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Abstract

It is a widely accepted fact that state–sponsored Twitter ac-

counts operated during the 2016 US presidential election

spreading millions of tweets with misinformation and inflam-

matory political content. Whether these social media cam-

paigns of the so–called “troll” accounts were able to manipulate

public opinion is still in question. Here we aim to quantify the

influence of troll accounts and the impact they had on Twitter by

analyzing 152.5 million tweets from 9.9 million users, includ-

ing 822 troll accounts. The data collected during the US elec-

tion campaign, contain original troll tweets before they were

deleted by Twitter. From these data, we constructed a very large

interaction graph; a directed graph of 9.3 million nodes and

169.9 million edges. Recently, Twitter released datasets on the

misinformation campaigns of 8,275 state–sponsored accounts

linked to Russia, Iran and Venezuela as part of the investigation

on the foreign interference in the 2016 US election. These data

serve as ground–truth identifier of troll users in our dataset. Us-

ing graph analysis techniques we qualify the diffusion cascades

of web and media context that have been shared by the troll

accounts. We present strong evidence that authentic users were

the source of the viral cascades. Although the trolls were par-

ticipating in the viral cascades, they did not have a leading role

in them and only four troll accounts were truly influential.

1 Introduction

The Russian efforts to interfere in and manipulate the outcome

of the 2016 US presidential election were unprecedented in

terms of the size and scope of the operations. Millions of posts

across multiple social media platforms gave rise to hundreds of

millions of impressions targeting specific segments of the popu-

lation in an effort to mobilize, suppress, or shift votes [9]. Trolls

were particularly focused on the promotion of identity narra-

tives [10], though that does not distinguish them from many

other actors during the election [17]. The Special Counsel’s

report described this interference as ”sweeping and system-

atic” ([15], vol 1, 1). Russia demonstrated an impressive array

of tactics for producing significant damage to the integrity of

the communication spaces where Americans became informed

and discussed their political choices during the election [14].

While Russia’s efforts continue ”unabated” [20], it is likely

they and others will seek to target the American election in

2020 as well as continuing to target elections in Europe and

elsewhere. It is important, therefore to identify the operational

tactics of social media influence operations if we are to promul-

gate adequate defenses against them in the future.

There is a considerable debate as to whether state–sponsored

disinformation campaigns that operated on social media were

able to affect the outcome of the 2016 US Presidential election.

While there is a large body of work which tried to address this

question from distinct disciplinary angles [2, 9, 17] a conclu-

sive result is still missing. There are several obstacles that any

empirical study on this subject has dealt with: (i) the lack of

complete and unbiased Twitter data – the Twitter API returns

only a small sample of the users’ daily activity; (ii) The tweets

from deactivated profiles are not available; (iii) The followers

and followees lists are not always accessible, hence the social

graph is unknown. Moreover, the disinformation strategies that

the operators of the state–sponsored accounts had employed is

also unclear. A naive approach such as the one that flooded the

network with fake–news is not obviously the case. A study of

Russian social media activity has found that the majority of the

communications are not obviously false [16]. It is equally pos-

sible that the operators had performed advanced manipulation

techniques such as first building a reliable social profile aiming

to engage a group of followers and then transmitting factually

correct, but otherwise deceptive and manipulative claims ad-

vancing the political objectives of the disinformation campaign.

Hence, text mining and machine learning techniques might not

perform well under this scenario.

In this paper we measure the impact of troll activities on the

virality of the ambiguous political information that had been

shared on Twitter during the 2016 US Presidential election. For

that purpose, a very large directed graph has been constructed

by the interactions between the users (tweet replies and men-

tions). The graph consists of 9.3 million nodes and 169 million

edges and it has been constructed based on two Twitter datasets:

(i) A collection of 152.5 million tweets that was downloaded

using the Twitter API during the US presidential election period

(from September 21 to November 7, 2016). Hence, we have ac-

cess to original troll tweets that have yet to be deleted by Twit-

ter. (ii) A collection of original troll tweets which have been

released by Twitter itself as part of the investigation on foreign

interference in the 2016 US election – the misinformation cam-
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paigns of 8,275 state–sponsored accounts linked to Russia, Iran

and Venezuela states. Using graph analysis techniques and clas-

sification, we are able to identify the group of users that were

most probably the driving force of the viral cascades that have

been shared by the troll accounts.

