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ABSTRACT: The performance of a solar hot water thermosyphon system was tested with the dynamic system method
according to Standard ISO/CD/9459.5. The system is of closed circuit type and consists of two flat plate collectors with
total aperture area of 2.74 m2 and of a 170 liters hot water storage tank. The system was modeled according to the
procedures outlined in the standard with the weather conditions encountered in Rome. The simulations were performed
for hot water demand temperatures of 45 and 90°C and volume of daily hot water consumption varying from 127 to 200
liters. These results have been used to train a suitable neural network to perform long-term system performance
predictions. A total of 5 complete runs (60 patterns) were available. From these, 12 patterns with data for a whole year
were used as a validation set, whereas the rest 48 were used for the training (42 sets) and testing (6 sets) of the network.
A multi layer feedforward neural network with three hidden slabs was used. Seven input and four output parameters are
used. The input data were leaned with adequate accuracy with correlation coefficients varying from 0.993 to 0.998, for
the four output parameters. When unknown data were used to the network, satisfactory results were obtained. The
maximum percentage difference between the actual (simulated) and predicted results is 6.3%. These results prove that
artificial neural networks can be used successfully for this type of predictions.
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INTRODUCTION

There are several methods for testing the performance of solar water heating systems. In the present work the
performance of the system was tested with the dynamic system method according to Standard ISO/CD/9459.5 (1997).
This method takes into account time varying processes for the performance prediction of the system as well as for the
parameter identification.

Neural networks are widely accepted as a technology offering an alternative way to tackle complex and ill-defined
problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and
incomplete data, are able to deal with non-linear problems, and once trained can perform prediction at very high speed.
The power of neural networks in modeling complex mappings and in system identification has been demonstrated by
Kohonen (1984), Narendra and Parthasarathi (1990), and Ito (1992). This work encouraged many researchers to explore
the possibility of using neural network models in real world applications such as in control systems, in classification,
and in modeling complex process transformations (Kah et al., 1995; Kreider and Wang, 1995; Curtiss et al., 1995).

Artificial neural networks have been used successfully to model a solar steam generator. In particular they have been
used to model the collector intercept factor (Kalogirou et al., 1996), the local concentration ratios around the periphery
of the collector receiver (Kalogirou, 1996), and the starting-up of the system (Kalogirou et al., 1998). This was a
complex problem since the system was modeled during its heat-up, i.e., under transient conditions. Besides, artificial
neural networks have been used for the same system to predict the mean monthly steam production with an error
confined to less than 5.1% (Kalogirou et al., 1997). Additionally, neural networks have been used successfully to



predict the energy extracted and the water temperature rise of thermosyphon flat-plate solar collector systems
(Kalogirou et al., 1999).

The aim of this study is to investigate the suitability of neural networks as tools for the estimation of the long-term solar
water heating system performance. It is also required to use simple and easily measurable system and environmental
data such as total daily radiation and mean air temperature. This would facilitate the work of design engineers in the
field.

COLLECTION OF DATA

The solar system is of the thermosyphonic type and consists of two flat plate collectors with total aperture area of
2.74m2 and a 170 liters hot water storage tank. The system is of the closed circuit type, i.e., a heat exchanger is installed
in between the solar collectors and the hot water storage tank.

The system was modeled according to the procedures outlined in the standard ISO/CD/9459.5 with the weather
conditions encountered in Rome. The simulations were performed for hot water demand temperatures of 45 and 90°C
and volume of daily hot water consumption varying from 127 to 200 liters. The system was modeled for all hours of the
year (8760 hours). The program then presents a summary of the results on a monthly basis. These monthly results have
been used to train a suitable neural network to perform long-term system performance predictions.

A total of 5 complete runs were performed, i.e., 60 patterns were available in total. From the total of 60 sets of data, 12
(data for a whole year) were randomly selected (all of the same run) to be used for validation of the model and the
remaining 48 for training and testing the network. A sample of the training data set is shown in Table 1.

