objects and obstacles.

To localize a vehicle in an underwater environment where the signals from the GPS
are unavailable, a sensor fusion approach based on Unscented Kalman Filter (UKF) was
applied. In this approach, we fused information from the sources of two kinds: the hard-
ware navigation sensors described earlier and aquaculture structures’ geometry modeled
a’priory. In most cases, the aquaculture underwater constructions include arrays of fish net
cages connecting between each other by ropes and chains. Such an aquaculture represents
a very flexible structure that depends on the velocity of underwater currents and has strong
nonlinearities.

The rest of the chapter is organized as follows. Section 4.2 provides the description of
the current state of the art and the progress beyond it contributed by this work. Section 4.3
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Figure 4.1: 3D simulation of Rov with line laser in the proximity of the aquaculture fish-
nets.

presents the sensor models where is used for the sensor fusion while Section 4.4 propose
an underwater localization based on an asynchronous UKF. Finally, Section 4.5 conclude
the chapter with the simulation results and discussion.

4.2 State of the Art and Progress Beyond It

This work focuses on underwater GPS-denied localization of an autonomous vehicle and
covers several topics that are under the great interest of the research community.

The task of underwater localization is considered to be a very challenging task due to
the sensor usage limitation (pure visibility, unavailability of the GPS signals, etc.) and high
disturbances undersea. The popular choice for the estimating the vehicle’s state are an Ex-
tended Kalman filter (EKF) or an Unscented Kalman filter (UKF). Kottas and Roumeliotis
in [63] investigated the observability properties of a navigation system based on camera
and IMU sensors and proposed an algorithm utilizing this analysis to improve the EKF
state estimator. Bloesh et al [11] considered a measurement fusion problem from an iner-
tial sensor and a monocular camera in form of optical flow by using an UKF to estimate a
robot pose over time.

This work contributes to the field of underwater localization by proposing an asyn-
chronous UKF originated from the work of Karras et al. [57]. The asynchronous UKF
takes into account two main features of the information and measurement sources used for
localization: the varying frequency of the measurements from the sensors suite of the vehi-
cle and their asynchronous availability for the filter. The asynchronous UKF methodology
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does not required the rearrangement of the filter algorithm and utilizes a special “speed-up”
implementation of the vehicle’s state prediction step.

Several research works have been conducted recently to model a sensor suite of un-
derwater vehicles. Lynen et al. [76] presented measurement models of a camera-IMU sys-
tem consisting of an IMU and a spherical camera along with the optical flow method for
the Extended Kalman Filter (EKF)-based state estimation. Karras et al. [59] described a
model of a laser-based vision system consisting of two laser pointers and a single camera
mounted on a underwater vehicle. They presented modeling and calibration methodology
of such a system along with the target tracking and steering control algorithms. Wang and
Clark [101] presented a dynamic model of the VideoRay Pro III Remotely Operated Vehi-
cle (ROV). They conducted a series of intensive experiments for parameter identification of
the vehicle’s hydrodynamic derivatives and thruster coefficients based on the assumption
of decoupled vehicle’s dynamics. The theoretical estimation of the parameters along with
the model verification showed the assumption is reasonability of this assumption for typical
operating conditions of underwater vehicles.

In this work, we present a model of the vehicle’s sensor suite and of the underwater ve-
hicle that are used in the localization scheme. The main contribution of the work in the field
of sensor modeling includes modeling of a novel Laser-Vision System (LVS) that combines
a CCD camera and three line lasers. Such a system is used to determine the distance from
the current vehicle position to a target (aquaculture underwater structures). In addition, we
propose a model and an algorithm of the optical flow concept that is used as one of the
sources for the information fusion. The model and the algorithm utilize the data extracted
from camera’s images and lasers’ measurements. The VideoRay Pro IV vehicle used in
this project was modeled as well by applying dynamic parameter identification procedure
to determine the vehicle’s parameter and derivatives. To the best of our knowledge, no such
modeling of the VideoRay Pro IV vehicle has appeared in the literature.

In order to improve the accuracy of the proposed localization approach, we use a’priory
knowledge about the aquaculture geometry that can be modeled for a certain velocity of
the ocean current. This problem has been extensively investigated recently along with the
development of different numerical models of the fish net dynamics. Aarsnes et al. [1]
were among the first that conducted theoretical studies to calculate forces acting on the
net panel and experiments to determine the net-current interaction and velocity reduction
within net cage systems. Tsukrov et al. [38] proposed a consistent finite element method to
model the hydrodynamic response of net panels. They considered a one-dimensional finite
element with unit length that is under the action of hydrodynamic, buoyancy, inertia and
elastic forces. After the integration, the system of nonlinear equations describing a system
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model in a moving fluid was constructed. The model was verified through experiments in
the steady flow. Lader et al. [67] developed a dynamic model for 3D net structures exposed
to waves and current. They divided the net structure into square super-elements for which
the hydrodynamic forces were calculated. Each node of the super-element was connected
to others by nonlinear springs that produced the structural forces. The hydrodynamical
forces acting on each super-element were equally distributed to four nodes of the element,
and the system of motion equations for each node could be solved. Zhao et al. [108]
proposed a numerical model based on a lumped-mass method where the hydrodynamic
drag and other external forces where applied for the net twines and lumped masses. They
assumed that there are lumped masses at each knot of the net and at the center of the
mesh bar. They conducted experiments and provided comparison with other approaches
as well. Huang et al. [52] developed a numerical model to analyze the dynamic behavior
of a net-cage system in currents. The net cage was divided into plane surface elements on
which the hydrodynamic forces were calculated. The comparison between the numerical
and experimental results were provided to estimate the net volume reduction.

The main contribution of this work in the modeling of aquaculture structures is twofold.
First, the calculation of the hydrodynamic forces (drag, inertia and buoyancy) in the lumped-
mass method applied in this work was done with respect to the net meshes’ bar that are
massless while the gravity force was associated only with the net knots. In addition, the
proposed methodology for estimating the aquaculture geometry is considered to be a part
of the online sensor fusion process for the localization task. For this purpose, the geometry
estimator consists of offline and online steps. In offline, the aquaculture geometry is calcu-
lated for a set of ocean current velocities and stored in the vehicle’s memory. During online
operation, the geometry is updated based on in-situ measurements of the current’s velocity.

4.3 Vehicle and Sensor Models

4.3.1 Aquaculture Model

In this work, we assume a “gravity” net cage system that consists of a floating collar, a
netting system, weights, mooring ropes and anchors. The schematic diagram of such a
system is shown in 4.2. The “lumped-mass method” concept is used here to model a fish
net structure. According to this concept, the net is divided into discrete net elements with
lumped masses at the element nodes connected by massless springs. In this case, each
net mesh represents a structure of four interconnected bars that are subject to the external
forces applied at the center of the element [86]. The external forces include the drag force
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FD, the inertia force FI , the gravity FG and the buoyancy FB that can be calculated as:

FD =
1
2

ρCDAUR |UR| ,

FI = ρCaV U̇R +ρV U̇,

FG = Mg,

FB = (ρ−ρb)V g,

(4.1)

where ρ is the water density, CD is the drag coefficient, A is the reference area (an area of
the body perpendicular to the flow), UR = U−V is the relative flow velocity, U is the flow
velocity, V is the body velocity, Ca is the added mass coefficient, V is the body volume, M

is the body mass, g is the gravitational constant vector, ρb is the body density.

Figure 4.2: FishNetCage.

We assume the bar elements as of cylindrical form. The drag force acting on a such
element may be divided into two components: the normal component and the tangential
component, relative to the bar [90]. These forces can be represented as follows:

Fn =
1
2

ρCnA |URn|2 en,

Ft =
1
2

ρCtA |URt |2 et ,

(4.2)

where A = dl is a cross-sectional area of the bar element, d is the element diameter which
is the same as the twine thickness, l is the length of the bar element, Cn and Cn are the
normal and tangential drag coefficients, URn and URt are the normal and tangential relative
velocity components, en and et are the unit vectors in the normal and tangential directions,
respectively. The drag coefficients are functions of the Reynolds number and calculated
according to [18].
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Figure 4.3: Normal and tangential unit vectors and angle of attack definitions.

The normal and tangential velocity components are calculated as:

URn = UR sinα,

URt = UR cosα,
(4.3)

where α is the angle of attack defined as an angle between the flow velocity direction and
the normal to the net element as shown on 4.3.

The flexibility of the net structure can be described by elastic (tension) forces of the
twines. We assumed that the net element nodes are connected through massless springs,
so each node is subject to four elastic forces from the neighboring nodes. The force in the
spring between nodes i and j is given by (4.4):

Fi j
E = σi je

i j
bar, (4.4)

where σi j is the force magnitude, and ei j
bar is the bar unit vector.

The force magnitude (tension) may be expressed as:

σi j =

{
C1εi j if εi j > 0,
0 if εi j ≤ 0,

(4.5)

where C1 is the elastic coefficient of the twine, εi j is the elongation of the spring i j.
The motion of a net structure may be represented by the motion of its mass points under

external and structural forces. By applying the Newton’s law for the equations 4.1, 4.2 and
4.4, we get the following motion equation for each lumped mass point i:

(mi +∆mi)
∂ 2qi

∂ t2 = Fext
i +Fint

i . (4.6)
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Figure 4.4: The structural forces of mesh bar elements.

