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Summary

The specific deliverable summarizes the material related to the 2" Summer School of the
project entitled “Special issues of Optical Remote Sensing”. The deliverable contains actions
completed prior the accomplishment of the Summer School, such as the agenda, while it
also includes all the material delivered during the Summer School (e.g. presentations,

supportive documents etc.), the list of participants and pictures from the event.

Grant Agreement no 691936 [PUBLIC] 6
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1. Introduction

The 2" Summer School of ATHENA project has been successfully accomplished in line to
the timeline of the project. The ATHENA Summer School took place in Cyprus University of

Technology premises in Limassol, Cyprus between the 12" and the 15" of June 2017.

Visiting scientist from the Remote Sensing Technology Institute of DLR (Dr Daniele Cerra)
met with members of the Remote Sensing and Geo-Environment Research Lab of the
Department of Civil Engineering and Geomatics to introduce them to the typical processing
chain for applications using satellite images, with a special focus on hyperspectral image
processing and archaeological applications.

On Monday a reminder on image characteristics has been given, along with the properties of
image filters carried out in time domain. The attendees have programmed and applied

sample filters during the hands-on sessions.

On Tuesday, the concept of Fourier transform has been used to introduce filtering operations
in the frequency domain. An overview on contextual analysis of image elements (edge
extraction, texture estimation, invariant features) has been given, along with practical

exercises building up from previous topics.

Wednesday and Thursday have been completely allocated to hyperspectral image
processing. On Thursday, the related basic concepts have been introduced along with an
overview on the applications, and a tutorial on dimensionality reduction has been given and

tested by the attendees in the Matlab environment.

Following, spectral unmixing techniques have been used in the frame of a longer exercise
aimed at performing supervised classification of different kinds of crops in a hyperspectral

image. To close, an interactive tutorial on band selection has been given.

Grant Agreement no 691936 [PUBLIC] 7
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2. Agenda of the summer school

ATHENA I* Spmmer School Agenda

Remote Sensing Science Center for Cultural Heritage

2" Summer School Agenda

Topic: Special issues of Optical Remote Sensing
Date: 12-15 June, 2017
Hosted by: Cyprus University of Technology

Venue: Dorothea 2nd floor
Cyprus Umiversity of Technology, Limassol, Cyprus

Trainer: Dr. Daniele Cerra (DLR)

Project Coordination Team

Fanuzsan
COPaTaen

This project has received funding from the European Union’s Horizon 2020 resegrch and innovation programme under grant
agreement Mo 691936, Work programme H2020 under "Spreading Ewcellence and widening Participation”, call: H2020-
TWINN-2015: Twinning |Coordination and Support Action).
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B—  Cyprus
[ University of
Technalogy DLR r—

Ceagal il vy MEplarsls Biee s

Monday 12% Jlune

0530 - 11-30 Introduction to &Matisb

Basic Dpemtions with Images in Grayscale Walues

13-30 - 12-00 Coffes hresk

12-00-14:00  Filtering of Digital Images

The Freguency Domain

Introduction to Hyperspectal Image Processing

13-30 - 12400 Coffee bresk

12-00-14:00  Spectral Indices

Wednesday 14t June
0530 - 11:30 Dimensionality Reduction
Spectral Unmixing

11-30- 12-00 Coffes hreak

12-00— 14:00 Clazzification bazed on Spectral Unmixing Results

- YT
T @ 47 m
DLR e

Fechnalogy et A Tan s R .

HURECLH 08

.
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o
":Q HUNA
' ATHENA Amzeal Mosting Agenda
Thursday 15* June
09:30-11:30 Band Selection
11-30-12:00 Coffee brenk Pagn 3

1200-12:00 Clustering, Morphological Postprocessing

—_ Cyprus
][ University of

Technology [oesagd o Ma2 98 e Fezunm DLR
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3. List of Participants

Contracted Researchers as well as graduate and Master students of the Cyprus University of
Technology attended the Summer School. The list of participants for each day is given

below.
Monday, 12" June 2017
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E
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H2020-TWINN-2015 - Remote Sensing Science Center for Cultural
o—— f.\/pms_ Heritage-ATHENA
][ ;;X:;S’g-v of Topic: Special issues of Optical Remote Sensing
Yy [T ——— DLR Trainer: Dr. Daniele Cerra (DLR|

