
1

A Data-Driven Bandwidth Allocation Framework
with QoS Considerations for EONs

Tania Panayiotou, Member, IEEE, Konstantinos Manousakis, Member, IEEE, Sotirios P. Chatzis, Member, IEEE,
and Georgios Ellinas Senior Member, IEEE.

Abstract—This work proposes a data-driven bandwidth alloca-
tion (BA) framework for periodically and dynamically reconfigur-
ing an elastic optical network according to predictive bandwidth
allocation (PBA) models. The proposed framework is scalable
to the number of network connections and also adaptive to the
increasing traffic of each network connection separately and to
the overall network load as well. This is achieved by formulating
the BA problem as a Partially Observable Markov Decision
Process (POMDP), which constitutes are reinforcement learning
(RL) model. Specifically, RL is performed continuously and
independently (locally) for each network connection according to
the most recent data that describe the traffic demand behavior
of each network connection. A central controller monitors the
network performance that is jointly achieved from all the PBA
models and is capable of dynamically modifying the reward
function of the POMDP, ensuring that the quality-of-service
requirements are met. A reward function R(C) is examined
with a clear impact on the network performance when C is
modified. For evaluating the network performance, for each
R(C), the routing and spectrum allocation (RSA) problem
is solved according to an Integer Linear Programming (ILP)
algorithm and an RSA heuristic alternative, with both the ILP
and the heuristic RSA taking as inputs the outputs of the inferred
PBA models. Results indicate that with the appropriate settings
of C, bandwidth is efficiently allocated, while ensuring that the
QoS requirements are met.

Index Terms—Reinforcement Learning, Traffic Prediction,
Quality-of-Service, Dynamic Optical Networks, Network Recon-
figuration, Routing and Spectrum Allocation.

I. INTRODUCTION

With the emergence of new types of networks (e.g., Internet
of Things (IoT), 5G networks, etc.) and network applications,
the backbone traffic is exponentially growing [1]. In parallel,
backbone traffic is becoming more dynamic [1], [2], with
repetitive patterns [3]. As a consequence, emerging applica-
tions, require not only high-capacity optical links, but a dy-
namic backbone (optical) network where, unlike the traditional
quasi-static/static networks, the network connections are now
provisioned over a short period of time [4].

In static optical networks, connections tend to stay in the
network for a long time period; for coping with the traffic
demand variations and the current operational processes that
are too slow to dynamically follow those variations [3],

T. Panayiotou, K. Manousakis, and G. Ellinas are with the KIOS Research
and Innovation Center of Excellence, and with the Department of Electrical
and Computer Engineering, University of Cyprus, Nicosia 1678, Cyprus, e-
mail: {panayiotou.tania, manousakis.konstantinos, gellinas}@ucy.ac.cy

S. P. Chatzis is with the Department of Electrical Engineering, Computer
Engineering, and Informatics, Cyprus University of Technology, e-mail:
sotirios.chatzis@cut.ac.cy

network connections in these networks are commonly overpro-
visioned. Specifically, connections are allocated a bandwidth
that is usually based on the peak-hour demand, consequently
causing sub-utilization of the allocated resources outside of
the peak hour. As the average-to-peak-rate ratio continuously
increases [1], dynamic or even programmable optical networks
are becoming increasingly important for more efficiently uti-
lizing the network resources without significantly increasing
the operational and capital expenditures (Opex/Capex).

In dynamic optical networks, enabled by software defined
networking (SDN) [4], network reconfigurations will happen
more frequently, allowing for the evolving network to be
robust and adaptive to the actual bandwidth demand varia-
tions. Ideally, network reconfigurations must closely follow
the bandwidth demand variations. However, as the bandwidth
demand may quickly fluctuate (fluctuations may occur within
minutes), network reconfigurations that exactly follow the
bandwidth demand fluctuations are not feasible. This is mainly
due to the operational processes that are too slow for near real-
time reoptimization of the network.

As a consequence, dynamically and periodically reconfig-
uring an optical network has recently gained attention from
the research community [3], [4], [5], [6], [7], [8], [9], [10]. In
general, a dynamic optical network is periodically reconfigured
according to a priori estimated traffic demand matrices. These
matrices provide an estimation about the future bandwidth
demand for each network connection and for each time interval
of interest, allowing the reconfigurations to be computed
offline (i.e., during the previous time interval). This way, any
required reconfigurations can take place at the beginning of
each time interval. In general, the predictive traffic demand
matrices can be inferred from historical traffic demand data,
provided by continuously monitoring the aggregated traffic
demand of the network connections (i.e., the IP layer (logical)
connections).

A. Related Work
Related work is focused either on the implementation issues

that are relevant to the dynamic optical networks frame-
work and/or on how the predictive traffic matrices can be
estimated and utilized for network reoptimization. Regarding
the implementation issues, in general, SDN-based architec-
tures have been proposed[4], [8], [9]. Regarding the predictive
traffic matrices, statistical models [6], [7] or machine learning
methods have been applied [3], [5], [7], [10], including neural
networks (NNs), deep NNs (DNNs) [3], [5], [9], and reinforce-
ment learning [10]. In most of these works the focus is on

2

predicting, from historical traffic data, the expected- or peak-
rate for each network connection and for each time interval [3],
[5], [6], [7], [9].

In [10] was, however, shown that a peak-rate estimation
may still lead to connection overprovisioning, even within
the short-time reconfiguration intervals assumed. To this end,
a maximum probability- and an expected rate-based provi-
sioning were also examined and were shown to lead to con-
nection underprovisioning (less allocated bandwidth than the
requested one, with the end-users experiencing low Quality-of-
Service (QoS)). An alternative model, the predictive bandwidth
allocation (PBA) model, was shown in [10] to be capable
of more efficiently utilizing the network resources, while
at the same time being adaptive to the ever-increasing and
changing traffic demand patterns of each network connection.
This was achieved by formulating the problem as a Partially
Observable Markov Decision Process (POMDP), solved by
applying RL [11]. Interestingly, this outcome was obtained by
assuming traffic demand patterns with a similar behavior as the
one describing the Internet traffic demand. Specifically, it was
assumed that the traffic demand is described by the log-normal
distribution that is characterized by skewness (asymmetric
bandwidth demand) and long-tails (high expected- to peak-
rate ratio) [1], [12], [13].

Further, in previous work [10], an optimal PBA model was
found for each network connection by offline training all the
PBA models in parallel and independently from each other.
By doing so, the data-driven BA framework scales easily as
the number of connections increase (i.e., the PBA models
can be locally trained). On the other hand, however, the
models cannot be aware of how all the models jointly perform,
regarding the overall network performance, during the training
procedure. Thus, the trained PBA models may not yield a
set of PBA models that ensure that the QoS requirements are
met, especially as the overall network load increases. Overall,
the data-driven BA models must not only be adaptive to the
traffic demand patterns of each independent connection, but
also adaptive to the overall network load (jointly considering
all network connections).

B. Our Contribution

This work significantly extends the work in [10], by
proposing a data-driven bandwidth allocation (BA) framework
for coping with the traffic demand variations. The proposed
framework, apart from being scalable, it is also adaptive to
the ever-increasing (overall) network load so that the QoS
requirements of each individual connection are always met (to
the extend that a network upgrade cannot be avoided). In this
work, the data-driven BA problem is formulated as a state-of-
the-art POMDP, which renders our solution a reinforcement
learning algorithm. The reward function used during the RL
process is now also dynamically modified, while the PBA
models can still be independently (locally) trained to the most
recent traffic data; this makes the framework scalable in terms
of the number of network connections.