We assume a steady current flow, so the inertial force is equal to zero: FI = 0. The ex-
ternal forces Fext and the internal force Fint are calculated for each bar k and then uniformly
distributed to the corresponding mass points. For each point, the applied forces will be as
follows:

Fext
i =

1
2

4

∑
k=1

(
Fk

n +Fk
t

)
+FGi +FBi,

Fint
i = Fi,i−1

E +Fi,i+1
E ,

(4.7)

where mi is the mass of the point i, ∆mi = ρCaV is the added mass of the point i, k the
index of corresponding bar elements. The distribution of the forces acting on the point i is
shown in 4.5.

Figure 4.5: The force distribution for a mass point i.

The resulting system of equations is non-linear with N× 3 unknown mass point coor-
dinates and may be solved using an iterative numerical method.

4.3.2 Vehicle Model

We consider the six degree of freedom (DOF) dynamical model for the ROV that is given
by the following system of equations [35]:

Mν̇ +C(ν)ν +D(ν)ν +g(η) = τ,

η̇ = J(η)ν ,
(4.8)
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where M is the inertia matrix, C is the coriolis and centripetal matrix, D is the drag matrix,
g is the force vector, τ is the trust vector, ν is the body velocities vector, η is the position
and Euler angles vector, J is the transformation matrix from the body-fixed frame {B} to
the inertial frame {I}.

The matrices M, C and D depend on the hydrodynamic parameters of the vehicle that
represent the derivatives of the hydrodynamic forces and moments acting on the vehicle
with respect to the vehicle velocities and accelerations:

M∼ ∂X
∂ u̇

,
∂Y
∂ v̇

, · · · , ∂N
∂ ṙ

,

C∼ ∂X
∂ u̇

,
∂Y
∂ v̇

, · · · , ∂N
∂ ṙ

,

D∼ ∂X
∂u

, · · · , ∂N
∂ r

,
∂X

∂u |u|
, · · · , ∂N

∂ r |r|
.

(4.9)

For using the dynamic model 4.8 in the fusion algorithm, the model was discretized and
augmented with the linear accelerations in the body frame a= [ax,ay,az]

T . The acceleration
model was derived based on the approach proposed in [57]. The final discrete model of the
vehicle can be written as:

νk+1 = νk +M−1 (τk−C(νk)νk−D(νk)νk

−g(νk))∆t,

ηk+1 = ηk +J(νk)ηk∆t,

ak+1 =−ak +2M−1 (τk−C(νk)νk−D(νk)νk

−g(νk)) .

(4.10)

The ROV process model we use in the UKF algorithm can be written as:

ẋ = f (x,u)+wROV , (4.11)

where x =
[
νT

1 ,ν
T
2 ,η

T
1 ,η

T
2 ,a

T ]T is the state vector, u is the control (thrust) vector, wROV ∼
(0,RROV ) is the white noise with zero mean and the covariance matrix RROV .

4.3.3 Accelerometer and Gyroscope Models

We assume that the accelerometer outputs the linear accelerations a in the body frame,
while the gyroscope measures the angular velocity ν2 in the body frame of the ROV. These
two sensors are modeled as follows:

zIMU = hIMU (x,wIMU) , (4.12)
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where wIMU ∼N (0,RIMU) is the white noise with zero mean and covariance matrix RIMU .
In this equation, the vector zg consists of gyroscope and accelerometer measurements

as follows: zIMU =
[
zT

g ,zT
a
]T , where the measurements from the gyroscope are defined as:

zg = [p,q,r]T +wg, (4.13)

and the measurements from the accelerometer can be written as:

za = a+wa, (4.14)

where wg and wa are the white zero mean noises.

4.3.4 Tilt-Compensated Compass and Depth Pressure Sensor Models

The tilt-compensated compass and the depth pressure sensor used in this work provide
measurements of the current depth of the vehicle and the earth magnetic vector direction.

The depth pressure sensor is modeled based on the Pascal’s Law for the hydrostatic
pressure that is the force exerted on an object due to the weight of water above it:

zPS = hPS (x,wPS) = ρgz+ pa +wPS, (4.15)

where ρ is the water density (1000 kgm−3 for fresh water), g is the gravitational constant,
z is the depth below the water surface, pa is the atmosperic pressure, and wPS ∼ N (0,RPS)

is the white noise with zero mean and covariance matrix RPS.
The tilt-compensated compass sensor provide the Euler angles of the vehicle and is

modeled with the following equation:

zMS = Vm +wMS, (4.16)

where Vm = [φ ,θ ,cosψ,sinψ] is the Euler angles while the yaw angle is represented by its
trigonometric functions to avoid the discontinuity at 0o; wMS is the white noise with zero
mean and covariance matrix RPS.

4.3.5 Laser Vision System Model

The LVS sensor [25] consists of a CCD camera and a set of three lasers projecting the lines
in the form of a triangle on the target as shown on 5.1. The CCD camera is enclosed by
a hemispherical dome. Since the acrylic dome and an underwater environment affect the
vision system of the ROV, a special camera calibration process was used [26]. The LVS
provides the distance and orientation of a target with respect to the vehicle [87].
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The model of the fish net geometry can be considered as an additional information
source and is used in the LVS measurement model as follows. The vehicle navigates around
a fish cage inspecting and monitoring faults and failures of the fish net. The camera of the
robot is pointing towards a target while the lasers create a triangle on the surface of the
target. Since such a triangle defines a plane on the targets’s surface, a relative distance and
a relative orientation of the target with respect to the vehicle body frame can be calculated.
The fish net geometry F is represented as a quad mesh with VF vertices and FF faces
while the coordinates of the vertices are known a’priory as shown on 4.6. In order to
compute the distance d from the vehicle position ν1 = [x,y,z]T to a mesh face, we first
triangulate the mesh faces by splitting each quad cell into two triangles. Then, we draw a
ray p from the origin of the body frame along the XB-axis of the vehicle:

p = OB +∆p · ε, ε > 0, (4.17)

where OB is the origin of the body frame, ∆p is the X-column of the rotational matrix J2.
The intersection point P of this ray with a mesh face containing vertices V0, V1 and V2 can
be found as:

P =
−n ·w
n ·∆p

, (4.18)

where n is the normal to the current face, w = OB−V0 is the vector between the ray origin
OB and the face vertex V0. By testing whether the intersection point is located inside the
corresponding triangle face, the distance from the body frame origin to that face can be
found. We proceed with the described procedure for all 2FF faces of the fish net and take
the smallest distance. The orientation of the face can be calculated as a normal vector n to
this face:

n =
e1× e2

|e1× e2|
, (4.19)

where e1 = V0−V1, e2 = V0−V2 are the edge vectors.
Thus, the measurement model of the LVS can be described as follows:

[d,n]T = hLV S (x,F )+wLV S, (4.20)

where wLV S ∼ N (0,RLV S) is the zero mean white noise with covariance matrix RLV S.

4.4 Underwater Localization Based on an Asynchronous
Unscented Kalman Filter

In this work, we applied an Unscented Kalman Filter (UKF) scheme to estimate the states
of the vehicle. Since the measurements from the onboard sensor could arrive with differ-
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Figure 4.6: The measurement model of the combined Laser Vision System.

ent frequencies and asynchronously, the UKF algorithm was modified to incorporate this
feature using the approach similar to [17, 57].

The asynchronous UKF algorithm is described in 2 and can be summarized as fol-
lows. At the initialization step, a set of weights for the state mean Wm =

{
W (i)

m

}
and

state covariance Wc =
{

W (i)
c

}
, i = 0, · · · ,2n, where n is the dimension of the state vector,

is calculated. Three parameters are used in the weight calculation: the constant α that
determines the spread of the sigma points around the state mean, the constant β that repre-
sents the a’priory knowledge about the state vector distribution, and the scaling parameter
λ = α2 (n+κ)−n, where κ is the secondary scaling parameters. The exact values of these
parameters depend on the properties of a certain dynamic system and usually are set as:
1e−4≤ α ≤ 1, β = 2 (for Gaussian distributions), κ = n−3 for systems of order n≤ 3 or
κ = 0 for high-order systems [31, 56, 80, 99].

The vehicle’s onboard sensor suite can be described as a set S of N elements, N = 5:
S = {IMU,MS,PS,LVS,OF}. Thus, the power set P (S) of the set S represents all combi-
nations of the simultaneously available sensor measurements. Since the power set includes
also an empty set ∅ that does not have meaning in our case (the state updating starts only
when a new measurement from either of the sensors is available), thus the following de-
scription of the asynchronous UKF algorithm will be given for the power set of the sensors
excluding empty set: Pw (S) =P (S)\{∅}. The indexing set J = 0, . . . ,N of the power set
Pw (S) represents the indexes of the measurements’ combinations: Pw (S) =∪ j∈JP

j
w (S).

In order to speed up the state estimation process, an additional modification of the stan-
dard UKF algorithm was applied in this work. Since one of the most time-consuming steps
in the UKF procedure is the sigma points propagation through a system process model,
it was decided to take this step out of the procedure and to implement it as a separately
running integration process that will be described later on.
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The asynchronous UKF algorithm ASYNCHRONOUSUKF starts with the initialization
of the filter variables such as the weights for the mean and covariance of the sigma points
4.21 and calculation of the initial sigma points 4.22 according to [80]. The initial sigma
points is passed to the integration procedure running in parallel with the filter. When a new
measurement Z j from either of the sensors’ combination Pw (S) is available, a procedure
STATECOVESTIMATION for estimating state and covariance of the vehicle for the current
time instance is called.