Date: Monday, 12% June, 2017
Venue: CUT - Limassol, Cyprus

List of participants
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:.‘“:'
H2020-TWINN-2015 - Remote Sensing Science Center for Cultural
i ‘cji‘pz:fmyo’ G # i ':lemgt:mnzm
T ic: issues of Optical Re: in,
Technology G iomss Rlibe DLR = :::iner: Dr.mniepl: Caerra'('ll:L‘R.)sm‘B -
Date: Tuesday, 13" June, 2017
Venue: CUT - Limassol, Cyprus
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Wednesday, 14" June 2017
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ATHENA
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Thursday, 15" June 2017

H2020-TWINN-2015 - Remote Sensing Science Center for Cultural
Heritage-ATHENA
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4, Presentations during the summer school

All presentations of the Summer School are given in the Annex of the present Deliverable, in

the following order:

4.1 Image Characteristics

4.2 Filtering in Time Domain

4.3 Filtering in Frequency Domain

4.4 Contextual Analysis — Texture, Edges, Invarant Features
4.5 Clustering and Classification

4.6 Introduction to Hyperspectal Image Processing

4.7 Hyperspectral Data - Applications

4.8 Dimensionality Reduction — PCA Tutorial

4.9 Spectral Unmixing

4.10 Tutorial on Band Selection

Additionally, a manual prepared by the trainer relative to Remote Sensing Exercises with
Matlab with a special focus on Hyperspectral Image Processing has been disseminated to

the trainees and is attached at the end of the Annex.
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5.Photographs taken during the 2" Summer School
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fRovealing hidden information

A~

*
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ANNEX

PRESENTATIONS OF THE SUMMER SCHOOL (4.1-4.10) and Manual on Remote
Sensing Exercises with Matlab with a special focus on Hyperspectral Image
Processing

Grant Agreement no 691936 [PUBLIC] 20



Remote Sensing Image Processing with Matlab

with a special focus on hyperspectral data analysis

Limassol, Cyprus University of Technology
12-15.06.2017

Daniele Cerra, German Aerospace Center (DLR)
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Image Processing Workflow

Daniele Cerra, German Aerospace Center (DLR)




Processing of Remotely Sensed Data:

from a Bunch of Numbers to...

B Buildings
B Water 4 :
Open Space s ’ .
%Imporvlous : v S s 4 3 Target Detection
] Lawn/Meadow ’ ¥ ¥ (here: Forest Fires)

[ Trees/Woodlandy W el lin D 4

1975 g Lyl

Pl

Multitemporal Analysis

_ (here: Urban Sprawl Monitoring)
Feature Extraction




03 29 38 48

Image Acquisition & Correction / °9 96 94 04

- Raw Data-> Raw Image - Image 87 76 75 45

Low-level Analysis
« Image - Image
« Time domain
« Frequency domain

Mid-level Analysis
« Image - Features / Attributes
« Feature Extraction
« Clustering / Segmentation

Beach Bar

Urban Area

Wave Breakers
Shadows

Vegetationl
Sea

High-level Analysis
- Features - Recognition
« Classification

Vegetation2

O B B O

Mountains (bright slopes)

O B B O O

Golf Course
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Summary

Image Acquisition & Characteristics

- Spatial, radiometric & spectral resolution
« Image Correction

- Image enhancement
« Time Domain
« Frequency Domain

- Sampling & Aliasing
« |Image Features

- Image Clustering

- Image Classification

- ANCCG




Summary

Image Acquisition & Characteristics
- Spatial, radiometric & spectral resolution
« Image Correction

Image enhancement
« Time Domain
« Frequency Domain

Sampling & Aliasing
Image Features

Image Clustering
Image Classification



Image Acquisition

[lumination (energy)

..7/ l\ source Al

T ! f g Output (digitized) image
Imaging system y !