Table 1. A sample of the training data set.
Input parameters Output parameters

Month Td VL N Gt Ta Cs Q f Aa DT
1 45 127 31 130   7.6 6.16 171 0.795 1.320 27.8
2 45 127 28 174   8.0 6.16 196 0.907 1.120 31.7
3 45 127 31 214 10.2 6.16 204 0.948 0.957 33.2
4 45 127 30 238 13.0 6.16 211 0.977 0.884 34.2
5 45 127 31 263 17.2 6.16 214 0.993 0.813 34.8
6 45 127 30 281 21.0 6.16 216 1.000 0.768 35.0
7 45 127 31 261 24.2 6.16 216 1.000 0.826 35.0
8 45 127 31 271 24.0 6.16 216 1.000 0.797 35.0
9 45 127 30 258 21.1 6.16 216 1.000 0.835 35.0
... ... ... ... ... ... ... ... ... ... ...

Notes:
1. Td = hot water demand temperature (°C),
2. VL = volume of daily hot water consumption (lt),
3. N = number of days in each month,
4. Gt = mean solar irradiance (W/m2),
5. Ta = mean ambient temperature of the month (°C),

6. Cs = mean load capacitance rate (W/K),
7. Q = delivered power (W),
8. f = fractional system gain,
9. Aa = average effective solar system area (m2),
10.  DT = the mean load temperature difference (°C).

The data used as input to the artificial neural network are the same, with those required by the simulation program
supplied with the standard. The only difference is that mains mean cold water temperature and draw-off rate were not
used because their values were constant in all cases (Tcw=10°C and Vs=10 lt/min). These data are those that mostly
affect the performance of the system and are easily obtainable. These include some system parameters, weather
conditions, and the required output. The network is also trained to give an output the same as in the above-mentioned
program.

ARTIFICIAL NEURAL NETWORK MODEL

Artificial neural networks (ANN) mimic somewhat the learning process of a human brain. Instead of complex rules and
mathematical routines, ANN’s are able to learn the key information patterns within a multidimensional information
domain. In addition, the inherently noisy data do not seem to cause a problem, since they are neglected.



According to Haykin (1994) a neural network is a massively parallel distributed processor that has a natural propensity
for storing experiential knowledge and making it available for use. It resembles to the human brain in two respects; the
knowledge is acquired by the network through a learning process, and inter-neuron connection strengths, known as
synaptic weights, are used to store the knowledge.

ANN models represent a new method in system prediction. ANNs operate like a “black box” model, requiring no
detailed information about the system. Instead, they learn the relationship between the input parameters and the
controlled and uncontrolled variables by studying previously recorded data, similar to the way a non-linear regression
might perform. Another advantage of using ANNs is their ability to handle large and complex systems with many
interrelated parameters. They seem to simply ignore excess input data that are of minimal significance and concentrate
instead on the more important inputs.

Various network architectures such as of 3, 4, and 5 layers, a number of recurrent type, and a number of feedforward
ones, have been investigated aiming at finding the one that could result in the best overall performance. The
architecture, from those tested, that gave the best results and finally adopted is shown in Fig. 1. This is a feedforward
architecture, which has three hidden slabs. The architecture adopted in this work has different activation functions in
each slab as shown in Fig. 1.

Different activation functions are applied to hidden layer slabs in order to detect different features in a pattern processed
through a network. The network consists of eight neurons in each hidden slab.

Figure 1. Neural network architecture employed.

Seven input neurons have been used in the input slab, corresponding to the following input parameters:
• month of the year,
• hot water demand temperature (°C),
• volume of daily hot water consumption (lt),
• number of days in each month,
• mean solar irradiance of the month (W/m2)
• mean ambient temperature of the month (°C), and
• mean load capacitance rate (W/K).

SLAB 2

(8 neurons)

Activation
Gaussian SLAB 4

(8 neurons)

Activation
Gaussian

ComplementSLAB 3

(8 neurons)

Activation
tanh

SLAB 5

(4 neurons)

Activation
Logistic

 SLAB 1

(7 neurons)

Activation
Linear

INPUT LAYER
SLAB

HIDDEN LAYER SLABS OUTPUT LAYER
SLAB



The same parameters are used as input to the computer simulation program supplied with the standard. The output is a
four-element vector corresponding to the values of delivered power (Q in W), fractional system gain (f), average
effective solar system area (Aa in m2), and mean load temperature difference (DT in °C). These four parameters are the
most important ones to determine the long-term performance of the system. The output parameters are also the same as
the ones given by the program supplied with the standard.

The back-propagation learning algorithm has been used. The network gain was set to 0.1, and the momentum factor to
0.1 whereas the weights were initialized to a constant value of 0.3.  A total of 48 patterns have been collected for the 4
runs of the simulation program as described above. From this set, 42 patterns were used for the training of the network
while the remaining 6 patterns were randomly selected to be used as test patterns.