The state and covariance estimation algorithm STATECOVESTIMATION is described
in 3 and is divided into two steps. At the prediction step of the algorithm, the predicted
state mean x̂ and the covariance Px are calculated as in 4.25 based on the sigma points
from the integration process in order to redraw a new set of 2n+ 1 sigma points X as
in 4.26. Then at the update step of the algorithm, a new set of the sigma points is cal-
culated and propagated through the corresponding measurement equation to compute the
predicted mean ŷ and covariance Pyy of the measurement according to 4.28. The measure-
ment model 4.27 depends on the sensors’ combination at the current time instance. In the
case, when the measurement was received from only one sensor, the measurement model
for the UKF algorithm is formulated in the form of the corresponding sensor model (4.12 is
for the IMU measurements, 4.15 is for the pressure sensor measurements, etc.). However,
for a certain sensors’ combination j of Pw (S), a combined sensor model h j is created as
a stack of the individual sensor models. For example, the threefold sensor model for the
combination of IMU, the magnetometer and the LVS ( j = 16) will be formulated as:

h16 =

 hIMU (x)+wIMU
hMS (x)+wMS
hLV S (x)+wLV S

 (4.23)

Note that the sensor noise covariance matrix R j should be rewritten as well in accor-
dance to the applied sensor model. For example, for the threefold combined sensor model
mentioned above it will be as follows:

R16 =

 RIMU 0IMU×MS 0IMU×LV S
0MS×IMU RMS 0MS×LV S
0LV S×IMU 0LV S×MS RLV S

 . (4.24)

Then, the cross-covariance of the state and measurement Pxy and the filter gain K are
calculated as in 4.29 and in 4.30. At the end of the algorithm for the current step k the state
mean and state covariance are updated 4.31.

The sigma points integration process is described in 4 and runs as a separate process
parallel to the primary UKF algorithm. The main reason to exclude this step from the
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Algorithm 2 Multisensor Asynchronous UKF.

1: procedure ASYNCHRONOUSUKF(x̂0,Px0 ,α,β ,λ ,n,{x̂k} ,{Pxk})
Input: initial state mean x̂0; initial state covariance Px0 , filter parameters α , β and λ ;
the dimensions of the state vector n.
Output: state and covariance estimates for each time instance k.

2: Compute a set of 2n+1 weights for the mean and covariance of sigma points:

W (0)
m =

λ

n+λ

W (0)
c =

λ

n+λ
+
(
1−α

2 +β
)

W (i)
m =W (i)

m =
λ

2(n+λ )
, i = 1, · · · ,2n.

(4.21)

3: Calculate 2n+1 sigma points:

X0 = [x̂0,

x̂0 +
√
(n+λ )Px0 ,

x̂0−
√
(n+λ )Px0

]
.

(4.22)

4: Start the parallel sigma points’ integration process SIGMAPOINTSINTEGRA-
TION(X0, t0).

5: Current time step k = 1.
6: while the vehicle is activated do
7: Get measurements Z j

k ∈ Rn j
z , where n j

z is the dimension of the measurement
from the sensor combination P j

w.
8: Get current values of the sigma points from the sigma points’ integration pro-

cess for the time instance k:
Xk|k−1← SIGMAPOINTSINTEGRATION(tk).

9: Run the estimation procedure to get the estimates of the vehicle’s state and
covariance matrix for the current step:
(x̂k,Pxk)← STATECOVESTIMATION(Xk|k−1,Z

j
k).

10: end while
11: end procedure
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Algorithm 3 System State and Covariance Estimation for a given time instance.

1: procedure STATECOVESTIMATION(Xk|k−1,Z
j
k, x̂k,Pxk)

Input: set of sigma points mathcalXk|k−1; current measurement Z j
k for the time in-

stance k.
Output: state x̂k and covariance Pxk estimates for the time instance k.

2: Calculate the weighted mean and covariance estimates for Xk|k−1 as:

x̂k|k−1 =
2n

∑
i=0

W (i)
m X

(i)
k|k−1,

Pxk|k−1 =
2n

∑
i=0

W (i)
c

(
X

(i)
k|k−1− x̂k|k−1

)(
X

(i)
k|k−1− x̂k|k−1

)T
+Q,

(4.25)

where Q is the system process noise covariance matrix.
3: Redraw a new set of the sigma points based on updated mean and covariance esti-

mates:
X ∗

k|k−1 =
[
x̂k|k−1,

x̂k|k−1 +
√
(n+λ )Pxk|k−1,

x̂k|k−1−
√
(n+λ )Pxk|k−1

]
.

(4.26)

4: Propagate the new sigma points through the corresponding measurement equation:

Yk|k−1 = h j (X ∗
k−1
)
, (4.27)

5: Calculate the weighted mean and covariance estimates for the measurements’ pre-
diction:

ŷk|k−1 =
2n

∑
i=0

W (i)
m Y

(i)
k|k−1,

Pyyk|k−1 =
2n

∑
i=0

W (i)
c

(
Y

(i)
k|k−1− ŷyk|k−1

)(
Y

(i)
k|k−1− ŷk|k−1

)T
+R j,

(4.28)

where R j is the measurement noise covariance matrix of the corresponding sensor.
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6: Estimate the cross-covariance between the state and measurement predictions:

Pxyk|k−1 =
2n

∑
i=0

W (i)
c

(
X
∗(i)

k|k−1− x̂k|k−1

)(
Y

(i)
k|k−1− ŷk|k−1

)T
. (4.29)

7: Calculate the filter gain:

Kk = Pxyk|k−1P−1
yyk|k−1

. (4.30)

8: Update the state mean and covariance matrix:

x̂k = x̂k|k−1 +Kk
(
zk− ŷk|k−1

)
,

Pxk = Pxk|k−1−KkPyyk|k−1KT
k .

(4.31)

9: end procedure

filter is to reduce the computational load and speed up the filter. Basically, the step of
propagation the sigma points set through the system model is the most time consuming
step of the UKF algorithm. In general case, we have 2n+1 sigma points each of which is
of Rn. For our case n = 15, thus there are 465 equations that should be integrated at each
time step of the filter.

With the proposed modification, the numeric integration of the nonlinear equations of
the system states for all sigma points is running all the time. When a new measurement
Z j arrives, this process outputs a set of sigma points for the current time that will be used
afterwards in ASYNCHRONOUSUKF. During the UKF execution, the sigma point integra-
tion process is slowing down to the “idle” mode. When new estimates of the system state
mean and covariance are available, they are passed back to SIGMAPOINTSINTEGRATION

that resumes the integration process. In order to “catch up” the time, the speed of the inte-
gration is increasing until the inner tim of the integration will be equal to the real time of
the system. This process is schematically shown on 4.7.

4.5 Results and Discussion

4.5.1 Simulation Results

The developed localization algorithm was validated through various simulations under re-
alistic levels of noises and disturbances.

The simulation scenario was to navigate the vehicle downwards along the aquaculture
height with the constant vertical velocity w = 0.1ms−1. Simple controllers were applied in
order to keep the vehicle along the predefined trajectory and the aquaculture in the field of
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Algorithm 4 Sigma Points Integration Process.

1: procedure SIGMAPOINTSINTEGRATION(x̂0,Px0 ,α,β ,λ ,n,{x̂k} ,{Pxk})
Input: initial state mean x̂0; initial state covariance Px0 , filter parameters α , β and λ ;
the dimensions of the state vector n.
Output: state and covariance estimates for each time instance k.

2: Compute a set of 2n+1 weights for the mean and covariance of sigma points:

W (0)
m =

λ

n+λ

W (0)
c =

λ

n+λ
+
(
1−α

2 +β
)

W (i)
m =W (i)

m =
λ

2(n+λ )
, i = 1, · · · ,2n.

(4.32)

3: Calculate 2n+1 sigma points:

X0 = [x̂0,

x̂0 +
√
(n+λ )Px0 ,

x̂0−
√
(n+λ )Px0

]
.

(4.33)

4: Start the parallel sigma points’ integration process SIGMAPOINTSINTEGRA-
TION(X0, t0).

5: Current time step k = 1.
6: while the vehicle is activated do
7: Get measurements Z j

k ∈ Rn j
z , where n j

z is the dimension of the measurement
from the sensor combination P j

w.
8: Get current values of the sigma points from the sigma points’ integration pro-

cess for the time instance k:
Xk|k−1← SIGMAPOINTSINTEGRATION(tk).

9: Run the estimation procedure to get the estimates of the vehicle’s state and
covariance matrix for the current step:
(x̂k,Pxk)← STATECOVESTIMATION(Xk|k−1,Z

j
k).

10: end while
11: end procedure
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Figure 4.7: Illustration of the sigma points integration process.

view of the ROV. The STD of the gyro measurements was assumed as 0.05 rad/s, the STD
of the accelerometers was 0.03 ms−1, the STD of the pressure sensor was 0.1 m, the STD
of the LVS was 0.1 m. The results of one simulation run for 50 s are shown on 4.8, where
the trace of the covariance matrix is demonstrated as a measure of convergence of the filter.

Figure 4.8: Simulation results for one run: the trace of the state estimation covariance
matrix.

A series of Monte-Carlo runs were conducted in order to evaluate the performance of
the proposed sensor fusion algorithm for the position estimation only. Since we know a
“true” state of the vehicle at each time instance, two metrics were used to examine the
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filter, namely, the root mean squared error (RMSE), to estimate the accuracy of the filter,
and the normalized estimation error squared (NEES), to provide a measure of the filter
consistency [9].