(Internal) image plane

Scene element

d

b

cde

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy (“illumination™) source. (b) An el-
ement of a scene. (¢) Imaging system. (d) Projection of the scene onto the image plane. (¢) Digitized image.

- ANCCG
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Image representation

- Inadigital image, both the coordinates and the image
value become discrete quantities

- Images can be represented as 2D arrays (matrices) of
Integer values: I[1,j] (or I[r,c])

- The term gray level is used to describe monochromatic
Intensity 9
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Sampling and guantization

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.

# e




Spatial resolution €< Sampling

- Spatial resolution is the smallest discernible detail in an image

- Ground Sampling Distance Is the principal factor determining
spatial resolution

512 pixels = 60m

1024 x 1024 samples - 30m

- ANGCG Y/ b




Ground Sampling Distance (GSD) is not directly
proportional to the number of pixels!

These images have been resampled to 1024 x 1024 pixels
. e - T T

128 x 128 64 x 64

2 ANCCG Y/ g




Spatial resolution: Resampling

Resampling
without
interpolation
(nearest-neighbour
resampling)

Resampling with
interpolation (each
pixel is a
combination of
neighbouring
pixels)

128 x 128




Radiometric Resolution

256 128 64 32

8 bits 7 bits 6 bits 5 bits 4 bits 3 bits 2 bits 1 bit

Sy . s T
ANCCE g -y
DLR ] A AR i o \ €F%. ~
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Radiometric resolution € Quantization

Radiometric resolution refers to the smallest discernible change in gray level (often power
of 2)

The human eye is inefficient at distinguishing differences in gray levels much beyond the
limit of 16 (but to the machine it may make a big difference)




Spectral Resolution & Color Display

Reflected energy for each st xaws [ oy [ ] | ..

p ixel i n T he f r.eq u enc ies B I u e ’ ""_"F.;:T-'R:;I-;I.-E.TFJ:-_""'-'---Hr = wulm_.;-n;_c:;u_u -__-:-:_l
Green, Red & Near Infrared
#

WAVELENGTH [Manomglers)

E DLR @@@ m FIGURE 6.2 Wavelengths comprising the visible range of the electromagneltic spectrum.

(Courtesy of the General Electric Co.. Lamp Business Division.)




Remote Sensing: multiband Images andsay




Remote Sensing: multiband Images

- We can visualize 3 bands at a time: pseudocolor

True Color False Color Composite  False Color Composite




How many Sensors / kinds of images / datasets in RS?

Sun Passive Passive Active
\\| / Sensor Sensor Sensor
4
“wc w/ L/
/‘ N
Reflected Earth’
Sunlight energy

Earth’s surface

(]

é Panchromatic Radar (SAR)
©

% Multispectral Thermal Lidar

Q

g. Hyperspectral Sonar

Vo G R




Optical Passive Sensors In Remote Sensing

Hyperspectral
®

Spectral Resolution

O

v

Spatial Resolution

v

- ANCCG




Image Correction

- Raw images are minimally processed images coming
directly from the image sensors

« They usually go through several correction steps

« Some important ones are:
- Dark Signal Correction
« Non-linearity Correction
« Odd-even Effect Correction
- Dead Pixels Flagging

# @@ y




Dark Signal Correction

« Electronic interferences make the recorded
signal (a bit) different than it really is

- Dark Signal Measurements

«  Shutter Method

- Before every take an acquisition is made
with the shutter closed. The resulting
signal is the ,dark current”

« Deep Space Looking

- Measures thermal radiation that can
affect Dark Signal measurements

- Dark pixels of the SWIR detector Dark Signal Measurement

- Dark signal depends on the stability of
the supplied voltage

« During image special pixels which stay
dark are used as reference




I

Non-linearity Correction T

« The response of a detector as a function of integration time Is
not linear

« The (non-linear) pixel response is measured at different
exposition times and a correction is estimated as a linear
function

- During the process dark signal has to be taken into account




Odd-Even Effect

* The odd-even column effect
consists of variations of the
signal between the columns of

the array
 Itis due to differences between
Sensor arrays
* It is easy to correct
» Check the difference between the
average values of a given column
and its neighbouring columns

- ANCCG

Raw Image with Odd-even Effect




Dead Pixel Map

THIS Pixec 15 pery

« Alist of pixels which readings do not have any meaning
« They are declared as ,dead” and ignored (set to 0)
- Different kinds of dead pixels:

« No response

« Very large output (hot pixel), saturates easily

« Flickering pixel (constantly changing output)

« Constant output




Image Correction

- Once our raw data are corrected, the image is formed and usually
undergoes other correction steps....