The training data were learned with an excellent accuracy. The coefficients of multiple determination (R2-values) and
the correlation coefficients obtained are shown in Table 2. The fact that all values are close to unity indicates that the
mapping was performed at a satisfactory level.

Table 2. Results of the training of the network.
Parameter Coefficient of multiple determination (R2-values) Correlation coefficient
Delivered power (W)
Fractional system gain
Average effective solar system area (m2)
Mean load temperature difference (°C)

0.9950
0.9957
0.9943
0.9862

0.998
0.998
0.997
0.993

RESULTS / VALIDATION

Once a satisfactory degree of input-output mapping has been reached, the network training is frozen and the set of
completely unknown test data was applied for verification. The validation data set, shown in Table 3, comprise data for
the same system but at different operating conditions, which the network has not seen before. A comparison of the
predicted results with the actual (simulated) values for the four output parameters is shown in Figures 2 to 4. As can be
seen the accuracy obtained is adequate. In fact, in some cases the two lines are so close that are indistinguishable. The
maximum percentage error is 6.3% occurring for the month of November for the delivered power. It should be stressed
that the training of the network required about 4 minutes on a Pentium 133 MHz machine. The subsequent predictions
for the unknown cases require about 1-2 seconds on the same machine; thus the estimation time was reduced drastically
without sacrificing accuracy.

Table 3. Validation data set.
Input parameters Output parameters

Month Td VL N Gt Ta Cs Q F Aa DT
1 45 170 31 130   7.6 6.16 208 0.722 1.60 25.3
2 45 170 28 174   8.0 6.16 245 0.850 1.41 29.7
3 45 170 31 214 10.2 6.16 264 0.915 1.24 32.0
4 45 170 30 238 13.0 6.16 278 0.963 1.17 33.7
5 45 170 31 263 17.2 6.16 285 0.987 1.08 34.5
6 45 170 30 281 21.0 6.16 289 1.000 1.03 35.0
7 45 170 31 261 24.2 6.16 289 1.000 1.11 35.0
8 45 170 31 271 24.0 6.16 288 0.999 1.07 35.0
9 45 170 30 258 21.1 6.16 288 0.999 1.12 34.9
10 45 170 31 181 16.0 6.16 280 0.972 1.55 34.0
11 45 170 30 145 12.4 6.16 248 0.859 1.71 30.1
12 45 170 31   90   8.4 6.16 154 0.533 1.71 18.7

Note: For explanation of symbols refer to Table 1.

CONCLUSIONS

The objective of this work was to predict the long-term performance of a solar water heating thermosyphon system
tested with the dynamic system method using artificial neural networks. The system consists of two flat plate collectors
and a hot water storage tank of closed circuit type.



The system was modeled according to the procedures outlined in the standard with the weather conditions encountered
in Rome. The simulations were performed for hot water demand temperatures of 45 and 90°C and volume of daily hot
water consumption varying from 127 to 200 liters. The system was modeled for all months of the year. These results
have been used to train a suitable neural network to perform long-term system performance predictions. A total of 5
complete runs were available, i.e., 60 patterns were available in total. From these, 12 patterns with data for a whole year
were used as a validation set, whereas the rest 48 were used for the training (42 sets) and testing (6 sets) of the network.

Figure 2.  Comparison of actual (simulated) data with ANN predicted data for delivered power.

Figure 3. Comparison of actual (simulated) data with ANN predicted data for fractional system gain and effective solar
system area.

Figure 4. Comparison of actual (simulated) data with ANN predicted data for mean load temperature difference.
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A multi layer feedforward neural network with three hidden slabs was used. The input parameters are the same to those
used as input to the simulation program. The output is also similar to the output given by the program. The input data
were leaned with adequate accuracy. The obtained correlation coefficients were varying from 0.993 to 0.998, for the
four output parameters, which are very adequate.

When unknown data were used to the network, satisfactory results were obtained, with correlation coefficients of the
same order of magnitude as above. The maximum percentage difference between the actual (simulated) and predicted
results is 6.3%. These results prove that artificial neural networks can be used successfully for this type of predictions.
We are planing to apply artificial neural networks and the dynamic system testing method for a number of systems in
order to create an assessment tool for this type of solar systems.
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