For each Monte-Carlo run j, j = 1, . . . ,Nruns and each time step i, i = 1, . . . ,Nsteps we
computed the NEES as:

NEES j
i =

(
x j

i − x̃ j
i

)T (
Pi j

x
)−1
(

x j
i − x̃ j

i

)
. (4.34)

The average NEES (ANEES) over 10 Monte-Carlo runs and for each time step i is
shown on 4.9a for 100 s simulation run and was computed as:

ANEESi =
1

Nruns

Nruns

∑
j=1

NEES j
i . (4.35)

The average of the NEES over all Monte-Carlo runs and all times steps was 11.16. For a
consistent filter, the ANEES tends towards the dimension of the state vector as the number
of Monte-Carlo runs approaches infinity [9]. The comprehensive study of the filter perfor-
mance in terms of ANEES and RMSE for different types of filters was conducted in [53].
According to this study, the performance of the asynchronous UKF applied in this work is
close to the performance of the standard UKF.

The RMSE shown on 4.9b was computed for each time as well according to:

RMSEi =

√√√√ 1
Nruns

Nruns

∑
j=1

(
x j

i − x̃ j
i

)T (
x j

i − x̃ j
i

)
, (4.36)

while the average RMSE over all steps for this case was 0.65 m.

4.6 Conclusion

This chapter presented a localization algorithm for an autonomous underwater vehicle for
aquaculture inspection. The algorithm can fuse the information from several sensors pro-
viding measurements with different and various frequencies. The performance of the algo-
rithm was validated through simulations under real-world conditions and noises.
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(a) The position ANEES averaged per time step

(b) The position RMSE averaged per time step.

Figure 4.9: Simulation results for 10 Monte-Carlo runs.
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Chapter 5

Trajectory Tracking Control of an
Underwater Vehicle for Underwater
Inspection Operations

This chapter presents the development of a hybrid controller for the fishnet coverage task by
an autonomous underwater robotic system in the framework of the AQUABOT project [6]1.
The sensor fusion technique in the previous chapter for the robot localization uses infor-
mation from several sources including an onboard inertial sensor, an onboard camera com-
bined with line lasers and a priory knowledge about the aquaculture geometry. The control
hybrid architecture includes an online estimator of the flow velocity around aquaculture
provided by various sensors to compensate for the drift and necessary controllers required
to track the ’virtual’ moving target. The proposed algorithms are validated through simula-
tions for small-scale aquaculture under realistic levels of noises and disturbances.

5.1 Introduction

Underwater robotic systems are used for a variety of applications in oceans and seas. Aqua-
culture and fisheries are agricultural sub-domains where application of robotic technologies
is expected to significantly contribute to their future development and sustainability. In
aquaculture industry, the main problem is considered to be escapes of fish from the fish net
cages due to abrasion and tearing of mooring ropes, anchor chains, or holes in the fish nets
from fish biting. In order to prevent such incidents, the regular inspection of all subsystems
and early detection of net holes and other types of system faults are mandatory tasks in the
fish producing industry.

1This work was supported by the European Regional Development Fund and the Republic of Cyprus
through the Research Promotion Foundation under research grant AEIΦOPIA/ΓEΩPΓO/0311(BIE)/08.
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The current work is a part of a research project co-funded by the European Regional De-
velopment Fund and the Republic of Cyprus and was aimed at developing an autonomous
system for visual inspection of fish farm nets and moorings by using a tethered Remotely
Operated Vehicle (ROV) in a shared autonomy mode. The GPS-denied undersea environ-
ments make the autonomous operation of underwater ROVs to be one of the most chal-
lenging problem. The effective and accurate localization and control is enabled by a fusion
of data from onboard sensors and a-priory knowledge about dynamic behaviour of the
aquaculture. The ocean currents and flows imply additional difficulties for a ROV control
system making a robot to deviate away from its desired state or path. Estimates of the flow
velocity provided by various sensors or techniques may be incorporated into the control
loop to compensate for the drift.

In this chapter, we address a problem of underwater visual inspection task as a combi-
nation of: (i) a problem of localization and state estimation of the ROV with respect to the
aquaculture by fusing information from different sources; (ii) a problem of control of an
under-actuated underwater vehicle in the proximity to the fish net cages; (iii) a problem of
full coverage of fishnet cages. Such problems have been studied intensively for different
types of autonomous vehicles. Kottas and Roumeliotis in [63] investigated the observabil-
ity properties of a navigation system based on camera and IMU sensors and proposed an
algorithm utilizing this analysis to improve the Extended Kalman Filter (EKF) state estima-
tor. Bloesh et al [11] considered a measurement fusion problem from an inertial sensor and
a monocular camera in form of optical flow by using an UKF to estimate a robot pose over
time. Karras et al [57] proposed an online asynchronous Modified Dual UKF algorithm for
state and parameter estimation of an underwater vehicle that uses fused data from an IMU
and a combined camera-point lasers system. Klebert et al. [61] proposed a comprehensive
review of research works on flow hydrodynamics within and around a single net cage and
a cage array.

The rest of the chapter is organized as follows: Section 5.2 presents an overview of the
proposed robotic system and preliminaries, section 5.3 presents the design of the hybrid
controller while section 5.4 provides the simulation results, and section 5.5 concludes the
chapter.

5.2 System Overview

In this section, a brief description of a system proposed in the current project will be pro-
vided. The ROV used in the project is a VideoRay Pro IV ROV equipped with two hori-
zontal thrusters for surge and yaw motions and one vertical thruster for heave motion. The
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vehicle is under-actuated, meaning that it cannot perform sway, roll and pitch motions.
The basic sensor system includes a front facing camera housed with an acrylic dome, ac-
celerometers, gyroscopes, a tilt-compensated compass and a depth sensor. In addition to
these sensors, the ROV was equipped with three line lasers that being combined with the
on-board camera concludes a novel Laser Vision System (LVS) shown on 5.1.

Figure 5.1: Combined Laser Vision System setup.

We consider the ROV as a 6-DOF rigid body that can be described by the following
vectors: η1 = [x,y,z]T is the position vector, η2 = [φ ,θ ,ψ]T is the orientation (Euler angle)
vector (roll, pitch and yaw angles), ν1 = [u,v,w]T is the body linear velocities (surge, sway
and heave), ν2 = [p,q,r]T is the body angular velocities. Two coordinate systems are
used to define the vectors: the body frame fixed to the ROV and the inertial frame fixed
to the aquaculture (fish net cage) as shown on 5.2 along with the forces and moments
τ = [X ,Y,Z,K,M,N]T acting on the vehicle.

5.2.0.1 Vehicle Model

In this work, we assume a full 6-DOF nonlinear dynamic model of the ROV that is given
by the following system of equations [35]:

Mν̇ +C(ν)ν +D(ν)ν +g(η) = τ,

η̇ = J(η)ν ,
(5.1)

where M is the inertia matrix, C is the coriolis and centripetal matrix, D is the drag matrix,
g is the force vector, τ is the trust vector, ν is the body velocities vector, η is the position
and Euler angles vector, J is the transformation matrix from the body-fixed frame {B} to
the inertial frame {I}, where all aforementioned matrices are according to [35].
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Figure 5.2: Inertial and body-fixed reference frames.

5.3 Hybrid Control Design

In previous chapters, 3 and 4 we presented algorithms for the LVS development and a sen-
sor fusion technique for the underwater robot localization. In this section, we propose a
hybrid controller for the coverage of the fishnet. We follow a two-step approach to design a
controller for the underwater operation of the ROV: at the first step, a kinematic controller
is designed, while at the second stage we backstep the kinematic controller into the sys-
tem dynamics. Since the ROV used in this work is under-actuated, the controller consists
of three independent controllers for each of actuated vehicle states: linear, angular and
depth controllers. In addition, the proposed hybrid controller has four modes to ensure the
sideward motion of the vehicle with camera pointing to the fish net cage.

To guarantee the full coverage of the aquaculture during the underwater visual inspec-
tion task, we assume that there is a ’virtual target’ moving on the surface of the fishnet. The
trajectory parameters of the moving target are included into the kinematic controller. Note
that the navigation and coverage algorithms required for the target trajectory generation are
beyond the scope of the current work. The target trajectory is assumed to be known before
the underwater operation by the underwater robot.
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5.3.1 Controller Design at the Kinematic Level

The kinematics of an underwater vehicle including virtual moving target terms can be de-
scribed by the following system of equations:

ḋ = ẋT cosθ + ẏT sinθ −ucosα + vsinα,

θ̇ =
usinα

d
+

vcosα

d
− ẋT sinθ

d
+

ẏT cosθ

d
,

α̇ = θ̇ − ψ̇ =
usinα

d
+

vcosα

d
− ẋT sinθ

d
+

ẏT cosθ

d
− r,

(5.2)

where d is the norm of the planar vector d between the center of the body coordinate frame
OB and the center of the target frame OT ; θ is the angle between the vector d and X-axis
of the target frame XT ; α s the angle between the vector d and the X-axis of the body
frame XB; xT , yT are the target velocity along the X- and Y -axes. Such 2D representation
of the ROV’s kinematics can be convenient since the motions in the vertical and horizontal
directions are decoupled in this case. The frames, vectors and angles used here are shown
on 5.3.

Figure 5.3: 2D representation of the vehicle kinematics in polar-like coordinate system.
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5.3.1.1 Linear Controller

We assume that the vehicle operates in a specific region around the aquaculture bounded by
the minimum dmin and the maximum dmax distances from the fishnet cage. These distances
are defined by the requirements on the quality of underwater images from the onboard
camera. For a certain desired distance ddes inside this region, the linear kinematic controller
in the following form:

uk =
γ (d−ddes)+ ẋT cosθ + ẏT sinθ + vsinα

cosα
(5.3)

is asymptotically stabilizes the vehicle at the distance ddes for a positive function γ and a
positive constant α0 as long as |α|< α0.