- Atmospheric Correction (more about it later - Hyperspectral)
« Geometric Correction / Orthorectification (more about it later- SIFT)

Figurel: Forbidden City (Origin) Figure 2: Forbidden City
Data Source: Space Imaging Co, (Relative Geometrically Corrected)

LS

| Image by C. Wu [




03 29 38 48

Image Acquisition & Correction / °9 96 94 04

- Raw Data-> Raw Image - Image 87 76 75 45

Low-level Analysis
« Image > Image
« Time domain
« Frequency domain

Mid-level Analysis
« Image - Features / Attributes
« Feature Extraction
« Clustering / Segmentation

Beach Bar

Urban Area

Wave Breakers
Shadows

Vegetationl
Sea

High-level Analysis

- Features - Recognition

Vegetation2

O B B O

Mountains (bright slopes)

O B B O O

Golf Course



Summary

Image Acquisition & Characteristics
« Spatial, radiometric & spectral resolution
« Image Correction

- Image enhancement

« Time Domain
« Global Techniques: Histogram Stretch
« Local Techniques: Moving Window Transform

« Frequency Domain
- Sampling & Aliasing
- Image Features
- Image Clustering
- Image Classification

- ANCCG




Image enhancement

Enhance: to make greater (as in value,
desirability, or attractiveness)

The principal objective of
enhancement is to process an image so
that the result is more suitable than the
original for a specific application

Enhancement is subjective!

A good technique for a given application
Is not valid for another one

© Qriginal Artist
Reproduction rights obtainable from
www. CartoonStock.com

(L)



Sample Histograms, Natural Images




Histogram processing

Dark image

How do you expect the histograms for these pictures?

- ANCCG




Histogram Stretching

ariginal

stretched

i P
In how many ways can
% | we stretch this?
SR |

Ll
'\"":;ﬁ/f; “‘)}

4




Histogram Stretching

Selective Linear Stretch

* We take Digital Numbers between 5 and 65

* We expand these from O to 255

» All values <5 are set to O

- All values > 65 are set to 255

» All values in between are stretched proportionally

“an

0% M X BN WK WK WX NN BN TR0 40

- ANCCG

¢ /
TE o
0 >
I



Histogram Stretching

Selective Linear Stretch, let us try to get rid of these dark areas!

- We take now the DNs between O and 45
* We expand these from O to 255

Or better
so?

.ﬂﬂlmunlllﬂlllﬂlﬂllllﬂlmuw

S100 M 1200 AN M ND XN IR YN




Histogram Stretching

Linear-with-Saturation stretch

We assign 5% of pixels at each end (tail) of the histogram to single values,
and stretch the values in between

R L T — That looks
ke W AN e, 7%
e @ 0. 7, e better...
NI SV A =
’ ;’r,-.v'””ﬁ,
A 4 +
Bstogram of
nty3es

Oinglay masirwrn, - 755 0000

f Ao vacee 3% 0000

o) =

250 M4 5100 MHE N S NN MNE AN IR A0

- ANCCG




Histogram Stretching: Comparison

oot Vol

Selective Selective CiLrlnfecc)xTamt;‘fh
Stretch I Stretch IT .

r ARCCG R




Linear Histogram Stretch

 All 4 images are mapped
to a similar output image
by applying the same
histogram stretch function




Histogram Equalization vs. Linear Stretch
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Histogram Equalization vs. Linear Stretch

Cutput Histogram
| T T

Currert: Linear, Hist Source: Image (301,678 points)