Specifically, this is done by letting a central controller
periodically ascertain whether the QoS requirements are met

by observing how the PBA models of each individual con-
nection perform jointly. If the central controller observes that
the QoS requirements are not met, the training procedure is
dynamically modified accordingly through the reward func-
tion of the applied state-of-the-art RL approach. A reward
optimization function, R(C), is examined in this work, with a
clear impact on the network performance when C is modified.
For each R(C), the outputs of the PBA models obtained, are
used as inputs to the routing and spectrum allocation (RSA)
algorithm used for network reoptimization. In this work, an
ILP algorithm and a proposed RSA heuristic alternative that
further considers for the spectrum fragmentation are also
described and examined in conjunction with the proposed data-
driven bandwidth allocation framework.

For training the PBA models we used synthetic traffic
demand data generated by a set of log-normal distributions.
Specifically, we assume that the traffic demand behavior is log-
normally distributed as it has been experimentally shown that
the Internet traffic can be described by this distribution [1],
[12], [13]. Note, however, that the RL approach, used for
training the PBA models, does not need to know a priori
the distributions describing the traffic demand behavior. It
can utilize real-time information for periodically/continuously
inferring the underlying traffic demand distributions and ac-
cordingly adjusting the models upon significant variations on
the traffic demand behavior. In practice, large amounts of
traffic information can be easily collected by monitoring the
traffic demand fluctuations within short time intervals. In this
work, without loss of generality and in the absence of real
traffic demand traces, the traffic demand traces are generated
by sampling from a set of log-normal distributions. This
assumption however, does not affect the problem formulation
of the proposed framework or the main findings of this work.
In fact, the proposed data-driven framework, as it will be
shortly explained, it is robust to traffic demand changes and it
is capable of adjusting the PBA models accordingly with the
aim of achieving an acceptable network performance.

The rest of the paper is organized as follows: Section II
provides an overview of the proposed data-driven BA frame-
work, Section III formulates the PBA problem, and Section IV
describes the RSA algorithms developed. Further, Section V is
dedicated on the performance evaluation of the PBA models,
while Section VI provides some concluding remarks.

II. APPROACH OVERVIEW

The proposed data-driven BA framework (illustrated in
Fig. 1) assumes an elastic optical network (EON) based
on a flexible grid and bandwidth variable transceivers
(BVTs)/sliceable BVTs (SBVTs) [14] that can adapt to the
actual traffic demands. When combined with optical transport
platforms, EONs provide both high capacity links and a truly
programmable and flexible networking environment capable
of setting up and tearing down lightpaths within very short
time frames (e.g., seconds or even milliseconds) [15].

On this basis, in this work we assume an IP-over-EON
network that is centrally controlled by an SDN-based network
controller equipped with monitoring, storage, and processing

3

Fig. 1: Proposed data-driven BA framework.

Fig. 2: Local controller functionalities

capabilities [4]. For scalability purposes, the central controller
communicates, bidirectionally, with a set of local controllers,
again equipped with monitoring, storage, and processing ca-
pabilities. The functionalities of the local controllers assumed
are illustrated in Fig. 2. The aggregated IP traffic between
the IP connections is continuously monitored (e.g., every five
minutes or less) and the monitored data are stored into the
local knowledge databases. We apply RL for inferring from
these data a set of optimal PBA models, subsequently used for
network reoptimization. The PBA models are trained locally,
and network reoptimization is performed centrally (globally).

Specifically, the PBA models generate the predictive traffic
demand matrices for each reconfiguration interval [t, t + h],
where h is a predefined period, {t}τt=1, and τ is the number
of reconfigurations performed for example during a day.
These matrices act as input to the RSA algorithm used for
reoptimizing the network. The RSA is executed offline during
[t − h, t] and the actual network reconfiguration takes place
at the beginning of [t, t + h]. In order for the PBA models
to be adaptive to the changing traffic patterns of each con-
nection independently and jointly as well, we assume that the
network performance is continuously monitored. If the central
controller observes that the QoS requirements are not met (i.e.,
network availability drops below an acceptable threshold), then
the R(C) function of the RL is modified to R(C ′) and RL
continues with R(C ′). Note that for brevity, in the rest of the
paper, a time interval [t, t + h] will be denoted just by the
starting time of the interval, t.

III. PREDICTIVE BANDWIDTH ALLOCATION MODELS

Without loss of generality, we assume that traffic demand
information is available for a 24-hour period (h = 1, τ = 24)
and for N source-destination pairs (IP layer connections). In
particular, we assume that each connection is described by
a set of traffic demand distributions, with each distribution
describing the traffic demand fluctuations within a single time
interval. The traffic demand fluctuations for each time interval
{t}τt=1 and for each connection {n}Nn=1 are described by the
log-normal distribution Ztn ∼ LN(µtn, σ

2
tn). The log-normal

distribution is utilized since, like the Internet traffic demand, it
is characterized by skewness and heavy-tails (the average-to-
peak ratio of Internet traffic continuously increases [1]). We
assume that ztn ∈ (0, B) and that B < B′, where ztn ∈ Ztn,
B is equal to the maximum emitting rate of the installed
BVTs/SBVTs, and B′ is equal to the total link capacity
(i.e., B′ spectrum slots are available for each network link).
Note that in this work, each distribution is a function of the
bandwidth demand that is measured according to the requested
number of spectrum slots. Even though the requested number
of spectrum slots depends on several factors, such as the
transmission distance, the modulation format, and the quality-
of-transmission requirements, in this work, for simplicity, and
without loss of generality we assume that the distributions
immediately reflect the requested number of spectrum slots;
an assumption that does not affect the scope of this work.

For making the learning procedure of the PBA models com-
putationally tractable, the distributions have been discretized
according to specific rate intervals. Specifically, B has been
divided into a intervals in such a way that the ath interval is
given by Ba = [(a−1)k, ak], where (a−1)k is the minimum
rate of Ba, ak is the maximum rate of Ba, and a = 1, 2, .., Bk .
Then for each time interval t, for each connection n, and for
each Ba, the probabilities patn = P [ztn ∈ Ba] were evaluated,
where patn is the probability of connection n requesting a
number of spectrum slots between (a − 1)k and ak during
time interval t. Since the traffic demand distributions are in this
work randomly generated and may generate values larger than
B, p0tn = P [ztn > B] has also been evaluated to handle the
distributions that generate rates above B. Finally, without loss
of generality, it was assumed that B0 = 0 with probability p0tn.
Thus, a valid discrete probability distribution was generated.

For a network that is already configured and operating at
t′, a BA model indicates for each connection n the bandwidth
allocation action a that must be taken for reconfiguring the
network at the next time interval t. If the BA model indicates
an action a for connection n, then the number of spectrum
slots ∆tn that must be allocated to connection n are given by
∆tn = max{Ba}. Without loss of generality, we assume that
∆tn includes the guard bands as well. Note that the actions are
actually the indices to the Ba intervals, and thus, for simplicity,
the same notation is used for both the actions and the indices of
the rate intervals. We assume that a network reconfiguration
takes place at the beginning of each time interval t and is
computed offline during the previous time interval t′.

4

A. Formulating the PBA models

As pointed out, this stochastic BA problem is formulated
as a POMDP. POMDPs generalize Markov Decision Processes
(MDPs) that are usually used in search and planning heuristics
for accommodating stochastic actions and full state observabil-
ity [16]. POMDPs differ from MDPs in that the states are not
observable but are estimated from observations. Formally, a
POMDP is defined as a tuple {S,A, T,O,Ω, b0, R, γ}, where
S is the set of states. A is the set of actions, T (s′|s, a) defines
the distribution over next state s′ to which the agent may
transition after taking action a while at state s, O is the set
of observations, Ω(o|s, a) is a distribution over observations o
that may occur as a result of taking action a and entering
state s, R(s, a) is the reward function that specifies the
immediate reward for taking action a at state s, γ ∈ [0, 1)
is the discount factor that weighs the importance of current
and future rewards, and b0 is the vector of the initial state
distribution, such that b0(s) denotes the probability of starting
at state s. Note that when γ = 0 the agent only cares about
which action will yield the largest expected immediate reward
and when γ approaches 1 the agent cares about maximizing
the expected sum of future rewards.