Contribution: Our primary contributions are as follows:

• We construct one of the largest graphs in the literature,

which represents the interactions between state–sponsored

troll accounts and authentic users in Twitter during the pe-

riod of 2016 US Presidential election. This is an approxi-

mation of the original followers–followees social graph.

• We present strong evidence that the trolls’ activity was not

the main cause that led to viral cascades of web and media

material in Twitter. The experimental results clearly show

that the authentic users who had close proximity with the

trolls in the graph were the most active and influential part

of the population and their activity was the driving force of

the viral materials. A possible scenario is that instead of in-

jecting new content, these trolls bandwagon or ”resonate”

with communities online with which they sought to form

relationships. They do so, particularly by targeting opin-

ion leaders in these communities. This is consistent with

previous literature on information warfare tactics [4].

2 Related Work

2.1 Diffusion of disinformation

In [19] the authors investigated the diffusion cascades of true

and false rumors distributed on Twitter from 2006 to 2017; ap-

proximately 126,000 rumor cascades which have been spread

by 3 million people. The rumors had been verified as true or

false by six fact–checking organizations. The main funding of

this study is that false news diffused faster and more broadly

than the truth and also human behavior contributes more to the

spread of falsity than the trolls.

[3] examined 171 million tweets collected during five months

prior to the 2016 US presidential election. From this collection,

they analyzed 30 million tweets shared by 2.3 million users that

contained at least one web–URL linking to a news outlet web-

site (outside of Twitter). The 25% of these news were either

fake or biased representing the spreading misinformation on

Twitter. Then, in order to investigate the flow of information,

the retweet networks are constructed for each category of news.

Two users i and j are connected by the directed edge (j, i) if

user i retweeted a tweet of user j. Hence, the edges represent

the direction of information flow.

[8] investigated the extent to which Twitter users had been

exposed to fake news during the 2016 US presidential election.

The findings suggest that only a small fraction of 1% of the

population was responsible for the diffusion of 80% of the fake

news. Moreover, they proposed policies which had they been

adopted by the social media platforms they would have reduced

the spread of disinformation.

In [21, 22] the authors analyzed the characteristics and strate-

gies of 5.5K Russian and Iranian troll accounts in Twitter and

Reddit. Moreover, using the Hawkes Process they compute an

overall statistical measure of influence that quantifies the effect

these accounts had on social media platforms, such as Twitter,

Reddit, 4chan and Gab.

[1] examined the Russian disinformation campaigns in the

2016 US election on Twitter. The study is based on 43 million

posts shared on Twitter by 5.7 million distinct users (September

16 to November 9, 2016). The study focuses on the character-

istics of the spreaders, namely the users that had been exposed

and shared content produced by Russian trolls. They showed

that existing techniques such as the Botometer [5] are able to

effectively identify troll accounts.

An analysis of the role of Russian trolls on Twitter during

the 2016 US election is presented in [11]. The time-sensitive se-

mantic edit distance (a text distance metric) is proposed for the

visualization and qualitative analysis of trolls’ strategies such

as left–leaning and right–leaning.

2.2 Identifying malicious activity

A well-known method for identifying troll accounts on Twit-

ter is the Botometer (a.k.a. BotOrNot) introduced by [5].

The Botometer is a publicly available platform for estimating

whether existing Twitter accounts have the characteristics of

social bots. Finally, in [18] the Rumor Gauge is proposed; a

method for predicting the veracity of rumors in Twitter during

real–world events. It is a system for automatic verification of ru-

mors in real–time, before verification by trusted channels such

as governmental organizations is performed.

3 Datasets

3.1 Ground–truth Twitter data

Twitter has recently released a large collection of tweets of

the state–sponsored troll accounts as part of Twitter’s election

integrity efforts1. We requested the unhashed version which

consists of the tweets of Twitter accounts identified as Russian,

Iranian and Venezuelan – 25 million tweets shared by 8,275

troll accounts (see Table 1). These troll IDs served as ground–

truth identifiers of the troll users in our tweets collection.

Table 1: Ground–truth data

Source: 8,275 troll accounts Target

Total tweets: 25,076,853 trolls real users

Replies 1,549,742 2352 410,779

Retweets 8,617,208 3159 531,374

Mentions 10,641,427 2885 1,661,716

We observe that the majority of trolls’ actions were retweets

and mentions. Moreover, the target users were mostly real

users, namely, Twitter accounts that were not in the ground

truth troll IDs list. As we describe in the next section, we see

the tweet–replies and tweet–mentions as actions, i.e. they rep-

resent the interactions from the users who performed these ac-

tions to the users who received them. For instance, when a user

1https://about.twitter.com/en us/values/elections- integrity.html
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i replies to a tweet of user j then the source is i while the target

is j. Hence, in Table 1 with the term source we are referring to

the 8,275 troll users.