Original histogram Stretched hist. Image

Buried Roman ruins in Carnuntum, Austria, stretch 0-255

o

#  Dataset courtesy of prof. M. Doneus, University of Wien

I -~ B




Histogram Equalization vs. Linear Stretch

(APl | stretch 1.007 . 1.065

Curmrent: Linear, Hist Source: Image (301,678 points)

Original histogram Stretched hist. Image

Buried Roman ruins in Carnuntum, Austria, linear stretch

7 . R ————
¢ S 8 SRS e
CCG 5 Sy o v
DLR F T, nginsl S 5
: 27 , B
] A7, 0, W v, o7 = { b
F 1t i £ s 3 } £




Histogram Equalization vs. Linear Stretch

File Stretch_Type Histogram_Source Defaults Options Help

. 1.048

Cument: Linear, Hist Source: Image (301,678 points)

Original histogram Stretched hist. Image
Buried Roman ruins in Carnuntum, Austria, linear stretch with 2% saturation

P Savi
$
s

f L 3
J ‘.’5 f,




Histogram Equalization vs. Linear Stretch

File Stretch_Type Histogram_Source Defaults Options Help

( Apply | streten 1.007 . 1.065

\I\ J i
N H

Cument: Equalized, Hist Source: Image (301,678 points)

Original histogram Stretched hist. Image
Buried Roman ruins in Carnuntum, Austria, histogram equalization

o G




Summary

- Image Acquisition
« Spatial, radiometric & spectral resolution
« Image Correction

- Image enhancement
« Time Domain

« Global Techniques: Histogram Stretch
« Local Techniques: Moving Window Transform

« Frequency Domain
- Sampling & Aliasing
- Image Features
- Image Clustering
- Image Classification

- ANCCG
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Image Filtering in Time Domain

Daniele Cerra, German Aerospace Center (DLR)




Histogram Stretching : Multiband - Recap

Original RGB image Histogram equalization Histogram linear with
of each individual saturation stretch at
band/channel 2% (from each
individual
band/channel)

i DLR




Summary

» Image Acquisition & Characteristics
« Spatial, radiometric & spectral resolution
* Image Correction

* Image enhancement

« Time Domain
» Global Techniques: Histogram Stretch
 Local Techniques: Moving Window Transform

* Frequency Domain
* Image Features
* Image Clustering
* Image Classification

i DLR
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Local Techniques:

Convolution by Moving Window

i DLR
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I Low-pass Filter

Moving Window Transform: Example

i DLR




Institut fur Methodik der Fernerkundung

I Low-pass Filter

Moving Window Transform: Example

i DLR
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I Low-pass Filter

Moving Window Transform: Example

i DLR
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I Low-pass Filter

Moving Window Transform: Example

i DLR
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Blurring = Arithmetic Mean Filter

xy— E

1)ES

Ol
[
[EEY
[

Mean of a window Sxy

of size m x n centered in (x, y) (blurring) filter, m=n=3

Output of a m x n lowpass

N

2.333

Removes noise to 1. Destroys details
some extent 2. Affects edges
Makes image 3. Blurring
smoother -
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Convolution Examples: Original Images
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111

_[1 1 1] Low-pass Filter

111

Convolution Examples: 3x3 Blur

e

EEXEEEEEEE RS R L L)
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11111] :
11111 Low-pass Filter
—111111 v

11111
11111]

Convolution Examples: 5xg Blur

2

i DLR
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1111111171] :
111111111 _ F
A Low-pass Filter
111111111 T

~l111111111
111111111
111111111
111111111

i) Convolution Examples: g9xg Blur
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[11111111111111111]
11111111111111111
Ll g a al, gl gl 3l &, 3, 3l 4 2, 9,8
11111111111111111
11111111111111111
1110191 101 1 1 1N 1
11111111111111111
11111111111111111

—|daddddaaaaaag§g i

©

11111111111111111
Ll al a g a al, dl, gl 3l &, 3, 3l 4 2, 5,8
11111111111111111
11111111111111111
A, g &, a1, a1, a1, g1, 61 31 4, 4, 7l 7, 2, 2,41
11111111111111111
11111111111111111