In general, at each time step, the environment is at some
state s ∈ S. The agent takes an action a ∈ A, and the
environment transitions to state s′ with probability distribution
T (s′|s, a). At the same time, the agent receives an observation
o ∈ O which is associated with the latent (unobservable)
state s′ according to some conditional likelihood function
Ω(o|s′, a). Finally, the agent receives a reward equal to
R(s, a). Then the process repeats. The goal is for the agent to
choose actions at each time step t that maximize its expected
future discounted reward E[

∑∞
t=0 γ

tR(st, at)].
In our BA problem, let us consider that the correlation

between optimal network configuration and traffic demand
patterns is not static, but may fluctuate on the grounds of
longer term temporal dynamics. In that case, we must be
capable of inferring these changes and adapting our policies
accordingly. The essence of POMDPs addresses this con-
sideration; POMDPs effect this goal by postulating that, at
each time point, the modeled system has some latent state,
s. Depending on the latent state, s, the same traffic demand
requires a different policy of network reconfiguration, due to
the different longer-term trends/dynamics that this latent state
information encapsulates.

In our work, a POMDP is defined and solved independently
for each connection n. On this basis, S,A, T,O,Ω, b0 and R
are now defined, for each connection n in the network, as
follows:
• S = {s|s = 0, 1, ..., k} with each state s representing the
number of spectrum slots assigned to connection n.
• A = {a|a = 0, 1, ..., k} with each action a representing the
interval Ba, and hence the number of spectrum slots ∆∗n that
must be allocated to n at time step ∗.
• T (s′|s, a) defines the probability of transitioning to state
s′ if action a is taken at s. Note that T (s′|s, a) is in this
work deterministic, since during training, and for scalability
purposes, we assume a network with infinite link capacity (the

PBA models during RL cannot know how they will perform
jointly in the network); thus we assume that a connection will
transition with certainty at s′ if a is taken at s.
• O = {o|o = 0, 1, ..., k} with each observation o representing
the interval Bo in which the requested (monitored traffic) rate
belongs.
• Ωn(o|s, a) = potn is the observation distribution of connec-
tion n. The observation distribution generates at each time step
t the true bandwidth demand of n.
• b0 is set to b0(s) = 1

k ∀s indicating that connection n can
be initialized at any possible state s.
• R(s, a) is the reward function that specifies the immediate
reward for taking action a at state s. The immediate reward
for each state-action pair depends on what the agent observes
at s′ after action a is taken at s (cannot be known a priori).
On this basis, it is evaluated on the fly during the learning
and exploration procedure of the POMDP (see Algorithm 1).
For evaluating R(s, a), we define an auxiliary reward function
r(s′, a, o, C). Each element of r(s′, a, o, C) specifies the re-
ward received when o is observed at s′, after action a is taken
at s. Specifically,

r(s′, a, o, C) =

{
−C exp(k), if a < o
exp(k − a+ o), otherwise (1)

where C is a constant set by the central controller, aiming
at controlling how all the PBA models perform jointly, with
regards to the QoS requirements of the network. Note that C
is kept constant during RL, only up to the moment that is
dynamically modified by the controller, i.e., to C ′. In such
case, RL continues with C ′.

Briefly, Eq. 1 specifies the reward received when o is
observed at s′, after action a is taken at s. It indicates that
if the requested demand (o) is higher than the allocated band-
width (a), then r will return a negative reward (−C exp(k)),
penalizing the action taken at s. If the requested demand (o) is
lower than the allocated bandwidth (a) then a positive reward
(exp[(k − o + a)]) is received, indicating that the reward is
increasing exponentially as the allocated bandwidth becomes
closer to the requested one. By doing so, we aim at letting the
agent learn how to operate near the “expected” bandwidth. At
the same time, the agent “risks” receiving a penalty, since less
bandwidth than the expected may be eventually requested. In
essence, how far from the “expected” bandwidth the agent will
learn to operate, depends on the C value.

For understanding the aforementioned agent’s behavior,
consider that the agent will never “risk” receiving a penalty,
if it always decides to allocate the peak-rate of n. However,
by doing so, the agent will rarely receive a very high positive
reward, since the allocated bandwidth will often be well above
the requested one (the average-to-peak ratio continuously
increases and thus the event of actually observing the peak-
rate becomes rare). If the agent, however, tends to allocate
less bandwidth than the maximum possible, then it may “risk”
receiving a negative reward - as more bandwidth may be
eventually requested - but this will be done with the aim to
acquire a higher overall reward.

According to the above, parameter C controls how much
the agent will “risk” receiving a penalty. If C >> 1, then

5

the agent will be guided to a PBA model that performs an
allocation close to the peak-rate of n (never receiving a high
penalty). By gradually decreasing C, the agent will tolerate
more penalties. The basic idea is that the central controller,
starting from a C value that meets the QoS requirements,
can gradually decrease C, when it observes that the QoS
requirements are not met (this event will eventually occur
since the overall network load continuously increases). By
doing so, the PBA models can be continuously trained to adapt
to significant variations that may occur either on the traffic
demand patterns of each connection separately and/or on the
overall network load. Thus, the QoS requirements will be met,
up to the point where a network upgrade is inevitable (e.g.,
by further deceasing C, connections’ service level agreements
(SLAs) are violated). Providing specific bounds for the C
value is out of the scope of this work (they depend on several
parameters, e.g., connections’ SLAs), and is planned for future
work. Further, optimizing C as part of the learning procedure
is also planned for future work.

B. Training the PBA models

Commonly, POMDPs are solved by formulating them as
completely observable MDPs over the belief states (the belief
state is the posterior probability of the agent being at some
state) of the agent [17]. Specifically, in POMDPs, the agent
must choose its actions based only on past actions and
observations, as the true state is not observable. Normally,
the best action to take at time step t depends on the entire
history of actions and observations that the agent has taken so
far. However, the probability distribution over current states,
known as the belief, is a sufficient statistic for a history of
actions and observations [18]. In discrete state spaces, the
belief of a state at step t+1 can be computed from the previous
belief, bt, the last action a, and observation o, by the following
application of Bayes rule [18]

ba,ot+1(s) = Ω(o|s, a)
∑
s′∈S

T (s|s′, a)bt(s
′)/Pr(o|b, a), (2)

where Pr(o|b, a) =
∑
s′∈S Ω(o|s′, a)

∑
s∈S T (s′|s, a)bt(s).

The POMDP model is trained by solving the Bellman equation
(Eq. (3)) [18]. The Bellman equation computes the optimal
value function for a given state, which expresses the expected
discounted reward.

V ∗t (b) = max
a∈A

Qt(b, a), (3)

Qt(b, a) = R(b, a) + γ
∑
o∈O

Pr(o|b, a)Vt(b
a,o), (4)

Specifically, in Eq. (3), the value function V (b) is the expected
discounted reward that an agent will receive if its current belief
is b, Q(b, a) is the value of taking action a at belief b, and
R(b, a) is the expected reward given by

∑
s∈S R(s, a)b(s).

As the exact solution of the Bellman equation (Eq. (3)) is
intractable for large spaces [19], in this work, we approximate

the solution via the Real-Time Dynamic Programming-Bel
(RTDP-Bel) [11] heuristic algorithm. In the RTDP-Bel a
greedy policy πV is used for finding an optimal policy, where
πV (b) = argmaxa∈AQt(b, a).