3.2 Our Twitter dataset

The analysis in this paper is based on 152.5 million tweets

from 9.9 million users. The tweets were downloaded using

the Twitter streaming (1%) API in the period before and up

to the 2016 US presidential election – from September 21 to

November 7, 2016 (47 days). The tweets’ track terms were re-

lated to political content such as “hillary2016”, “clinton2016”,

“paul2016”, “trump2016” and “donaldtrump2016”(see Ap-

pendix, Table 5 for the complete list of the track terms).

Namely, a list of phrases used to determine which Tweets are

delivered by the stream (see 2 for more details). These were

collected using a Python script utilizing the Tweepy module. In

addition to the tweet text, user screen name, and user ID, we

also collected metadata including the hashtags and expanded

URL data from Twitter, information on the account creation,

user timezone, and user-supplied location and biographic infor-

mation.

Table 2: The tweets collection

real-users trolls

user-IDs 9,939,698 822

Total tweets 152,479,440 35,489

Replies 12,942,628 160

Mentions 172,145,775 33,627

Retweets N/A N/A

Using the troll ground–truth IDs we identified 35.5K tweets

from 822 troll accounts (see Table 2).

4 Methodology

4.1 The graph of interactions

In this paper, we followed a graph theoretical approach,

namely we map users to nodes and we map the interactions

between users to edges. We construct the graph based on the

tweets collection we presented in the previous section – 152.5

million tweets collected during 47 days. The actions between

the users are either replies or mentions (we had not collected

the retweets). Each directed edge (i, j) corresponds to a tweet–

action from user i to user j; either user i had replied to a tweet

of user j or he had mentioned user j in his tweet, or both. So,

we distinguish between replies and mentions. Both are actions

from one user to another. Hence, we have the graph of users’

interactions which is a directed multigraph (i.e., multiple edges

are permitted between any pair of nodes) consisting of:

• nodes: (i) 821 trolls; (ii) 9,321,061 real users.

• edges: 169,921,921.

2https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/basic-
stream-parameters.html

• 31,660 edges: from 659 trolls to 9,371 real users.

• 670,605 edges: from 121,924 real users to 285 trolls.

• ego–net nodes: 127,192 real users (based on both the in–

edges and out–edges with the trolls)

4.2 The region of influence

The main goal of this study is to quantify the influence trolls

had over real (authentic) users. A challenge we have to tackle is

that only few trolls appear in our dataset and the actions/edges

from trolls to real users are small in size. Moreover, we have

121,924 real-users which have at least one action with trolls

(670,605 total actions). These users have either replied to troll

tweets or they have mentioned a troll ID in their tweets. These

real users are the troll ego-nets, namely the trolls’ nearest neigh-

bors – one–hop distance from the trolls in the multigraph. Yet,

this number is not considerably large compared to the millions

of total actions. Therefore, we have to expand the possible re-

gion of users by identifying a population that might have been

influenced by troll activities. In order to achieve that, we use

the web–URLs and media–URLs that have been shared by the

trolls as an identifier of troll influence anywhere in the graph.

Specifically, we collect the expanded URL, media expanded

URL and media URL https from all tweets. Then, we concen-

trate our attention to the URLs that have been shared by at least

one troll user. For the rest of the paper we call this set troll–

URLs. By that, we do not imply that these web contexts nec-

essarily belong to trolls. They are just identifiers of the trolls’

strategies, materials that the trolls wish to be viral. In other

words, even if they are authentic web materials, they still re-

flect the political and strategic objectives of the trolls’ disinfor-

mation campaigns.

We have 5,876,674 tweets from 620 trolls and 1,213,037 real

users. These tweets contain: (i) 16,261 expanded URLs; (ii)

7,266 media expanded URLs; (iii) 7,259 media URL https.

We have three groups of users that shared troll-URLs: (i) the

trolls; (ii) the real users that are part of the trolls’ ego–nets; and

(iii) the real users that are not directly connected with any of

the trolls users. For the rest of the paper, we call all these users

spreaders.