111111111111111111

DLR
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Low-pass Filter

~onvolution Examples: 17x17 Blur




dung

High-pass Filter

Moving Windows for Edge Detection

41(r,c) -

0 21(r,c)—1(r,c-1) 21(r,c)=1(r-1c) I(r-1¢)—-1(r+1c)-
) I —1(r,c+1) —1(r+1c) |(r,c—’1)—l(r,CJ;1)

[] 510 1 1

O 255 1511 2 11411

E o 1 -1

B -255

i DLR
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Convolution Examples: Original Images
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DLR
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High;péss Filter

Convolution Examples: Horizontal
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Convolution
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Convolution Examples: Original Images




f{x,¥)

O —= O

G i =

Institut fur Methodik der Fernerkundung

Convolution Examples:
Sharpening
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) ] inal
The Median Filter ik
median
filtered

—Returns the median value of the pixels in a neighborhood
—Morphological filter

— It does not “create” new pixel values but only rearranges values already present
in the |mage therefore

—(ft prese,rves edge g o Ceugeess 4 ,
_ < | original / /
median EEFRNECERTing e foccionisl oy
.| filtered
:; { / ell reqgulaled Wtdilia’ be,
1’, : : ,r /

i DLR
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Median Filter

ab
cd

FIGURE 5.10

(a) Image
corrupted by salt-
and-pepper noise
with probabilities

i P,= P, =01.
1. Good choice to Tl
remove impulse noise pass with a

median filter of

ize 3 X 3.
. Preserves edges (c) Rsailt ot

2

3. Avoids blurring processing (b)
with this filter.

(d) Result of

processing (c)

with the same

filter.

1]3]2
2 (4]2| . -
142

DLR
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Example: A Noisy Step Edge

15
|

H(n-325)+0.25 1 mﬁ ﬂﬁm

{0.25 for n<32 U“J w U Al

71 1.25 for n>33

H (n-32.5)+u(n)
where
u(n)= unif (-0.25,0.25)

i DLR
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Blurred Noisy 1D Step Edge

i DLR
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Blurred Noisy 1D Step Edge

J(32-4:32+4)=
0.1920 ‘ . . .
0.3416
0.0464
00177  mean
0.3062 0.5910

1.3043 L |
1.0079
1.0082 J(33-4:33+4)=
1.0950 D 0.3416
. 0.0464
05} 0.0177
mean 4.3062
D; e ' 07134 | 1.3043
0 1.0079
il Dﬂhﬂ 0082
1 1 , . | , 1.0950
0 10 20 30 40 50 12935

i DLR
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Median Filtered Noisy 1D Step Edge

=
T T

i DLR
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Median Filtered Noisy 1D Step Edge

J(32-4:32+4)=  sorted
0.1920 0.0177 H- . . . .
0.3416 0.0464 i
0.0464 0.1920 q P ™ ] il ﬂ(ﬂ
0.0177 0.3062 Nmedian M T QHWI WM
0.3062 0.3416
1.3043 1.0079 ]
1.0079 1.0082
1.0082 1.0950 sorted  J(33-4:33+4)=
1.0950 1.3043 0.0177 0.3416
0.0464 0.0464
il 0.3062 0.0177
0.3416 0.3062
0 ﬂw ) _ 1.0079| 1.3043
3 LU|_|—‘ H UL b _jJ median | 1.0082 1.0079
LM 1.0950 1.0082
; : . . ; .| 1.2935 1.0950
. L £ & ¥ 1 1.3043 1.2935
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A Noisy Step Edge

Median vs. Blurred (Low-pass)

BE

I ——

— e T =
The median filter L‘
preserves the step | 1 median

edge better than the - |
low-pass (blurring) r {1 Dblurred

filter.
step

04 | ’

= O S=a f
iy~ wg
o 1 1 1 1 1 1
0 10 20 30 40 50 60 70
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Median Filtering of Binary Images