The RTDP-Bel is an asynchronous value iteration algorithm
that converges to the optimal value function and policy over
the relevant belief states without having to consider all the
belief states in the problem. For achieving this, the RTDP-
Bel uses an admissible heuristic function or lower bound h as
the initial value function. Provided with such a lower bound,
RTDP-Bel selects for update the belief over the states that
are reachable from the initial state b0 through the greedy
policy πV in a way that interleaves simulation and updates. For
the implementation of the RTDP-Bel heuristic, the estimates
V (b) are stored in a hash table that initially contains only the
heuristic value of the initial state, b0. Then, when the value of a
belief ba,o that is not in the table is needed, a new entry for ba,o

with value V (ba,o) = h(ba,o) is allocated. These entries are
updated following Eq. (3) when a move from s is performed.
The RTDP-Bel algorithm is described analytically in [11].

Algorithm 1 Modified RTDP-Bel alg. for each connection n

1: Start with b = b0.
2: Sample state s from its probability distribution b(s).
3: Evaluate each action a at belief state b as:

Q(b, a) = R(b, a) + γ
∑
o∈O

Pr(o|b, a)V (ba,o),

initializing V (ba,o) to h(ba,o) if ba,o is not in the hash.
4: Select action a that maximizes Q(b, a).
5: Update V (b) to Q(b, a).
6: Sample next state s′ from its probability distribution T (s′|s, a).
7: Sample observation o from its probability distribution Ωn(o|s′, a)
8: Sample reward r from the reward function r(s′, a, o)
9: Set R(s, a) equal to r(s′, a, o).

10: Compute ba,o using Eq. (2).
11: Finish (an episode is completed) if ba,o is target belief, else set b := ba,o,

s := s′, and go to 3.

In this work, the state-of-the-art RTDP-Bel algorithm is
slightly modified to fit our problem formulation, incorporating
the reward function defined in Eq. 1. The modified RTDP-
Bel algorithm is described in Algorithm 1. Algorithm 1 is
independently executed for each connection n in the network,
and hence for each connection a different PBA model is
evaluated. In Algorithm 1, an episode is defined as the
sequence of actions and observations received for all time
intervals {t}τt=0. According to Algorithm 1, in each time
interval t a single observation is sampled from Ωn(o|s, a).
It is true, however, that within t a number of traffic demand
fluctuations may occur. The algorithm will eventually obtain
enough observations and will converge to an optimal PBA
by iterating over a large number of episodes. Note that the
assumption throughout is that the traffic demand is stationary
for such a period of time that is capable of letting the RL to
converge to a number of PBA models that reflect the network
state (i.e., traffic patterns slowly change). In Algorithm 1,
without loss of generality, the target belief is set at t = 24
(as we have assumed hourly network reconfigurations). By
doing so, the assumption throughout is that each trained model
encapsulates the daily behavior for each network connection.

6

Note that, depending on the problem setting, the target belief
could be set to a different value (i.e., for training models
encapsulating a total of τ network reconfigurations occurring
i.e., every h time units).

IV. ROUTING AND SPECTRUM ALLOCATION

In EONs, for establishing a connection, the Routing and
Spectrum Allocation (RSA) problem must be solved. The
routing (R) problem deals with finding a route for a source
and destination pair. The spectrum allocation (SA) problem
deals with allocating spectral resources to the routing path (the
spectrum slots are occupied symmetrically around the nominal
central frequency of the channel). The allocated spectrum must
meet the slot continuity and contiguity constraints, subject to
the constraint of no frequency overlap [20]. A survey regarding
the methods developed for the R problem can be found in [21],
whereas regarding the SA problem, a number of SA policies
have been developed that are in general categorized into fixed,
semi-elastic, and elastic [21], [22].

In the fixed SA policies [22], [23] the allocated spectrum
and the central frequency remain static for the entire life-
time of a connection. In the semi-elastic SA policies [22],
[23] the central frequency remains static but the allocated
spectrum width can be expanded/reduced according to the
actual bandwidth demand. The main difference with the fixed
SA policies is that the unutilized slots can now be used for
subsequent connection requests providing higher flexibility
and better resource utilization (i.e., unutilized slots can be used
for low priority traffic). In the elastic SA policies [23]-[26]
both the allocated central frequency and the spectrum width
can change. The spectrum width can be expanded/reduced
according to the actual bandwidth demand and the central
frequency can be shifted [22], [24], [26], [27] (i.e., connections
may be completely reallocated). The elastic SA policies offer
better resource utilization but require the highest computa-
tional complexity and complex algorithms in the Path Compu-
tation Element (PCE) for minimizing traffic interruptions upon
connection reallocation [21], [22].

In this work, the RSA algorithm is executed offline for
each time interval {t}τt=1 with the objective to maximize
the number of established connections {n}Nn=1. For the SA
procedure, the RSA takes as inputs the outputs of the PBA
models (PBA models generate the predictive traffic demand
matrix). In each time interval the connections are estab-
lished without considering the establishment of the previous
time intervals; that is, upon each network reconfiguration
the network is elastically reconfigured, allowing for complete
connection reallocation. Between network reconfigurations the
connections can either follow a fixed SA policy or can be semi-
elastically adjusted according to the actual bandwidth demand
fluctuations. Thus, between network reconfigurations, traffic
interruptions are avoided.

We now proceed to describe analytically both the ILP
formulation and the heuristic approach developed for the
offline RSA problem described above. Note that since the
network is optimized offline, the computational time required
for solving the ILP is not an issue, as long as it is less than

the time between network reconfigurations. Alternatively, the
heuristic approach can be utilized.

A. Integer Linear Programming Algorithm

The ILP formulation takes as input a set of κ candidate
paths that are calculated for each source-destination pair by
employing a κ-shortest path algorithm [28]. Its parameters,
variables, and objective/constraints are shown below:
Parameters:
• n ∈ N : a requested connection
• f ∈ F : a spectrum slot over the available spectrum slots
• d ∈ D: a candidate path
• l ∈ L: a network link
• ∆tn: number of requested slots for connection n at t
• Dn: set of candidate paths to serve connection n
• D: set of all candidate paths

Variables:
• xdf : Boolean variable, equal to 1 if path d and spectrum

slot f are used to serve connection n and 0 otherwise.
• ydf Boolean variable, equal to 1 if spectrum slot f is the

starting spectrum slot of a contiguous spectrum to serve
demand n over path d and 0 otherwise.

• fn: Boolean variable, equal to 1 if the connection n is
established and 0 otherwise.

Objective: Maximize :
∑
n
fn

Subject to the following constraints:∑
d∈Dn

∑
f

xdf = ∆tnfn,∀n ∈ N (5)

∑
d|l∈d

xdf ≤ 1,∀l ∈ L,∀f ∈ F (6)

xdf − xd(f−1) ≤ ydf ,∀d ∈ D,∀f ∈ F (7)

Case: f = 1, thenxd(f−1) = 0

∑
d∈Dn

∑
f

ydf ≤ 1,∀n ∈ N (8)

The objective of the formulation is to maximize the number of
established connections in the network. Constraint (5) ensures
that the lightpaths chosen to serve a requested connection
should satisfy the traffic demand. In case there are not enough
spectrum slots, then this connection is blocked. Constraint (6)
is the non-overlapping spectrum constraint and ensures that
each spectrum slot is used at most once on each fiber. Con-
straint (7) ensures that each connection is assigned contiguous
spectrum on all the fibers of each path. Constraint (8) is
used in order to ensure that a connection uses only one BVT
(or SBVT). The spectrum continuity constraint is taken into
account by the definition of the xdf variable.

7

Algorithm 2 Pseudocode of the RSA Heuristic Alg.

1: Sort connection requests with their requested number of slots and start
with the connection requesting the maximum number of slots.

2: Calculate for each connection n a route using Dijkstra’s alg.
3: Given the chosen route, calculate for each connection n B′ −∆tn + 1

possible spectrum allocations that ensure the spectrum continuity and
contiguity constraints (with ∆tn being the bandwidth requested by
connection n).