Proof. Consider the candidate Lyapunov function

Vu =
1
2
(d−ddes)

2 , (5.4)

its time derivative can be written as:

V̇u = (d−ddes) ḋ = (d−ddes)(ẋT cosθ + ẏT sinθ

−ucosα + vsinα) .

Substituting control 5.4 into the time derivative of the Lyapunov function, we get:

V̇u =−γ (d−ddes)
2 < 0,

meaning that the system 5.2 is asymptotically stable at ddes for a positive γ .

5.3.1.2 Angular Controller

The underwater vehicle should be pointed towards to the target during the inspection task in
order to guarantee the continuous monitoring of the fishnet providing information through
video. In addition, we have to take into account the constraint of the camera’s field of view
since the target should be within the camera’s field of view all the time. Assuming the
representation of the on-board camera and β is the angle between the normal to the fishnet
surface at the target current position and the distance vector d (see Fig. 5.4), we have the
following requirements:

α||β ,

−sFOV ≤ s≤ sFOV ,

where s = f tanα is the distance from the camera’s central line to the projection of the
target on the camera image plane; sFOV = f tanαFOV ; αFOV is the camera’s field of view
angle; f is the focal length of the camera.
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Figure 5.4: Target projection on the camera image plane.

Assuming the system 5.2, the angular control law in the form:

rk =
Krk (s− sdes)

f sec2 α
+ θ̇ (5.5)

stabilizes the target projection s at the desired distance sdes.
Proof. Consider the Lyapunov candidate function

Vr =
1
2
(s− sdes)

2

and its time derivative

V̇r = (s− sdes) ṡ = (s− sdes) f α̇ sec2
α

= (s− sdes) f sec2
α
(
θ̇ − r

)
= (s− sdes) f sec2

α

(
θ̇ − Krk (s− sdes)

f sec2 α
− θ̇

)
=−Krk (s− sdes)

2 < 0,

we get that the controller 5.5 asymptotically stabilizes the system at sdes.
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5.3.2 Controller Design at the Dynamic Level

In order to apply a backstepping procedure to design the linear and angular controllers at
the dynamic levels, we linearize the dynamic equations of the vehicle 5.1 using feedback
linearization:

τFL = Mν̇ +Cν +Dν +g, (5.6)

where τFL = [Ux,0,Uz,0,0,Ur]T .

5.3.2.1 Linear Controller

For the system 5.6 the controller defined as:

Ux = u̇k +
Kud

2
(uk−u)+(d−ddes)cosα, (5.7)

where uk is the control law 5.4, stabilizes d at ddes asymptotically.
Proof. Consider the Lyapunov candidate function

V =Vu +
1
2
(uk−u)2

and its time derivative

V̇ = V̇u +(uk−u)(u̇k− u̇)

= (d−ddes) ḋ +(uk−u)(u̇k− u̇) .

Substituting the kinematic controller 5.4 and the dynamic control law 5.7, we get:

V̇ =−γ (d−ddes)
2− (u−uk)cosα (d−ddes)

− Kud

2
(u−uk)

2 +(d−ddes)cosα (u−uk)

=−γ (d−ddes)
2− Kud

2
(u−uk)

2 < 0.

5.3.2.2 Angular Controller

For the system 5.6 the controller defined as:

Ur = ṙk−
Krd

2
(rk− r)− f sec2

α (s− sdes) , (5.8)

where rk is the control law 5.5, stabilizes s at sdes asymptotically.
Proof. Consider the Lyapunov candidate function

V =Vr +
1
2
(r− rk)

2
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and its time derivative

V̇ = V̇r +(r− rk)(ṙ− ṙk)

= f α̇ sec2
α (s− sdes) ḋ +(r− rk)(ṙ− ṙk) .

Substituting the kinematic controller 5.5 and the dynamic control law 5.8, we get:

V̇ = f
(
θ̇ − r

)
sec2

α (s− sdes)
2− Krd

2
(r− rk)

2

− f sec2
α (s− sdes)(r− rk) =

= f
(
θ̇ − r+ rk− rk

)
sec2

α (s− sdes)
2

− Krd

2
(r− rk)

2− f sec2
α (s− sdes)(r− rk) =

=− f
(

r− rk +
Krk (s− sdes)

f sec2 α

)
sec2

α (s− sdes)
2

− Krd

2
(r− rk)

2− f sec2
α (s− sdes)(r− rk) =

=−Krk (s− sdes)
2− Krd

2
(r− rk)

2 < 0.

5.3.3 Depth Controller

To control the depth of the underwater vehicle, we use a PD controller since the heave
motion of the vehicle is decoupled and has a dedicated vertical thruster. This controller
stabilizes the vehicle at the desired depth zdes:

Uz = Kpzez +Kdzėz, (5.9)

where Kpz and Kdz are the positive coefficients; ez = z− zdes is the vertical position error.

5.3.4 Drift Compensation

The ocean currents and flows impose additional complication in the control task for an
underwater robot, since drift terms have to be included in the dynamic equations. The
problem is even more difficult if the system is working in the proximity of underwater
structures, since these structures locally modify the flow field. In order to feed-forward
these effects in the control algorithm, we introduce an online estimator of the flow field
around aquaculture and an additional level of control architecture.

The influence of irrotational ocean currents on the ROV’s dynamics can be modeled
as [36]:

MRBν̇+CRB (ν)ν +g(η)+ . . .

+MAν̇r +CA (νr)νr +D(νr)νr = τ,
(5.10)
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where MRB and MA is the inertia matrix of the rigid body and added mass; CRB and CA is
the coriolis-centripetal matrix for the rigid body and added mass; νr = ν−νc is the relative
velocity vector in body fixed coordinates between the ROV velocity and the current velocity
νc in the body frame.

The current velocity in body coordinates νc at the ROV’s position η is calculated as a
transformation of the current velocity in the global frame vG

c :

νc =

[(
vb

c

)T
,ωT

c

]T

, (5.11)

where vb
c = Rb

G (η2)vG
c is the linear current velocity in body fixed coordinates and ωc = 0

is the rotational current velocity assumed to be zero due to irrotational flow assumption.
To model a flow around a fish net and calculate the current velocity vc at an arbitrary

ROV position η1 in the environment, we apply a potential-based panel method for in-
compressible inviscid low-speed flows [60]. This method is based on solving the Laplace’s
equation for the total potential ∇2Φ = 0 by distributing “singularities” of unknown strength
over the surface discretized into a number of elements (panels). The general solution to the
potential equation may be found as a superposition of solutions for each panel along with
boundary conditions.

For the fish net model, the “lumped-mass method” concept is used [88], according to
which the net is divided into discrete net elements with lumped masses at the element nodes
connected by massless springs. Each net element represents a structure of four intercon-
nected bars that are subject to the external non-linear forces applied at the center of the
element. The internal (structural) forces are incorporated into the model as well in order to
address the flexibility of the net structure.

For the flow field modeling, the fish net cells are represented as three-dimensional
quadrilateral source panels with constant strength. In this model, only the source ele-
ments are used since the fish net can be considered as a non-lifting symmetric surface with
nonzero thickness. At each panel, a collocation point is specified at the centroid of the
element and represents a point, where the Neumann boundary condition is applied at:

∇(Φ+Φ∞) ·n = 0, (5.12)

where Φ∞ is the free-flow velocity potential.
Following that the velocity at each point can be obtained as a gradient of the velocity

potential, the boundary condition required zero velocity normal to the net surface at each
collocation point k may be written as:

(vk +U∞) ·nk = 0, (5.13)
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where vk = {u,v,w}k is the velocity induced by all panels at the point k, U∞ is the velocity
of the flow (current), nk is the normal to the net surface at the point k.

The velocity vkl induced by a quadrilateral element l at the point Pk = {xk,yk,zk} is
calculated according to the expressions derived by Hess and Smith [54]:

ukl =
σl

4π

[
y2− y1

d12
ln

r1 + r2−d12

r1 + r2 +d12
+

y3− y2

d23
×

× ln
r2 + r3−d23

r2 + r3 +d23
+

y4− y3

d34
ln

r3 + r4−d34

r3 + r4 +d34
+

+
y1− y4

d41
ln

r4 + r1−d41

r4 + r1 +d41

]
,

(5.14)

vkl =
σl

4π

[
x2− x1

d12
ln

r1 + r2−d12

r1 + r2 +d12
+

x3− x2

d23
×

× ln
r2 + r3−d23

r2 + r3 +d23
+

x4− x3

d34
ln

r3 + r4−d34

r3 + r4 +d34
+

+
x1− x4

d41
ln

r4 + r1−d41

r4 + r1 +d41

]
,

(5.15)

wkl =
σl

4π

[
tan−1 m12e1−h1

zkr1
− tan−1 m12e2−h2

zkr2
+

+ tan−1 m23e2−h2

zkr2
− tan−1 m23e3−h3

zkr3
+

+ tan−1 m34e3−h3

zkr3
− tan−1 m34e4−h4

zkr4
+

+ tan−1 m41e4−h4

zkr4
− tan−1 m41e1−h1

zkr1

]
,

(5.16)

where
di j =

√(
x j− xi

)2
+
(
y j− yi

)2
,

mi j =
y j− yi

x j− xi
,

ri =

√
(xk− xi)

2 +(yk− yi)
2 + z2,

ei = (xk− xi)
2 + z2,

hi = (xk− xi)(yk− yi) ,

i, j are the indices of the nodes of the quadrilateral panel (i, j = 1,2,3,4), σl is the constant
strength of the panel l.