Then, we construct the directed induced subgraph based on

this set of users, namely we select only the edges between the

users that appear in the directed simple graph version of the

multigraph. This subgraph represents the region of influence

between trolls and real users, namely the largest region in the

graph where the influence between trolls and real users could

have taken place. In summary, we have: (i) nodes: 1,145,363;

(ii) edges: 46,429,227; (iii) 560 trolls; (iv) 105,755 ego–net

users; (v) 1,039,552 other users.

Hence, our goal is to compare the impact of these groups in

the diffusion cascades of the trolls–URLs; the media and web

context, which, as we mentioned previously, are a representa-

tion of the trolls disinformation objectives. The rationale of this

approach is that if the trolls were the important factor in these

diffusion cascades then their role during the 2016 US presiden-

tial election was substantial. Otherwise, the real users where

3
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Figure 1: Multigraph & simple graph: CCDF of the in–degree for spreaders and non–spreaders.

responsible for the virality (if there was any) of the trolls’ ma-

terials.

4.3 Diffusion Cascades

In order to compare the influence of trolls with that of real

users, we have to reconstruct the path of information flow.

Hence, for each troll–URL we construct the time–inferred dif-

fusion cascades in a manner based on a causality assumption

that has been previously used in the literature [6, 18, 19].

4.3.1 Causality hypothesis

We construct the time–inferred diffusion cascades for every

troll–URL as follows:

Suppose that the URL x has been shared by user i on date ti.
First, we select the users with whom i was connected with in

the graph before the date ti, i.e., there were graph edges from i
to them. In other words, we select the ego–net of i for t < ti.
If this set is not empty, then we examine whether any of these

users had also shared the URL x on a date t < ti. Suppose that

two users j and k had shared URL x on dates tk < tj . Then,

we assume that user i had been influenced by user j on adopting

and diffusing the URL x and we update the cascade tree with

the edge (j, i).

This approach has been previously used in the litera-

ture mainly for constructing retweet cascade trees based on

followers–followees original graph. Since a user can retweet

a tweet only once, there is no repetition in the user actions and

the size of a cascade corresponds to the number of unique users

involved in that cascade. In our case this is not true. The user

actions may correspond to several tweets, hence repetitions are

possible. In order to deal with this case, we assume that for a

given URL, every user can be influenced only once by another

user, the first time that he shared it.

4.4 Classification of users

We collect all the URLs and media URLs (the “troll–URLs”)

that were included in trolls tweets. Then, in our tweets collec-

tion, we identify all the tweets that have at least one troll–URL

and have been shared either by trolls or by real users. So, our

goal here is to compute a similarity measure between the troll

accounts and the real users based on the context of their tweets.

In this way, we extend the graph analysis in order to further

characterize the interactions between the two groups of users,

as well as the source of the viral cascades. For instance, if the

very active and influential real users have high similarity with

the trolls, then it is possible that these users were also trolls. To

this end, we take the following steps:

1. We extract the textual data and train a Doc2Vec [13]

model.

2. For each tweet, we get a fix-length vector to represent its

content.

3. For each user, we generate a sequence with time informa-

tion and textual information.

4
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Figure 2: Multigraph & simple graph: CCDF of the out–degree for spreaders and non–spreaders.

4. We feed sequences of users to a Bi-LSTM [7] model to

classify them into different categories (3 categories in our

setting: 1. Trolls; 2. The real-users that are connected with

the trolls in the action graph; and 3. The rest of the real-

users).

5. Due to the imbalance of size among the three groups, we

randomly select 620 users from each group to form our

dataset. 2/3 of them are used for training and the rest are

used for testing.

Table 3: The classifier

class precision recall f1-score support

trolls (620) 0.8009 0.8204 0.8106 206

ego–net (105,755) 0.9259 0.6039 0.7310 207

others (1,107,282) 0.6533 0.8647 0.7443 207

micro avg 0.7629 0.7629 0.7629 620

macro avg 0.7934 0.7630 0.7619 620

weighted avg 0.7934 0.7629 0.7619 620

Table 3 shows the performance of our classifier. We can see

that the F1-score of trolls detection reaches 0.8106 with both

precision and recall higher than 0.8. This illustrates the useful-

ness of our classifier.