4: Among all the possible B′ − ∆tn + 1 spectrum allocations, calculate
the feasible lightpaths (those where the no frequency overlap constraint
is also met). If no feasible path is found then the connection is blocked.

5: For all the feasible (candidate) lightpaths found, the fragmentation penalty
is calculated, and the lightpath with the minimum penalty is chosen.

B. Heuristic Algorithm

The RSA heuristic, for each time interval t, finds a route and
a spectrum allocation for each connection n. The description
of the heuristic is shown in Alg. 2 below.

Specifically, the heuristic starts with the connection request-
ing the maximum number of slots ∆tn. For the R problem, the
Dijkstra’s algorithm is used [29], while for the SA problem,
the ∆tn spectrum slots achieving the minimum fragmentation
penalty (shortly defined), and meeting the spectrum continuity,
contiguity, and no-frequency overlap constraints, are chosen
for connection n. In particular, the RSA heuristic, calculates
for each connection n the B′ − ∆tn + 1 possible lightpaths
that differ only on their allocated spectrum (note that if B′ is
the total link capacity and ∆tn is the bandwidth requested by
connection n, then there exist B′−∆tn+1 possible spectrum
allocations that ensure the spectrum continuity and contiguity
constraints, for a particular given route). Among all the possi-
ble B′−∆tn + 1 spectrum allocations, the feasible lightpaths
are only those where the no frequency overlap constraint
is also met. For all the feasible (candidate) lightpaths, the
fragmentation penalty is calculated, and the lightpath with the
minimum penalty is chosen, where the fragmentation penalty,
for each candidate lightpath, is just the sum of all the available
slots around the spectrum slots occupied by the candidate
lightpath, along the entire route of the candidate lightpath.
Note that the proposed heuristic constitutes an alternative
heuristic to the conventional κ-shortest path algorithm that is
traditionally used for computing multiple candidate lightpaths
for a single connection request. With the proposed approach,
for each connection a single path is calculated; however,
for each connection, it calculates several lightpaths. This is
done by allocating to the same shortest-path all the possible
combinations of contiguous and continues spectrum slots that
meet the no-frequency overlap constraint (as indicated by the
spectrum allocation action (PBA model) at each time interval).
This technique is chosen as it can achieve performance results
close to the ILP.

As an example, a candidate lightpath is shown in Fig. 3.
The candidate lightpath, originating at node a and terminating
at node e, is allocated the spectrum slots with indices 4 − 6.
According to Fig. 3, the fragmentation penalty is 7, since 3
slots are still available between the candidate lightpath and its
adjacent connections at both links a − b and b − c, 1 slot is
available at link c− d, and 0 slots are available at link d− e.

Note that by choosing the candidate lightpath with the

Fig. 3: Example for fragmentation penalty computation.

minimum fragmentation penalty we aim at packing as closely
as possible the established connections, and consequently
improving the network performance. This is a form of de-
fragmentation that evolves as the network is continuously
reconfiguring.

V. PERFORMANCE EVALUATION

To evaluate the proposed data-driven BA framework, the
generic Deutsche Telekom (DT) network of Fig. 4 was used.
Each spectral slot in the network was set at 12.5GHz with
each fiber link utilizing B′ = 250 C-band slots. Parameter
B, representing the maximum possible rate of the installed
BVTs/SBVTs, was set to B = 100 slots. Bandwidth B was
divided into k = 10 rate intervals {Ba}ka=0. Hence, each PBA
model can choose at each t and for each connection n amongst
11 spectrum allocation actions. Each action a indicates that
∆tn = a×k spectrum slots must be allocated at time interval
t for connection n. In total, twenty-four time intervals were
assumed (τ = 24, h = 1), and 24 logical connections were
considered.

Fig. 4: Deutsche Telekom network

Similar to [10], the log-normal parameters, (µtn, σ
2
tn), for

each connection n and for each time interval t were generated
as follows: The σ2 parameters were uniformly generated in the
range [0, 1] and the µ parameters were uniformly generated in
the range [0, 5]. Note that the range of numbers from which the
(µtn, σ

2
tn) parameters were generated, where chosen in such a

way in order for the possible traffic demands to be analogous
to the emitting capabilities of the BVTs/SBVTs. Indicatively,
the traffic demand parameters for six stochastic connections
are analytically given in Table I. A connection in Table I is
denoted by (v, v′)n, where v is the source node of n and
v′ is the destination node of n. Note that for simplicity, and
without loss of generality, we did not consider that the mean
rate value (µ) between sequential (in time) traffic distributions
increases/decreases smoothly. Such a consideration would not
affect the learning procedure or the efficiency of the PBA

8

models. Further, in order to compute the patn = P [ztn ∈ Ba]
probabilities, the Ztn ∼ LN(µtn, σ

2
tn) distributions were

scaled down by a factor of two in order to better fit the emitting
capabilities of the BVTs/SBVTs assumed. Specifically, the
probabilities used in the simulations were calculated according
to patn = P [ztn ∈ 2Ba].

TABLE I: Traffic Demand Ztn ∼ LN(µtn, σ
2
tn)

aaaaaaaaaa

Time Interval
t

Connection
(v,v’)n (4,6)6 (13,7)1 (14,13)2 (12,2)3 (13,1)4 (12,14)5

1 (3.5,0.9) (3.9,0.5) (0.5,0.01) (0.03,0.8) (2.7,0.9) (3.8,0.4)
2 (0.1,0.6) (3.9,0.6) (0.8,0.7) (3.8,0.4) (4.7,0.6) (3.4,0.3)
3 (3,0.5) (4.3,0.5) (2.4,0.7) (1.9,0.5) (1.9, 0.5) (1.2,0.2)
4 (5,0.5) (0.2,0.8) (3,0.6) (5,0.4) (4.3,0.3) (2,0.5)
5 (0.1,0.2) (1.8,0.6) (3.6,0.6) (4,0.4) (4.9,0.3) (1.5,0.9)

ine 6 (2.6,0.9) (2.3,0.3) (1.7,0.01) (4.7,0.1) (0.5,0.9) (2,0.06)
7 (2.9,0.9) (1,0.3) (4,0.6) (3.6,1) (2.6,0.6) (0.8,0.8)
8 (3.9,0.3) (4.3,0.1) (3.2,0.03) (1.3,0.1) (1.7,0.1) (4,0.3)
9 (1.4,0.08) (3.2,0.1) (4.4,0.08) (4.2,0.03) (2.1,0.2) (1.4,0.9)
10 (1.7,0.1) (3.7,0.2) (3,0.4) (4,0.4) (3.1,0.08) (1.5,0.5)
11 (3.9,0.1) (0.4,0.9) (4.4,0.7) (4.3,0.05) (0.4,0.3) (5,0.6)
12 (3.6,0.1) (3.5,0.4) (3.6,0.3) (4.8,0.3) (0.4,0.3) (3.4,0.3)
13 (2.3,0.1) (0.5,0.4) (4.3,0.9) (4.5,0.08) (3.4,0.2) (0.7,0.8)
14 (2.7,0.5) (3.1,0.7) (3.4,0.5) (0.37,0.01) (3,0.2) (4.5,0,8)
15 (3.1,0.6) (1.8,0.8) (3.9,0.8) (2,0.6) (4.7,0.7) (5,0.9)
16 (0.4,0.2) (5,0.9) (4.3,0.8) (3.6,0.1) (3.4,1) (2.6,0.9)
17 (1.8,0.8) (4.5,0.01) (3.8,0.2) (3,0.3) (4.8,0.8) (3,0.6)
18 (0.8,0.2) (1.3,0.6) (2.5,0.9) (2.9,0.8) (0.9,0.8) (4,0.4)
19 (4,0.9) (3.7,0.4) (1.6,0.8) (0.9,0.28) (5,0.01) (2.8,0.1)
20 (4.9,0.4) (0.8,0.3) (4.3,0.5) (4.3,0.002) (1.7,0.02) (0.3,0.1)
21 (4.3,0.9) (0.8,0.7) (4.8,0.3) (3.4,0.4) (2.1,0.3) (4.7,0.5)
22 (0.6,0.6) (1.7,0.8) (2,0.2) (1.1,0.4) (3.1,0.6) (3,0.5)
23 (4.2,0.2) (2.1,0.6) (0.2,0.7) (0.7,0.7) (2.8,0.9) (1.4,0.6)
24 (3.6,0.8) (1.2,0.7) (4.2,0.6) (0.8,0.7) (0.8,0.2) (2.3,0.6)