Original

=
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Median Filtering of Binary Images
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Filtering of Grayscale Images

i DLR



Color Median Filter

original

—_—

—_—

Institut fur Methodik der Fernerkundung

(3x3 MF)2

The output
color at (r,c) is
always selected
from a nbhd of
(r,c) in the
input image.
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Filtering of Multiband Images

i DLR
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Filtering of Multiband Images
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Filtering of Multiband Images
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Filtering of Multiband Images

i DLR
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Filtering of Multiband Images




Institut fur Methodik der Fernerkundung

Limit and Root Images

i DLR




DLR.de « Chart1 > Lecture > Author « Document > Date

Image Filtering in Frequency Domain

Daniele Cerra, German Aerospace Center (DLR)
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Image Acquisition & Correction
 Raw Data-> Raw Image - Image

Low-level Analysis
* Image - Image
* Time domain
* Frequency domain

Mid-level Analysis
* Image - Features / Attributes
» Feature Extraction
 Clustering / Segmentation

High-level Analysis
* Features - Recognition

Beach Bar

Wave Breakers

Vegetationl

Vegetation2

Golf Course

03 29
59 96
05 06
87 76

38
94
96
75

48
04
97
45

O B B O

Urban Area

Shadows

Sea

Mountains (bright slopes)
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Image enhancement

— Images can be represented (and enhancement can be done in):

— Time domain

— Measurements with respect to a point in time and/or positions in space

— Direct manipulation of pixels

— Frequency domain

— Representation of a signal in terms of its ondulations

— Main concept: Fourier Transform

Physical reason: the universe works with
Lwaves"... is just that us humans see things
differently

Practical reason: operating in the frequency
domain is often computationally convenient, and
enables operations which are very difficult to

coaduct in the spatial domain
DLR /
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The Fourier Transform

Jean Baptiste Joseph Fourier

-  Fourier had a crazy idea: Any periodic function can be written as a weighted sum of sines and
cosines of different frequencies (1807)

- Fourier series

-  Even functions that are not periodic can be expressed as the integral of sines and cosines
multiplied by a weighting function.

! - Fourier transform
DLR
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The Fourier Transform

Jean Baptiste Joseph Fourier

« (Part of) the result of such transform can be represented like this...
« Don’t panic! ©

i DLR
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What is the idea of the Fourier Transform?

— Newton's prism separates a stream of white light into different colors

— These colors are components of the light at different frequencies

i DLR




Institut fur Methodik der Fernerkundung

What is the idea of the Fourier Transform?

'L@W/

— The FT decomposes any periodic (or time-limited) signal in terms of its
frequency components

i DLR
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Frequency-Domain Representation

Surprise: any signal can be described by a sum of sinusoids!

The sinusoids (in blue) are
called “basis functions”.

The coefficients which
make them “larger” or
“smaller” are the “Fourier
coefficients”.

Their sum is the black
function approximating the
sguare wave in red.

i DLR




Example: Partial Sums of a Square Wave

The limit of the
given sequence
of partial sums?
is exactly a
square wave

0.2

01

-0.1

-0.2

0 200 400
1 sine
0.2
0.1 WM MW
0
-0.1
o o
-0.2 - -
0 200 400
8 sines

0.2
0.
-01
-0.2
0 200 400
2 sines
0.2
mw A N
of
01}
il e W
0.2 -
0 200 400
16 sines

0.2

0.1

-0.1

-0.2

0.2

0.1

-0.1

Institut fur Methodik der Fernerkundung

200 400
4 sines

the limit as n

— = =

approaches
infinity of the

260 460
32 sines

sum of n sines.
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Inner Products: a measure of similarity

Graph of Graphs of f, g, and fg

1(1). git), 1(toel)

a function, f I “1  pointwise product f(t)g(t) I \

L L L 1 1 L L L L 8L T E—— L - L i - L | -
0 100 200 300 400 500 600 700 800 200 1000 0 100 200 30 400 500 600 700 800 900 1000

time lime
Graphs of f and g Functicn fg and ﬂl(i_)g(i)d:

B /B L L L L - L ! L
0 100 200 300 400 500 600 700 800 900 1000
i

ime

i DLR
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Inner Products: a measure of similarity

a function, f I

A 1 1 L It ! L L
100 200 300 400 500 600 700 800 200 1000
time

1(1), ha), 1)

T E—— L -
100 200 30 400

) U pointwise product f(+)h(t) I |

L i - L | -
500 600 700 800 900 1000

T E—— L - L
100 200 30 400 500 6

lime
Function fh and [f(sjh(z)dz
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2D Sinusoids:

... are plane waves with
grayscale amplitudes,
periods in terms of lengths, ...