5 Results

The analysis is based on the comparison of the influence of

three groups of users: (i) the trolls; (ii) the real-users that are

directly connected with the trolls (the trolls’ ego–net); (iii) the

rest of the real users. As aforementioned, in order to identify

a broad region of users that might have been influenced by the

trolls, we use the web and media URLs as identifiers of trolls

influence. We call spreaders the users that had shared at least

one troll–URL. Hence, the three groups of users can be further

divided in spreaders and non–spreaders.

The analysis we present in this section consists of the follow-

ing steps:

1. We compute the degree distribution in the overall directed

multigraph as well as in the corresponding directed simple

graph (where only one edge is allowed between each pair

of nodes).

2. We analyze the undirected version of the simple graph and

we identify its connected components. Moreover, we com-

pute the k-core values for the nodes in the largest con-

nected component. We repeat this analysis for the region

of influence.

3. We compute the classification scores of the users in the

region of influence. Based on these scores, we estimate

the similarity between trolls and real users.

4. We analyse the characteristics of the time inferred diffu-

sion cascades of the trolls–URLs and we compute their

5
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5.1 Graph topology

5.1.1 Degree distribution

In Figures 1 and 2 we present the empirical complementary cu-

mulative distribution (CCDF) of the in–degree and out–degree

for each node/user in the directed multigraph as well as in the

directed simple graph. We construct the simple graph by allow-

ing only one edge for each pair of nodes that is already con-

nected in the multigraph. Moreover, the multigraph has been

constructed based on the users’ actions (replies and mentions)

on other Twitter accounts and posts. Hence, the in–degree rep-

resents the nodes’ popularity; that is, how many actions corre-

spond to users interested in their tweets or their Twitter account

in general. On the other hand, the out–degree is a measure of

users’ sociability/extroversion, i.e. how many actions a given

user has performed on other Twitter accounts. Furthermore, it

is important to compare the degree distributions in both graphs

(multigraph and simple graph) because users with high degree

in the multigraph do not necessarily have large degree in the

simple graph. For instance, a given user might have a large in–

degree in the multigraph only because he is popular to a small

group of people which is highly engaged with his Twitter ac-

count – they perform a large number of actions on the tweets of

the user in question. Hence, the user will have small in–degree

in the simple graph.

As mentioned earlier, the real users can be divided in four

groups based on the graph proximity they have with the trolls

and the material they have shared. Hence, we have the ego–

net and the rest of the users as well as the spreaders and non–

spreaders. As can be seen in Figures 1 and 2, the spreaders

that belong to the trolls’ ego–net are the most active and the

most popular ones. Moreover, the degree distributions between

multigraph and simple graph are almost identical for the four

groups of users.
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and ego–net users.

5.1.2 Connected components

Here we examine the structure of the undirected version of the

simple graph by computing the connected components. A con-

nected component is a subgraph where for each pair of nodes

i, j there is an undirected path – a graph traverse – from i to

j. Since the subject of this study is the diffusion of informa-

tion, the connectivity of a region implies that there is a possible

path for information flow between the nodes that belong to this

region.

The undirected simple graph consists of 9,321,882 nodes and

82,842,096 edges. We identify 104,954 connected components.

Figure 3(a) presents the number of connected components for a

given component size (i.e. number of nodes in the component)

in a log–log plot. The largest part of the graph is well connected.

The largest connected component – undirected subgraph – con-

sists of 9,078,493 nodes and 82,698,678 edges while the second

one has only 223 nodes. Moreover, 815 trolls and 127,183 ego–

net users are in the largest connected component.

Regarding the region of influence, its undirected version con-

sists of 388 connected components. The largest connected com-

ponent has 1,144,526 nodes while the second largest has only 8

nodes (see Figure 3(b)).

5.1.3 k–core decomposition

We compute the k–core decomposition of the nodes in the

largest connected component of the undirected versions of the

overall graph and the region of influence. The k–core values is

one of the most effective centrality measures for identifying the

influential spreaders in a complex network [12].

In Figures 4(a) and 4(b), we present the empirical comple-

mentary cumulative distribution (CCDF) of the k–core val-

ues for spreaders and non–spreaders, respectively. The ego–net

users have the largest k–core values in general, a strong evi-

dence that they were the most influential part of the popula-

tion. Moreover, Figure 5 presents the k-core values of the nodes

in the largest connected component of the region of influence.

Again, the ego–net users have in general larger k-core values

than the trolls.

5.2 Cascade trees

We now turn our attention to the diffusion cascades of the

troll–URLs. First, in Figure 6(a) we present a general result,

the relative first–appearance of trolls and the ego–net users.