For evaluating the impact of parameter C to the network
performance, we assume that several sets of PBA models
are already trained according to different C values of the
R(C) function (Eq. 1). Note that the training procedure of
the PBA models is analytically described in Section V-B.
As previously discussed, parameter C is a constant that can
be dynamically modified by the central controller during the
RL procedure. Specifically, C is modified when the central
controller observes that the QoS requirements are no longer
met; an event that will eventually occur as the overall network
load increases. To this end, the RSA problem was solved for
each set of PBA models. Note that a set of PBA models
consists of all the PBA models (one model per connection)
that were trained for the same C.

The RSA is solved according to both the ILP formulation
and the proposed heuristic in a MATLAB machine with a CPU
@2.60GHz and 8GB RAM. For solving the ILP, the Gurobi
library was used [30]. Regarding the ILP, parameter κ was
set to κ = 3 (note that larger κ values were also examined
without however improving the network performance). The
RSA heuristic required at most 1 minute for finding a feasible
solution for each time interval, while the ILP required at
most 10 minutes for finding a feasible solution for each time
interval. An action was generated from each PBA model within
milliseconds, indicating that the RSA can be solved in real
time. Note that if the reconfiguration period (h) is not large
enough for solving the RSA through the ILP, the RSA heuristic
can be used instead. According to the results, discussed next,
the RSA heuristic performs close to the ILP, indicating that
the heuristic approach is indeed an efficient alternative.

A. Performance Results

Different sets of PBA models are trained for different
C values (Section V.B) and the performance of each set
of PBA models is assessed through a variety of metrics.
Specifically, as in this work we are mainly interested on
finding a set of PBA models that jointly achieve an acceptable
network performance, the PBA models are evaluated through
the RSA procedure according to: (i) the number of blocked
connections, (ii) the number of unserved slots, and (iii) the
number of unutilized slots. These metrics, as will be shortly
explained, can be used for evaluating network availability, con-
nection underprovisioning, and connection overprovisioning,
respectively; consequently determining whether the achievable
network performance, for each C value, is acceptable (or not).

Tables II, III, and IV summarize the results regarding the
average number of blocked connections (B̄) per day (or per
episode), the average number of unutilized slots (Ē) per hour
(or per time interval), and the average number of unserved
slots (Ū) per hour (or per time interval), for both the ILP
and the heuristic. Note that for solving the RSA problem, 100
episodes were generated for each set of PBA models, for both
the ILP and the RSA heuristic and the results were averaged
over these episodes.

Briefly, connection blocking may occur if a feasible route
and spectrum allocation cannot be found during the RSA
procedure. In our case, blocking means that the connection is
down for the entire hour (or h period), consequently contribut-
ing to network unavailability. Unutilized/unserved bandwidth
may occur between the network reconfigurations during the
traffic demand fluctuations. In particular, unutilized/unserved
bandwidth occurs if the allocated bandwidth is more/less
than the requested one. Unserved bandwidth means that the
end-users may receive less bandwidth than requested. As in
this case the end-users will be partially served, the impact
of unserved bandwidth is less severe than the impact of
connection blocking.

TABLE II: Avg. Number of Blocked Connections (B̄)

Heuristic RSA
C ≥ 10 C = 5 C = 2 C = 1 C = 0.8 C = 0.5

29 8 1 0 0 0
ILP RSA

C ≥ 10 C = 5 C = 2 C = 1 C = 0.8 C = 0.5
26 7.5 0 0 0 0

TABLE III: Avg. Number of Unutilized Slots (Ē)

Heuristic RSA
C ≥ 10 C = 5 C = 2 C = 1 C = 0.8 C = 0.5

1402 1157 627 510 478 280
ILP RSA

C ≥ 10 C = 5 C = 2 C = 1 C = 0.8 C = 0.5
1400 1157 627 510 478 280

For evaluating Ē and Ū , we assume that the traffic fluctuates
every minute of the hour (60 fluctuations per t). Fluctuations
were directly generated from the distributions used for model
training. In particular, for the traffic demand fluctuations we

9

TABLE IV: Avg. Number of Unserved Slots (Ū)

Heuristic RSA
C ≥ 10 C = 5 C = 2 C = 1 C = 0.8 C = 0.5

5.6 12 48 74.7 88.4 140
ILP RSA

C ≥ 10 C = 5 C = 2 C = 1 C = 0.8 C = 0.5
5.9 12 51.6 74.7 88.4 140

have drawn from each Ztn the samples {zitn}60i=1 representing
the traffic demand fluctuations every minute of the hour. The
sample δitn =

zitn
2 denotes that connection n requests δitn

spectrum slots at the ith minute of time interval t (note that
the sampled rates were divided by two for consistency with
our simulation settings).

For each established connection, the allocated ∆tn slots
were compared to each δitn in order to calculate Ē and
Ū . The unserved slots for each episode are given by
U = 1

60×24
∑
t

∑
n

∑
i |∆tn − δitn|, if ∆tn < δitn, while

the unutilized slots for each episode are given by E =
1

60×24
∑
t

∑
n

∑
i(∆tn − δitn), if ∆tn > δitn. For finding

Ē and Ū , E and U were averaged over the 100 episodes
(Tables III and IV). Note that Ū is calculated only according
to the unserved bandwidth of the established connections
(the unserved bandwidth of the blocked connections was
not included in Ū). This is the case since, even though
connection unavailability (blocking) could be also translated to
unserved spectrum, calculating the unserved spectrum during
the unavailability period (i.e., according to the zitn values)
would not be an indicative metric; the behavior of the end-
users inevitably changes during this period. Further, by not
accounting for the unserved bandwidth of the blocked con-
nections, we can better observe the impact of the C value on
the network performance (i.e., if Ū is nearing zero, then we
know that the network is operating near a peak-rate based BA
model).

Table II shows that as C increases the average number of
blocked connections also increases; a reasonable outcome if
we consider that a higher C value is in essence a higher
negative reward that during RL guides the agent to allocate a
bandwidth that is closer to the peak-rate demand. This effect
is clearly shown in Table III, indicating that as C increases,
the agents tend to allocate an overall higher bandwidth that
is most of the time unutilized (connection overprovisioning).
On the other hand, as C decreases, the unserved bandwidth
increases, leading to connection underprovisioning (Table IV).
Clearly, an optimal C value depends on the QoS requirements
of the network.

Regarding the ILP and the RSA heuristic results, Ta-
bles II, III, and IV show that the RSA heuristic performs close
to the ILP algorithm in terms of connection blocking as well
as unserved/unutilized bandwidth; an indicator that the RSA
heuristic is an efficient alternative of the ILP. Note that the
results of Tables III and IV are the same for both the ILP and
the heuristic RSA when the number of blocked connections
is zero (for C ≤ 1 according to Table II). This is reasonable
since in this case, the exact route and spectrum allocation of all
the established connections does not affect Ē and Ū ; Ē and Ū

are only affected by the BA actions generated by the models,
that are the same for both the ILP and the RSA heuristic.