The geometry of the panel are shown on 5.5. Note, that the expressions of the velocities
{u,v,w}kl given by 5.14 are derived for the local coordinate system of the corresponding
panel l. The origin of the local system is located at the center of each panel, the axes X and
Y lay in the the plane of the panel, the axis Z is normal to the panel and points outwards.
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Figure 5.5: Geometry of quadrilateral source elements with constant strength.

The panel normal unit vector nk, which is used for defining the local panel coordinate
system and in 5.12, is found by taking the cross product of two unit vectors parallel to the
diagonals of the element. This normal vector is used in the angular controller as well 5.5
in order to keep the vehicle aligned normally to the fish net.

In this work, several additional modifications were used in order to apply the described
panel method for underwater aquacultures. Since the top of the net is laid in the plane of
the water surface, the water cannot flow over it. This situation can be modeled by placing
a “mirror” in the horizontal plane on the net top. The transformation of the panels will be
easily the reflection of their coordinates and normal vectors around this plane.

The second issue that should be treated carefully for estimating the flow distribution
around fish nets is penetration through the net cells. The Neumann boundary condition
implies zero penetration velocity normal to the net surface. However, the fish net represents
a mesh or porous medium. Thus, the penetration through the net cells inwards and outwards
should be taken into account. We introduce a penetration coefficient Kp that describes a
reduction value of the current velocity after the penetration or the percentage of the water
that can pass through the net. For this case, the boundary condition can be written as
follows:

(v+U∞) ·n = KpU∞ ·n. (5.17)

In this case, the current velocity vc at an arbitrary ROV position η1 in the environment
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is calculated as:

vG
c = U∞ +

N

∑
i=0

vi (η1), (5.18)

where vi is the velocity induced by a quadrilateral element i at the point η1 calculated
according to the expressions derived by Hess and Smith [54], N is the number of panels.

The drift compensation controller can be written as:

τdri f t = MAν̇c +CA (νc)νc +D(νc)νc. (5.19)

5.3.5 Hybrid Control Architecture

As was discussed earlier, the underwater robot used in this project cannot perform side-
wards motion due to the lack of an actuator in the sway direction. However, one of the
main requirements of the underwater inspection with full coverage of an aquaculture is
ability of the vehicle to move around the fish cage, i.e. to move sidewards while point-
ing towards the net. In order to achieve such performance, we introduce a hybrid control
architecture shown on 5.6. The state transition scheme has four modes:

1. CRmax: In this mode, the angular controller with sdes = sright and the linear controller
with ddes = dmax are activated.

2. CRmin: In this mode, the angular controller with sdes = sright and the linear controller
with ddes = dmin are activated.

3. CLmax: In this mode, the angular controller with sdes = sle f t and the linear controller
with ddes = dmax are activated.

4. CLmin: In this mode, the angular controller with sdes = sle f t and the linear controller
with ddes = dmin are activated.

The transition between the modes are defined by the conditions on the current distance
from the fish net d and the angle β between the current normal to the fish net surface and
the vector d (see 5.4). The depth controller is activated independently of the linear and
angular controller to keep the vehicle at the desired depth.

5.4 Simulation Results

The developed controller is validated through simulations under realistic levels of noises
and disturbances. In these tests, aquaculture was assumed as a fish net of an open cylinder
form which top is mounted to the fixed hoop. Sixteen weights with the mass of 400 g were
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Figure 5.6: State transition diagram.

positioned uniformly along the circumference of the cylinder bottom. The fish net was
divided 50 cells, while the diameter of the fish net cylinder was 2 m and the length (depth)
was 2 m.

The simulation scenario was to navigate the vehicle sidewards around the fish net for
100 s. The STD of the gyro measurements was assumed as 0.05 rad/s, the STD of the
accelerometers was 0.02 ms−1, the STD of the pressure sensor was 0.1 m, the STD of the
LVS was 0.5 m for the distance measurements and 0.01 for the normal measurements. The
resultant trajectory of one simulation run are shown on 5.7.

Additional simulations were conducted in order to check the drift compensation con-
troller. The simulation scenario was to navigate the vehicle forward and downward up to
the depth of 0.8 m. The results of this scenario are shown on 5.8, where the radial and ver-
tical position errors are depicted on 5.8a and the vehicle coordinates are depicted on 5.8b.
The position errors and vehicle coordinates are shown for two cases: case (a) corresponds
to the case where the drift correction was applied (e.g. the ocean current velocity estimation
at each position of the robot was used in the controllers), case (b) corresponds to the case
without drift correction (e.g. the ocean current velocity was assumed equal to undisturbed
flow velocity). We can see that applying the drift compensation controller allows the robot
to navigate more accurate with position errors converging to zero.
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Figure 5.7: Simulation results for one run: the trajectory of the robot in X-Y plane.
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Figure 5.8: Position errors and vehicle coordinates for two case: (a) with drift correction;
(b) without drift correction.
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5.5 Conclusion and Future Work

In this chapter, we presented a hybrid controller for underwater fishnet coverage task by
an under-actuated underwater vehicle. It was shown that drift compensation level of the
controller can improve the accuracy of the navigation task. This work includes interme-
diate results of a project aimed to develop an autonomous robotic system for fish farming
inspection. The experimental tests in a dedicated mock-up environment and sea trials are
part of our current effort.

101





Part IV

Multi-agent Systems
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Chapter 6

Multi-Robot Coverage on Dendritic
Topologies Under Communication
Constraints

This chapter presents a novel algorithm for performing multi-robot coverage on networks
with dendritic topology where the communication topology is location dependent and
where the motion of each robot is constrained by the presence of the other robots in the
network. The algorithm provides complete network coverage by the minimum number of
robots, maintenance of communication constraints and robot collision avoidance. The min-
imum number of robots required for coverage is a by-product of the proposed algorithm.
The efficiency of the algorithm is demonstrated through simulation studies. The results in
this chapter were originally presented with the author contribution in [72]1.

6.1 Introduction

Multi-robot coverage is a topic that has received a lot of attention during the last decades.
Several methodologies are surveyed in [19]. Distributed algorithms using Voronoi parti-
tions and Lloyd’s algorithm have been utilized in [27], [28] to tackle the problem. Solu-
tions to the constrained coverage problem based on virtual potential fields were proposed
in [85], [51]. In [39] the Spanning Tree Covering (STC) algorithm was proposed. In [10]
the Least Recently Visited (LRV) algorithm has been presented to solve the problem of
coverage, exploration and sensor deployment. In [50] an algorithm for unknown environ-
ment coverage utilizing information gathered by previously deployed nodes while simul-
taneously attaining line-of-sight communication was presented. Sensor-based coverage

1This work was supported under Grant Agreement 601116 EU/FP7/ECHORD++ Urban Robotics
PDTI/ROBODILLOS.
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algorithms for unknown environment were used in [92].
The main motivation for this work comes from the field of autonomous robotic cov-

erage of large-scale under-ground sewer networks. An array of issues particular to the
motivating problem differentiate this work from the existing literature and the proposed
solution is the first to the authors’ knowledge that tackles this problem. Sewer network
systems (see Fig. 6.1) are typically dendritic networks converging in the downstream di-
rection without closed loops. In network systems theory such networks are characterized
as tree or more precisely directed tree networks where the directionality is inherited from
the sewage flow direction. Sewer network flow channels are typically or restricted dimen-
sions allowing only a single inspection robot at a given position. Robots operating in such
networks can only interchange positions at channel junctions. Wireless communications
in underground sewer networks are much more challenging than in above-ground settings.
The main transmission path is through the underground network’s channels, usually non-
line-of-sight and with severe attenuation over corridor bends and turns and of course issues
related to multi-path reflections. Hence, the communication coverage pattern for each robot
differs fundamentally from the typical disk coverage pattern encountered in the multi-robot
coverage literature and is strongly dependent on the local topology of the network at each
robot’s location.

Figure 6.1: (a) Sewer flow channels at an Y-junction (b) Master sewer system map. Source:
USAID (1982)

Utilizing the planar embedding of the underlying tree topology of the network, a new
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structure, the topological buffer is proposed that enables collision free multi-robot coordi-
nation. A wireless communication model that takes into account the local network topology
enables the calculation of the communication range at each robot location. Finally, an ap-
propriate abstraction of the multi-robot team as entities commuting through topological
buffers embedded across the nodes of the network graph, enables the fulfillment of the
coverage algorithm. The resulting algorithm guarantees complete network coverage with
the minimum number of robots while maintaining communication between the robots and
a base station and avoiding collisions between the robots. A side result of the algorithm is
the minimum number of robots required for coverage.

The rest of the chapter is organized as follows: Section 6.2 presents preliminary notions
and definitions while section 6.3 introduces the System Modeling. Section 6.4 presents the
Coverage Algorithm and section 6.5 introduces the Simulation Results. Conclusions are
provided in section 6.6.

6.2 Preliminaries

If K is a set then |K| is the cardinality of the set. Let V denote a set of vertices and let
E ⊆ {(v1,v2) |v1,v2 ∈V} denote a set of edges. Then a graph is the tuple:

G = {V,E} .

The degree of a vertex is the number of incident edges to the vertex. If v ∈ V is a vertex
then NG(v) is the set of adjacent vertices to v. A tree is a connected acyclic graph. A star
graph of order n, Sn is a tree with n nodes, with one node having vertex degree n− 1 and
the rest having degree 1. Let A = {a1, . . .ai, . . .an}, where n = |A|, be an ordered set and
denote with A(k), k ∈ {1, . . . , |A|} the k’th element of A. If A and B are ordered sets, then
define their disjoint union as

C = A
⊎

B

where C is an ordered set where:

C(k) =
{

A(k), k ∈ {1, . . . , |A|}
B(k), k ∈ {|A|+1, . . . , |A|+ |B|}

Define the prefix operator of a non-empty ordered set A as

Pre(A), A(1)

and the postfix operator as
Post(A), A(|A|).
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Define the head operator of a non-empty ordered set A to be the ordered set

Head(A), {A(i)| i ∈ {1, . . . |A|−1}}

and the tail operator to be the ordered set

Tail(A), {A(i)| i ∈ {2, . . . |A|}} .