For each URL, we rank the user IDs in descending order based

on the date that they post their first tweet which contain the

URL in question. This list is in fact the history of the diffusion

of a given URL – a series of consecutive instances of sharing a

given URL through tweeting. It is just the list of user IDs that
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Figure 7: Influence: (a) Number of trolls with a given influence–degree value (for the troll users with with influence–degree > 0) ; (b) CCDF

of the influence–degree for the ego–net users with non–zero influence values; (c) CCDF of the classification scores for the ego–net users with

influence–degree > 100; (d) Scatter plot of the classification scores and the influence–degree for the ego–net users with influence–degree > 100.
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Figure 8: The structural virality of the original cascade trees as well

as the cascade trees when the trolls have been removed from the multi-

graph graph.

shared the URL, in chronological order. Recall that in our data,

any URL might have been shared multiple times by the same

user. The size of a given URL–diffusion is simply the number

of user IDs belonging in the list (including the repetitions of

IDs). In other words, the relative first–appearance of a user in

the URL–diffusion is the index of the user in the list divided

by the length of this list. In Figure 6(a), we show the empirical

cumulative distribution (CDF) for the relative position of trolls

and ego–net spreaders. Clearly, the largest part of the ego–net

users appear before the trolls in the diffusion–lists. Almost 85%

of the ego–net users appear first in the URL–diffusions.

Next, we examine the URLs that have been shared by more

than 100 distinct users. This selection led to 5,092 URL–

diffusions. Then, based on the method we described in the pre-

vious section, we construct the cascade trees for each URL–

diffusion. In this way, we obtain 88,714 cascade trees for 5,084

URLs that have at least one non–empty cascade tree. In sum-

mary: (i) 4,125 cascades have at least one troll user and all of

them have at least one ego–net user; (ii) 64,525 cascades have

at least one ego–net user and zero troll users. In the cascade

trees each user appears only once, hence the size of a cascade

is equal to the number of distinct IDs belonging in the tree.

In Figure 6(b), we present the empirical complementary cumu-

lative distribution (CCDF) of the relative first–appearance of

trolls and the ego–net users in the cascade trees. We observe

that 80% of the ego–net users appear very early in the cascades.

The most viral cascades are those with both trolls and ego–

net users (see Figure 6(c)). At the same time, only 647 cascades

had been initiated by troll users versus 54,111 by ego–net users.

Roughly, 10% of the cascades that had been initiated by trolls

have a larger size, yet the truly viral cascades had been initiated

mainly by the ego–net users (Figure 6(d)). This evidence that

although the trolls participated in the viral cascades, they did

not have a leading role in them. Instead, the primary source of

the viral cascades was the real users.
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5.2.1 Influence

Did the trolls have an influential role in the diffusion cas-

cades? We address this question by computing for each user

i the influence–degree, namely the number of real users that

have been influenced by i in the cascade trees he participates.

Only 31 trolls have non–zero influence–degree. From them,

6 trolls have influence–degrees 978, 998, 2,961, 6,636, 9,040,

and 46,224, respectively (Figure 7(a)). Hence, only four trolls

where truly influential. Regarding the ego–net users: 37,535

have non–zero influence; 3,453 users, 511 users and 34 users

have influence–degree larger than 102, 103 and 104, respec-

tively (Figure 7(b)).

How similar with the troll accounts were the ego–net users?

In order to estimate this, we use the classifications scores of the

troll–category for the ego–net users with influence–degree >
100. We have 3,453 ego–net users with influence–degree >
100, where 21 users were in the training set and 3,432 in the

test set. Hence, we present the classification scores for the

3,432 users, only. The 80% of the users have classification

score smaller than 0.6 (see Figure 7(c)). Moreover, in Fig-

ure 7(d) we show the scatter plot of the classification scores

and the influence-degree for the ego–net real users with influ-

ence larger than 100. The classification scores – the similarity

of the real users with the trolls in terms of tweets content –

represent the independent variable while the influence–degree

the dependent one. The most influential users have low clas-

sification scores. Furthermore, the Pearson and Spearman cor-

relation coefficients are (r = −0.031, p-value = 0.067) and

(rs = 0.021, p-value = 0.21), respectively. Hence, there is

neither a linear nor a monotonic relationship between the two

variables.