Overall, Tables II, III, and IV clearly demonstrate the impact
of the reward optimization function (specifically the impact
of parameter C) on the overall network performance. As C
increases, the unutilized bandwidth also increases (Table III),
since in that case the PBA models have a peak-rate BA
tendency. For the network capacity considered, if C > 1
and the RSA heuristic is utilized, connection blocking occurs
(Table II), consequently affecting network availability. Con-
versely, for the ILP approach, connection blocking occurs if
C > 2. If we assume that according to the QoS requirements
connection blocking should be zero, and RL currently operates
with C = 5, then the controller should gradually decrease C
to 2 (Table II) if the ILP is assumed (or to 1 if the RSA
heuristic is utilized). This is done at the expense of increasing
the unserved bandwidth (Table IV). Note however, that C does
not need to be set below the higher C value that meets the QoS
requirements (i.e., below 2 for the RSA ILP and below 1 for
the RSA heuristic), since by doing so the unserved bandwidth
(Table IV) will be unnecessary increased (QoS requirements
are already met). In general, the C value should be decreased
only up to the point where the QoS requirements are met.
This however must be done without affecting the SLAs of each
connection. If there is no such C value, then a network upgrade
must take place. Note that letting C to be optimized as part of
the learning process is planned for future work. Considering
optimizing a different C value for each connection is also
planned for future work.

B. Training the PBA Models

For training purposes, the discount factor γ was set to
0.95 (typical value for POMDP training). The C value of
the reward function (Eq. 1) was assigned several values, as
previously discussed (i.e., see Table II). A set of PBA models
was trained for each C value (one model per connection). For
each PBA model, RTDB-Bel was iterated over 6000 episodes
of learning, which interleaved simulation and model updates
(the model was updated after every 20 simulated episodes).
After each model update, 200 test episodes were generated
with the model fixed, for evaluating the model’s efficiency.
For each test episode, the model returned the total reward, the
total allocated bandwidth, and the total number of negative
rewards received. These values were averaged over all 200
episodes.

Training was terminated after the maximum number of
episodes, or after the model converged. The last PBA model
obtained was utilized for computing the network reconfigura-
tions (the PBA outputs were used as inputs to the RSA algo-
rithm) and evaluating the network performance (Section V-A).
In general, up to 7 hours of training and testing was required
for the 6000 episodes of learning in our MATLAB machine
with a CPU @2.60GHz and 8GB RAM. An action was
generated within milliseconds from each model; the negligible
time required for action generation and the fact that each
model (for each connection) can be trained in parallel and
independently from each other renders the proposed data-

10

driven BA framework scalable as the number of time-varying
connections increases.

In general, the training procedure can be continuously per-
formed for automatically adjusting the models upon variations
on the traffic demand distributions; an important capability
of the proposed method, given that the future traffic demand
is expected to increase in uncertain ways (we cannot know
the magnitude of a future traffic demand or the sources of
this traffic). Moreover, as the RL is centrally controlled for
ensuring that the QoS requirements are met, the PBA models
can be jointly adjusted according to the ever-increasing overall
network load through the R(C) function (Eq. 1). For training
purposes, we assume that the traffic demand is stationary for
a period of time that allows the RL to converge to a set of
PBA models that reflect the network state (i.e., we assume that
traffic patterns change slowly). On this basis, the C value will
not need to change before model convergence.

Figures 5-13 illustrate how the average reward, the average
allocated bandwidth, and the average number of negative
rewards evolve over the training time of the PBA model, when
C = 0.5, C = 1, and C = 10. Training time is given in
hours and corresponds to the time required for training and
testing the model. A model update is indicated with a circle
in Figs. 5-13 (approximately 250 total model updates for the
6000 episodes). Figures 5, 8, and 11 correspond to the training
procedure of the PBA model for n = 1 and C = 0.5, Figs. 6, 9,
and 12 correspond to the training procedure of the PBA model
for n = 1 and C = 1, while Figs. 7, 10, and 13 correspond
to the training procedure of the PBA model for n = 1 and
C = 10. Note that similar figures were obtained for all the
other connections and C values but are omitted due to space
limitations.

Overall, Figs. 5, 6 and 7 show that the PBA models perform
better as the training procedure evolves. The average reward
increases with the number of model updates (training time) as
the agent learns to take better bandwidth allocation decisions.
For the different C values, Figs. 5, 6 and 7 demonstrate that
as C increases the average reward decreases; an expected out-
come since as C increases the penalty (negative reward) also
increases, resulting to an achievable lower average cumulative
reward.

Consequently, for the higher C values, the PBA models
tend to allocate a higher number of spectrum slots (Figs. 8, 9,
and 10), aiming at decreasing the average number of nega-
tive rewards (penalty) received (Figs. 11, 12, and 13). This
outcome is aligned with the results presented in Section V-A
where it is shown that as C increases, the unutilized bandwidth
also increases, resulting to an increased number of blocked
connections. Overall as C increases the PBA models tend to
follow a model that resembles a peak-rate BA model, that
consequently leads to connection overprovisioning. On the
other hand, as C decreases the PBA models tend to lead to
connection underprovisioning. An optimal C value will be
the one that meets the QoS requirements. As pointed out,
this value can be found by gradually decreasing C upon each
violation of the QoS requirements.

Fig. 5: Avg. reward over training time (C = 0.5).

Fig. 6: Avg. reward over training time (C = 1).

Fig. 7: Avg. reward over training time (C = 10).

Fig. 8: Avg. allocated bandwidth over training time (C = 0.5).

VI. CONCLUSION

This work proposed a data-driven BA framework for elastic
optical networks that takes into account the network’s QoS
requirements. The data-driven BA problem is formulated as
a state-of-the-art POMDP, solved by applying reinforcement
learning. The proposed framework is scalable as it assumes

11

Fig. 9: Avg. allocated bandwidth over training time (C = 1).

Fig. 10: Avg. allocated bandwidth over training time (C = 10).

Fig. 11: Avg. no. of negative rewards over training time (C = 0.5).

Fig. 12: Avg. no. of negative rewards over training time (C = 1).

that a PBA model is inferred for each network connection
by independently (locally) training each connection’s model.
The framework is also adaptive to the time-varying traffic
patterns of each connection separately and to the overall
network load as well by dynamically modifying the reward
function of the state-of-the-art RL approach applied. For

Fig. 13: Avg. no. of negative rewards over training time (C = 10).

network performance evaluation, the RSA is solved according
to an ILP formulation and a proposed heuristic alternative
that can be used when the ILP cannot be solved in practical
time. Results indicate that by appropriately modifying the
reward function, the network bandwidth is efficiently utilized,
while also operating within the QoS requirements. Future
work includes the optimization of the reward function as
part of the RL process in order to further increase network
efficiency. Experimentally demonstrating the effectiveness of
the proposed approach according to real traffic demand data
along with examining any related implementation issues also
constitute interesting future research directions.

ACKNOWLEDGMENT

This work has been supported by the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 739551 (KIOS CoE) and from the Government
of the Republic of Cyprus through the Directorate General for
European Programmes, Coordination and Development.

REFERENCES

[1] Cisco white paper, “The Zettabyte Era: Trends and Analysis,” 2017.
[2] Cisco white paper, “Cisco Visual Networking Index: Global Mobile Data

Traffic Forecast Update, 2015–2020,” 2016.
[3] R. Alvizu, et al., “Matheuristic with Machine-learning-based Prediction

for Software-defined Mobile Metro-core Networks,” IEEE/OSA Journal
of Optical Communications and Networking, 9(9):D19–D30, Sept. 2017.

[4] S. Yan, et al., “Data-driven Network Analytics and Network Optimisation
in SDN-based Programmable Optical Networks,” Proc. ONDM, Dublin,
Ireland, May 2018.

[5] F. Morales, et al., “Virtual Network Topology Adaptability based on
Data Analytics for Traffic Prediction,” IEEE/OSA Journal of Optical
Communications and Networking, 9(1):A35–A45, Jan. 2017.