Definition 6 (Omni-directional buffer) Assume a is an element. An omni-directional buffer

is an ordered set B endowed with the following operations.

• →B[a]: push left operation transacted as B := {a}]B

• B←[a]: push right operation transacted as B := B]{a}

• ←B: pop left operation transacted as B := Tail(B)

• B→: pop right operation transacted as B := Head(B)

By restricting the operation of the omni-directional buffer we get the following:

Definition 7 (Directional buffer) An omni-directional buffer restricted to operations→B[a]

and B→ is a left-to-right (→) buffer denoted as
→
B, whereas when restricted to operations

B←[a] and ←B is a right-to-left (←) buffer denoted as
←
B.

We can now define the topological buffer:

Definition 8 (Topological Buffer) A topological buffer T is an arrangement of a collec-

tion of omni-directional buffers B1, . . .Bn, each restricted to a direction di ∈ {←,→},
i ∈ {1, . . . ,n}, arranged on a star Sn topology. Left-to-right buffer operations are directed

towards the central hub of the star topology whereas right-to-left operations are directed

away from the hub. Assume a is an entity2. The topological buffer is endowed with the

following operations:

• →Ti[a]: push left operation on (→) buffer
→
B i transacted as:

→
B
→
i [a]

• ←Tj: pop left operation on (←) buffer
←
B j transacted as: ←

←
B j

• T i→ j: switch element from
→
B i to

←
B j buffer, transacted as the sequence:

←
B
←
j [Post(

→
B i

)],
→
B
→
i .

2i.e. a robot abstraction
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• T [D]: reset buffer directionality, where D is a set of directions and transacted as

di := D(i), i ∈ {1, . . . ,n}

Contents of buffer Bi of the topological buffer are addressed with T (Bi).

Remark 1 Operations on the buffers are considered to be blocking, in sense that concur-

rent operations are not allowed on the same buffer.

Fig. 6.2 depicts a topological buffer on an S3 topology.

Figure 6.2: Topological buffer on an S3 topology

6.3 System Modeling

6.3.1 Network Modeling

Since we are considering dendritic networks, a planar embedding of a rooted tree graph G

is used (see e.g. Fig. 6.3). The vertices of the graph represent crossings and bends whereas
graph edges represent the corridors of the underground network. At each vertex we install
a topological buffer with Sk topology where k in the degree of the vertex. We denote by
v{T} the topological buffer at vertex v. Left-to-right buffer directionality is assigned to the
incoming edge and right-to-left directionality is assigned to outgoing edges. The vertex set
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Figure 6.3: Network Model
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of the graph is augmented with coordinate information for every vertex. For a vertex v,
px(v) is it’s x-coordinate and py(v) it’s y-coordinate. Define the set:

V ∗ ,
{
(v,vx,vy)|v ∈V, vx = px(v), vy = py(v)

}
Then the planar embedding of the graph is provided by:

G∗ = {V ∗,E} .

6.3.2 Robot Modeling

To capture robot motion in the sewer network an abstraction of the robot kinematics is
assumed. Robot motion along sewer network channels represented by graph edges is ab-
stracted as transitions of robot entities between neighboring topological buffers. A robot
transition is a locking operation for the topological buffers. This enforces collision avoid-
ance since no two robots can transverse the same edge in opposite directions at the same
time. To this extend, due to the ordering enforced by the topological buffers, two robots
cannot exchange positions in the same buffer. This abstract behavior is assumed to be
executed by appropriate low level motion planners on each robot.

The following algorithm abstracts the robot model:

Algorithm 5 Robot Model
Require: Robot id Rid
Require: Robot position at vinit
Require: Robot destination at v f inal ∈ NG(v)
Ensure: New Robot location

1: if Rid ∈ Pre(vinit{T}(
←
Bv f inal)) then

2: →v f inal{T}
[
Pre(vinit{T}(

←
Bv f inal))

]
3: ←vinit{T}v f inal

4: return Success
5: else
6: if Rid ∈ Post(vinit{T}(

→
Bv∗)), v∗ 6= v f inal then

7: T v∗→v f inal

8: return Success
9: end if

10: end if
11: return Failed
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6.3.3 Communications Modeling

Assume that a transmitting agent a is placed at vertex v. Then the communication graph
G∗a,v induced by the agent is a subgraph of G∗. In the proposed communications model,
signal attenuation related to the geometrical arrangement of the network is being consid-
ered. Let (vi,v j) ∈ E be the vertices of an incident edge ei, j of G∗a,v. We consider a decay
rate that depends on the angle between edges and is constant along the edge. The path loss
(dB) along ei, j that depends on a and v, can be modeled as:

PLi, j,a,v =−λi, j,a,v
∥∥ei, j

∥∥
where

∥∥ei, j
∥∥ = ∥∥∥∥[ vx,i

vy,i

]
−
[

vx, j
vy, j

]∥∥∥∥ and λi, j,a,v the decay rate along ei, j for a source

a placed at v. Now assume transmission along edge ei, j continuing along edge e j,k. We
assign a path loss on the i→ j→ k connection, incurred at vertex v j that is a function of
the angle between the two edges:

PLi, j,k = fλ (arg(ei, j,e j,k))

where arg(ei, j,e j,k) is the angle between ei, j and e j,k. Accurate calculation of λ and of
function fλ (·) is beyond the scope of this work.

Fig. 6.4 depicts the communication pattern for robots placed at nodes 38 and 14 calcu-
lated according to the communication model.

6.4 Coverage Algorithm

6.4.1 Algorithms

The coverage algorithm assumes that robots are identified and prioritized by their Rid . Since
topological buffer operations by the robots are blocking operations the algorithm iteratively
loops around Rid’s effectively permitting only a single robot operation at any time instance.
During the initialization phase G∗a,vroot

is calculated with cutoff signal loss at −∞. This
enables the determination of the hardest vertex to communicate to as the vertex with the
minimum signal strength. A shortest path from the root to this vertex is calculated using
Dijkstra’s algorithm [30] and this path is used as the initial plan. During algorithm iter-
ations, vertices identified as denoting the communication backbone for the current plan
restrict their topological buffer operations to always have at least one robot in them. The
communication backbone consists of robots whose communication subgraph union forms
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Figure 6.4: Communication patterns for G∗a,38 and G∗a,14
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a connected component to the base station located at the root and whose per-pair intersec-
tions are at most a single vertex. The communication backbone is initialized by inserting
the root vertex into it. The algorithm starts iterations after the first robot is inserted into
the root buffer facing the second vertex in the current plan. The coverage algorithm is pro-
vided by 6 combined with 5 and 7. The following abbreviations are used in the presented
algorithms: NPP: next plan position, PPP: previous plan position CBB: communication
with backbone, cbb: communication backbone, Move Robot: Use Algorithm in 7, TB:
Topological buffer, CL: current location, DSD: Determine shortest directed path from CL
to non-covered leaf, NRP:Next Robot Position, RM: Robod Model: Use Algorithm in 5.

6.4.2 Analysis

Since the algorithm is an on-line algorithm, each loop Rid can be executed onboard the
corresponding Rid robot. Thus, the complexity of the proposed algorithm is dictated by the
DSD step that entails the determination of an uncovered reachable leaf from the current
location and then the shortest directed path to it using Dijkstras algorithm hence having a
worst case complexity of n2 per iteration.

The algorithm provides by construction the collision avoidance property where in the
context of this work a collision is interpreted as traversal of the same edge by two robots at
the same time in opposite directions or position swapping on the same edge between two
robots.

Assuming operation of a rooted tree network the algorithm is guaranteed to be dead-
lock free since each Rid loop is performed by locking all other robot’s Rid loops. Moreover
livelock situations at leaf nodes where plan reversal is taking place are guaranteed to never
occur since only a singe robot is allowed to be at a leaf topological buffer (line 4 of Algo-
rithm 6).

Communication of every robot with the base station is guaranteed by the communi-
cation backbone structure, where a robot can move to a new position only if backbone
communication is available and backbone nodes are canceled only when becoming leaves.

Coverage is guaranteed since vertex nodes are abandoned only after becoming a leaf
nodes (plan reversal only possible at a leaf node).

The resulting solution uses only the minimum number of robots since at each time all
robots are involved in the same plan. This implies that no robots are being utilized for
auxiliary plans that would reduce the robot availability for the main plan. Since robots are
introduced to the system only when the limits of communication have been reached this
implies that only the minimum required number of robots will be used.
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Algorithm 6 Coverage Algorithm
Require: Initial plan Plan
Ensure: Network Coverage

1: while G∗ not covered do
2: loop Rid
3: if Not at Plan Leaf Node then
4: if NPP is Plan Leaf and populated then
5: return noProgress
6: end if
7: if CBB avaiable at NPP then
8: Progress? ←Move Robot to NPP
9: return Progress?