5.2.2 Structural virality

We conclude the analysis with the computation of the struc-

tural virality for each cascade tree. The structural virality of a

cascade tree T with n > 1 nodes is the average distance be-

tween all pairs of nodes in a cascade [6]. That is:

ν(T ) =
1

n(n− 1)

n∑

i=1

n∑

j=1

dij (1)

where T is the cascade tree with n nodes and dij is the shortest

path between the nodes i and j. The intuition is that ν(T ) is the

average depth of nodes when we consider all nodes as the root

of the cascade.

We compute the structural virality for the 88,714 cascade

trees of 5,084 URLs that were discussed previously. We ex-

amined two cases: (i) the original cascades (88,714); (ii) the

cascade trees that we have reconstructed for the case where

the trolls have been removed from both the graph and the

5,084 URL–diffusions. The exclusion of the trolls results in

95,539 cascade trees. This indicates that a portion of the orig-

inal trees broke in smaller trees, and probably some trolls act

as “bridges”. That is, they connect paths of the overall diffu-

sion flow. On the other hand, it seems that their role was not

substantial. The exclusion of the trolls did not affect the distri-

bution of the virality values (see Figure 8).

5.3 Summary of the results

For all the metrics we have applied, the trolls as a whole have

an inferior role compared to the ego–net users. The ego–net

users, namely the real users that had at least one interaction with

the trolls, were the most influential population and the source

of the viral cascades, as well. Table 4 provides the specifics.

Table 4: Top–k results: trolls vs ego–net spreaders

Metrics trolls ego–net

Popularity: in–degree > 103 12 5,223

Sociability: out–degree > 103 3 21,887

Nodes in the largest k-core 7 3,552

Source node (“patient–zero”):

Number of cascades 647 54,111

Source node: number of cascades

with cascade size > 103 12 725

influence–degree > 103 4 511

Furthermore, we have derived the following statistics:

1. Only 12 trolls but 5,223 ego–net users have in–degree

larger than 103 (multigraph).

2. Only 3 trolls but 21,887 ego–net users have out–degree

larger than 103 (multigraph).

3. Only 7 trolls but 3,552 ego–net users belong to the largest

k-core region of the graph (max k-core value = 854).

4. Only 647 cascades had been initiated by trolls but 54,111

by ego–net users.

5. Only 12 viral cascades (size larger than 103) had been ini-

tiated by trolls but 725 by ego–net users.

6. Only 4 trolls had influence–degree larger than 103 but 511

for the ego–net users.

7. The most influential ego–net users have low similarity

with the trolls.

Finally, although the trolls participated in viral cascades,

their role was not substantial. Removing the trolls from the

graph as well as from the URL–diffusions did not affect the

distribution of the structural virality values.

6 Conclusion

In this paper, we have extensively studied the influence that

state–sponsored troll Twitter accounts had during the 2016 US

presidential election. We analyzed a very large graph which

represents the interactions between trolls and real users and we

concentrated our attention to the region of influence, namely

the well-connected part of the graph where trolls could have in-

fluenced real users. We present strong evidence that the trolls’

activity was not the source of the viral cascades. The authentic

users who had close proximity with the trolls were the most in-

fluential part of the population and their activity was the driving

force of the viral cascades.
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8 Appendix

Table 5 presents the 77 track terms used in Twitter API.

Table 5: The track terms used in Twitter API

ben%20carson bencarson

bernie%20sanders bernie2016

bettercandidatethanhillary carlyfiorina2016

carson2016 clinton

clinton2016 cruz2016

cruzcrew cruzintocaucus

donaldtrump donaldtrump2016

dumptrump election2016

feelthebern fiorina

fiorina2016 fitn

heswithher hilaryclinton

hillary2016 hillaryclinton

hrc huckabee

huckabee2016 imwithher

iwearebernie jill%20stein

jillstein johnkasich

kasich kasich2016

kasich4us letsmakeamericagreatagain

makeamericagreatagain makeamericawhiteagain

marco%20rubio marcorubio

martinomally mikehuckabee

nevertrump newyorkvalues

nhpolitics nhpsc

omalley paul2016

primaryday randpaul2016

readldonaldtrump realdonaldtrump

redstate rick%20santorum

ricksantorum rubio2016

rubiowa sensanders

sentedcruz stein2016

teamKasich teamcarly

teamclinton teamcruz

teamhillary teammarco

teamrubio teamtrump

ted%20cruz tedcruz

the%20donald thedonald

therealdonaldtrump trump

trump2016 trumptrain

unitedblue
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