[6] N. Fernández et al., “Virtual Topology Reconfiguration in Optical Net-
works by Means of Cognition: Evaluation and Experimental Valida-
tion,” IEEE/OSA Journal of Optical Communications and Networking,
7(1):A162–A173, Jan. 2015.

[7] Y. Ohsita et al., “Gradually Reconfiguring Virtual Network Topologies
based on Estimated Traffic Matrices,” Proc. IEEE INFOCOM, Anchorage,
AK, 2007.

[8] A. Caballero et al., “Cognitive, Heterogeneous and Reconfigurable Op-
tical Networks: The CHRON Project,” IEEE/OSA Journal of Lightwave
Technology, 32(13):2308–2323, July 2014.

[9] X. Chen et al., “Leveraging Deep Learning to Achieve Knowledge-
based Autonomous Service Provisioning in Broker-based Multi-Domain
SD-EONs with Proactive and Intelligent Predictions of Multi-Domain
Traffic,” Proc. ECOC, Gothenburg, Sweden, 2017.

[10] T. Panayiotou, et al., “On Learning Bandwidth Allocation Models
for Time-Varying Traffic in Flexible Optical Networks,” Proc. ONDM,
Dublin, Ireland, May 2018.

12

[11] B. Bonet and H. Geffner, “Solving POMDPs: RTDP-Bel vs. Point-based
Algorithms,” Proc. IJCAI, 2009.

[12] I. Antoniou, et al., “On the Log-normal Distribution of Network Traffic,”
Physica D: Nonlinear Phenomena, 167(1–2):72–85, 2002.

[13] M. Kassim, et al., “Statistical Analysis and Modeling of Internet Traffic
IP- Based Network for Tele-traffic Engineering,” ARPN J. of Eng. and
Applied Sciences, 10(3):1505–1512, 2015.

[14] R. Martinez et al., “Control Plane Solutions for Sliceable Bandwidth
Transceiver Configuration in Flexi-grid Optical Networks,” IEEE Com-
munications Magazine, 54(8):126–135, Aug. 2016.

[15] “Architecture for the Automatically Switched Optical Network,” ITU-T
Recommendation G.8080, 2012.

[16] D. Bertsekas, Dynamic Programming and Optimal Control, (2Vols),
Athena Scient., 1995.

[17] E. Sondik, “The Optimal Control of Partially Observable Markov
Decision Processes over the Infinite Horizon: Discounted Costs”, Oper.
Res., 26(2):282–304, 1978.

[18] F.D.-Velez, “The Infinite Partially Observable Markov Decision Pro-
cess,” Advances in Neural Information Proc. Systems 22, 2009.

[19] C. Papadimitriou and J. Tsisiklis, “The Complexity of Markov Decision
Processes,” Math. of Operations Research, 12(3):441–450, 1987.

[20] K. Christodoulopoulos, et al., “Elastic Bandwidth Allocation in Flex-
ible OFDM-Based Optical Networks,” IEEE/OSA J. Lightwv. Techn.
29(9):1354–1366, 2011.

[21] B. C. Chatterjee, et al., “Routing and Spectrum Allocation in Elas-
tic Optical Networks: A Tutorial,” IEEE Comm. Surveys & Tutorials,
17(3):1776–1800, 2015.

[22] M. Klinkowski, et al., “Elastic Spectrum Allocation for Time-Varying
Traffic in FlexGrid Optical Networks,” IEEE J. on Selected Areas in
Comm., 31(1):26–38, 2013.

[23] K. Christodoulopoulos, et al., “Time-Varying Spectrum Allocation Poli-
cies and Blocking Analysis in Flexible Optical Networks,” IEEE J. on
Selected Areas in Comm., 31(1):13–25, 2013.

[24] S. Shakya, et al., “Spectrum Allocation for Time-varying Traffic in
Elastic Optical Networks using Traffic Pattern,” Proc. OFC, 2014.

[25] G. Shen, et al., “Maximizing Time-dependent Spectrum Sharing between
Neighbouring Channels in CO-OFDM Optical Networks,” Proc. ICTON,
2011.

[26] K. Christodoulopoulos, et al., “Dynamic Bandwidth Allocation in Flex-
ible OFDM-based Networks,” Proc. OFC, 2011.

[27] F. Cugini, et al., “Push-Pull Defragmentation Without Traffic Disrup-
tion in Flexible Grid Optical Networks,” IEEE/OSA J. Lightwv. Techn.,
31(1):125–133, 2013.

[28] J.Y. Yen, “Finding the k Shortest Loopless Paths in a Network,”
Management Science, 17(11):712–716, 1971.

[29] T. H. Cormen, et al., Introduction to Algorithms (Third ed.), Section
24.3: Dijkstra’s algorithm, MIT Press, 2009.

[30] Gurobi Optimization Inc., “Gurobi Optimizer Reference Manual,” 2016,
http://www.gurobi.com.

Tania Panayiotou received her Diploma degree in Computer Engineering
and Informatics, from the University of Patras, Greece, in 2005, and her Ph.D
degree in Computer Engineering, from the University of Cyprus in 2013. She
is currently a Research Fellow at the KIOS Research and Innovation Center
of Excellence at the University of Cyprus. She has previously worked as an
Associate Researcher at the Department of Electrical Engineering, Computer
Engineering and Informatics of the Cyprus University of Technology, and as
a teaching fellow in the Department of Electrical and Computer Engineering
at the University of Cyprus and in the Department of Information and
Communication Systems at the Open University of Cyprus. Her research
interests focus on optical networks as well as transportation networks.

Konstantinos Manousakis received the Diploma, M.Sc. and Ph.D. degrees,
all in Computer Engineering and Informatics, from the University of Patras,
Greece, in 2004, 2007, and 2011, respectively. He is a Research Fellow at
the KIOS Center of Excellence (CoE), University of Cyprus, Nicosia, Cyprus.
Since 2014, he is a Marie Curie (MC) Fellow, working on a four-years MC –
Career Integration Grant (CIG) in the area of Optical Network Security. His
research interests are in the area of optimization algorithms and security in
optical networks.

Sotirios Chatzis received the M.Eng. (Hons.) degree in electrical and com-
puter engineering and the Ph.D. degree in machine learning from the National
Technical University of Athens, Athens, Greece, in 2005 and 2008, respec-
tively. He was a Post-Doctoral Fellow with the University of Miami, Coral
Gables, FL, USA, from 2008 to 2010. He was a Post-Doctoral Researcher with
the Department of Electrical and Electronic Engineering, Imperial College
London, London, U.K., from 2010 to 2012. He is currently an Assistant Pro-
fessor with the Department of Electrical Engineering, Computer Engineering
and Informatics, Cyprus University of Technology, Limassol, Cyprus. He has
authored more than 60 papers in the most prestigious journals and conferences
of the research field. His current research interests include machine learning
theory and methodologies, specifically hierarchical Bayesian models, Bayesian
nonparametrics, and deep hierarchical feature extractors, with a focus on
modeling data with temporal dynamics. His Ph.D. research was supported
by the Bodossaki Foundation, Greece, and the Greek Ministry for Economic
Development. Dr. Chatzis was a recipient of the Dean’s scholarship for Ph.D.
studies, being the best performing Ph.D. student of the class.

Georgios Ellinas holds B.Sc., M.Sc., M.Phil., and Ph.D. degrees in Electrical
Engineering from Columbia University. He is currently a Professor and the
Chair of the Department of Electrical and Computer Engineering at the
University of Cyprus. Previously, he was an Associate Professor of Electrical
Engineering at City College of New York. Before joining the academia, he was
a Senior Network Architect at Tellium Inc. George also served as a Visiting
Scientist/Research Scientist in Bellcore’s Optical Networking Research Group.
His research interests focus on optical networks, intelligent transportation
systems, critical infrastructure systems, and IoT.