10: else
11: Add CL to cbb
12: return Progress
13: end if
14: else
15: if At backbone and Last in TB then
16: Remove CL from cbb
17: end if
18: Reset CL TB direction to point out to PPP
19: Reset PPP TB direction to point in from CL
20: Progress? ←Move Robot to PPP
21: if TB is empty then
22: Plan← Head(Plan)

⊎
DSD

23: end if
24: return Progress?
25: end if
26: end loop
27: if noProgress for all Rid then
28: Insert new robot in root buffer
29: end if
30: end while
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Algorithm 7 Move Robot Algorithm
Require: Rid , NRP
Ensure: Motion Succesful

1: if Rid is in TB pointing towards NRP and at Prefix then
2: if (CL NOT in cbb) OR (CL in cbb AND size(TB) > 1) then
3: Progress? ← RM(Rid , CL, NRP )
4: return Progress?
5: else
6: return noProgress
7: end if
8: else
9: if Rid is in TB at Postfix then

10: Progress? ← RM(Rid , CL, NRP )
11: return Progress?
12: else
13: return noProgress
14: end if
15: end if

6.5 Simulations

In order to test and verify our algorithms, a set of simulations were performed using Matlab
and the Octave - networks - toolbox [42]. A 5×9 square grid with a rooted tree was used
as a network model (see Fig. 6.3).

(a) Initial condition (b) (Deployment to the hardest to communicate to
vertex
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(c) Coverage in progress (d) Coverage in progress

(e) Multiple robots at vertex 33 (f) Coverage task completed successfully

Figure 6.5: Simulation results of the proposed algorithm

The algorithm was initialized and executed as described in section 6.4. The root was
fixed at node 21. Fig. 6.5 illustrates the simulation results for our algorithms. The yellow
vertices show the places that were not visited and the white vertices show the places that
the robots have covered. The pink vertex represents that there are more than one robot in
this buffer. Finally, orange vertices indicate the presence of a single robot in that buffer.
As mentioned earlier, the starting point for operations is the root vertex node 21 (see Fig.
6.5(a)). Robots initially deploy up to the vertex with the lowest communication signal (Fig.
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6.5(b)). Graphs (c) and (d) depict snapshots of the robots covering the network while com-
muting through topological buffers and maintaining communication. In graph (d) vertex
33 is pink to denote more than one robots in the buffer. Finally, graph (e) demonstrates that
the robots have managed to perform the coverage task successfully.

6.6 Conclusions

In this chapter, we have proposed the development of a novel algorithm for multi-robot
coverage on dendritic topologies under communication constraints. This is the first to
the authors’ knowledge solution to the specific problem. The resulting algorithm guaran-
tees complete network coverage with the minimum number of robots while maintaining
communication between the robots and a base station and avoiding collisions between the
robots. The minimum number of required robots for coverage is a by-product of the algo-
rithm, and a very useful information for planning ahead inspection operations. Non-trivial
simulation results support the provided claims for the presented algorithm.

One of the major advantage of our algorithms is that they can tackle a coverage problem
in urban restricted environments such as sewers and pipe networks with restricted dimen-
sionality allowing only a single inspection robot at a given position.

Further research is directed towards optimizing the algorithm for time-optimal coverage
and for energy optimal coverage. Moreover adaptation of the methodology for implemen-
tation on actual systems is something that we are looking into. Furthermore, a realistic
simulation scenario was developed in ROS/Gazebo for testing new algorithms in simulated
sewer network environment. Fig. 6.6 and Fig. 6.7 shows the robot while navigating in a
sewer network environment.

Figure 6.6: Sewer part in real dimensions.
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Ros / Gazebo simulations are very important especially in environments where it is
difficult to perform multiple tests to verify algorithms such as underground and underwater
environments. The realistic simulations also help in testing algorithms that are intended for
real robots avoiding unexpected consequences during experiments. The transition from the
ROS / Gazebo simulator to the real one usually does not require changes since it can take
into account all the possible real conditions.

Figure 6.7: The left side of the figure shows the robot visualization in rviz environment
while building the map and the right side of the figure shows the simulation scenario where
the robot is operated in sewer network.
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Part V

Closing Remarks
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Chapter 7

Conclusions and Future Work

In this chapter, the conclusions of this dissertation are presented along with the future work
for each chapter.

In chapter 2, we have presented a novel methodology for synthesizing motion tasks
with real-time objectives from high-level temporal logic specifications. The main advan-
tages of the presented methodology are correct by construction solution and the utilization
of the Navigation Transformation by a fragment of LTL. This approach decouples the time
abstracted navigation problem from the task sequencing problem, simplifying the solu-
tion. Furthermore, the proposed method is more computational efficient since the model
checking technique is avoided. Further research issues include the addition of allowed and
forbidden regions in the set of predicates, agents with input constraints, and real-world
hardware experiments. Moreover, cooperative tasks with multiple agents are under investi-
gation.

In chapter 3 we proposed a laser vision system for relative 3-D posture estimation of
an underwater robot considering the hemispherical optics from the camera-dome housing.
The analytical model that was developed is taking into account the non-linear hemispher-
ical optics for the three medium refraction phenomenon air, acrylic dome, and water. The
analytical model is accompanied with the software and hardware LVS for underwater ROV
localization in close proximity to aquaculture fish-nets. The analytical model also provides
the flexibility to calculate the refractive index where the autonomous system is operated, ex-
panding its applicable range. The LVS is capable of generating information as point-cloud
sets from each laser and, by utilizing the proposed algorithms, high-level information like
distance and relative orientation of the target with respect to the ROV can be recovered.
Another advantage of the proposed methodology is the automatic calibration technique
that was developed in order to reduce the time which is needed for the regular mainte-
nance required by the system (typical for underwater vehicles and their components). The
spatial filter algorithm gives the advantage to the system to discriminate mesh-like targets
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from other artifacts in LVS measurements. The proposed system was tested and validated
by experimental results both in the laboratory and field experiments at sea in aquaculture
installations. The real-world experiments showed that the system is suitable for visual in-
spection operations in aquacultures. Furthermore, future works include the development of
new algorithms based on the LVS for hull and port inspections, and coast mapping.

In chapter 4, we presented a state estimation algorithm for an autonomous underwater
vehicle for the aquaculture inspection task. The algorithm fused all the required informa-
tion from several sensors providing measurements with different and various frequencies.
The performance of the algorithm was validated through simulation results under real-
world conditions and noises. As future work, we consider conducting experiments and
field tests to verify the proposed models and algorithms. Using other available sensors
and information (for example, optical flow) in the state estimator along with applying ob-
servability constraints analysis to the filter is considered to be a part of the future work as
well.

Chapter 5 a hybrid controller was proposed for the fishnet coverage task for visual
inspection operations. The hybrid control architecture utilizes information from different
sources, including on-line adaptive prediction of the fishnet geometry and estimation of
the flow velocity in the proximity to aquacultures. The drift compensation controller has
improved the accuracy of the navigation task. This work includes intermediate results of
a project aimed to develop an autonomous robotic system for aquaculture inspection. The
experimental tests in a dedicated mock-up environment and sea trials are part of the future
implementation of the proposed algorithms.

In chapter 6 we have proposed the development of a novel algorithm for multi-robot
coverage on dendritic topologies under communication constraints. This is the first to
the authors’ knowledge solution to the specific problem. The resulting algorithm guaran-
tees complete network coverage with the minimum number of robots while maintaining
communication between the robots and a base station and avoiding collisions between the
robots. The minimum number of required robots for coverage is a by-product of the al-
gorithm and very useful information for planning ahead inspection operations. Non-trivial
simulation results support the provided claims for the presented algorithm. One of the ma-
jor advantages of the proposed algorithms is that they can tackle a coverage problem in
urban restricted environments such as sewers and pipe networks with restricted dimension-
ality allowing only a single inspection robot at a given position. Further research is directed
towards optimizing the algorithm for time-optimal coverage and for energy optimal cover-
age. Moreover, an adaptation of the methodology for the implementation of actual systems
is something that we are looking into.
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Appendix A

Notations

A.1 Linear Temporal Logic

The syntactic rules according to which formula in LTL can be constructed. Temporal logic
is a class of logic that extends propositional or predicate logic with temporal properties [8].
The basic ingredients of LTL-formula are atomic propositions (state labels a ∈ P), the
Boolean connectors like conjunction ∧, and negation ¬, and two basic temporal modalities
© (”next”) and U (”until”).

Definition 9 Syntax of LTL [8]

LTL formula over a set P of atomic proposition are formed according to the following

grammar:

ϕ ::= true | a | ϕ1∧ϕ2 | ¬ϕ | © ϕ | ϕ1U ϕ2

where a ∈ P.

From the basic LTL operators we can derive additional standard Boolean operators.
More specific the until operator allows to derive the temporal modalities ♦ (”eventually”,
sometimes in the future) and � (”always”, from now on forever) as follows:

♦φ = trueU φ �φ = ¬♦¬φ

In addition, we can derive other temporal operators such as ”disjunction” ∨ and ”impli-
cation”⇒.

Definition 10 Semantics of LTL [8]

Let ϕ be an LTL formula over P. The LT property by ϕ is

Words(ϕ) =
{

σ ∈ (2P)ω | σ |= ϕ
}
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where the satisfaction relation |=⊆ (2P)ω× LTL is the smallest relation with the properties
below.

σ |= true

σ |= a iff a ∈ A0 (i.e.,A0 |= a)

σ |= ϕ1∧ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ 2 ϕ

σ |=©ϕ iff σ [1 . . .] = A1A2A3 . . . |= ϕ

σ |= ϕ1U ϕ2 iff ∃ j ≥ 0.σ [ j . . .] |= ϕ2 and σ [i . . .] |= ϕ1, for all 0≤ i≤ j

Here, for σ = A0A1A2 . . . ∈ (2P)
ω
,σ [ j . . .] = A jA j+1A j+2... is the suffix of σ starting in

the ( j+1)st symbol A j.
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