, ‘\ B  § amplitude A
“—>

period A ¢ = phase shift
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[ 4
|
O

We can represent 2D Signals as a sum of these....
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Fourier Spectrum
(related to the amplitude of the sinusoids)

log|& {1}/

i DLR
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ier Phase
(related to the

Four

ing- of the sinusoids)

ion” —shift
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[ 4
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How to map frequencies onto an image?

“horizontal” is the
wavefront direction.

Spatial Domain

Frequency Domain

Lerz] 1 c-lci2]-1

A
A

A
x

Lr2]
Oy R}

» le
> ¢

R-|R2]-1

fftshifted

lowest-possible-frequency horizontal sinusoid

i DLR
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Inverse FFTs of Impulses

“vertical" is the
wavefront direction.

Lerzl 1 Cc-lL¢i2]-1
< » |l :%
'y x
.-
S
5
e THnTE R
'y
D
=S
o
5
|
< ]
fftshifted
y v
2 .
c
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Inverse FFTs of Impulses

"negative diagonal” is
the wavefront direction.

Lerz] 1 c-lcrzl-1

Lr2]

> le
»|
|

R-LR2]-1

fftshifted

L2 v

le »l

lowest-possible-frequency negative diagonal sinusoid

i DLR
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Inverse FFTs of Impulses

"positive diagonal” is
the wavefront direction.

Lerz] 1 c-lcrzl-1
< » |l »l
S i ) )
x x
s
£,
v ‘
= Ol Fow o R
0
-
g
[}
g -
fftshifted
Y ¥
c
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Frequencies and Wavelengths in the Fourier Plane

512 columns

v

A

Lerz) c-lLerl-1

=
= v = # of complete

cycles in the 3| A, =R/v n

vertical direction =

e 4 (@]

— Origin Row R ol

' q.

(e 0]

™
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Frequencies and Wavelengths in the Fourier Plane

512 columns
L) 1 c-Leiz]-1 < >
< » e »
ol Al il
Yy x A
o
o
A=Clu g
o
L :‘E Orain R it | | R -
'y q.
2 ©
T ™
S u = # of complete cycles
E.' in the horizontal direction
o
\ 4

frequencies: (u,v) = (3,0); wavelength: A ,=170%

i DLR
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Frequencies and Wavelengths in the Fourier Plane

512 columns

v

c-l¢i2]-1

A

Lerz)

< »
v 3 T 1
=
= v = # of complete
cycles in the A =R/v »
vertical direction =
A o
— Origin Row R ol
'y q.
(0]
o™
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Frequencies and Wavelengths in the Fourier Plane

512 columns

v

384 rows

frequencies: (u,v) = (3,3); wavelengths: (A, A,) = (170%5,128)

i DLR
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Frequencies and Wavelengths in the Fourier Plane

512 columns

v

384 rows

frequencies: (u,v) = (4,3); wavelengths: (A, A,) = (128,128)

i DLR
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Inverse FFTs of Impulses

“horizontal” is the
wavefront direction.

Lcz) 1 c-lci2]-1
< le a»l
) PR =]
'y x
=
o Q
] 5
R
—
Eél
A 4
- :“:l Oriain Row. o R
T
=1
o
[~
pa— )
)
= 1
fftshifted
y v 0 I A
2 .
c

highest-possible-frequency horizontal sinusoid (C is even)
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Inverse FFTs of Impulses

“vertical" is the
wavefront direction.

Lerzl 1 c-lc2]-1

Lr2]

5l le
P ¢

R-LR2)-1

fftshifted

¥ 5 2
>l
< 2l

ARSI SRR

highest-possible-frequency vertical sinusoid (R is even)
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Inverse FFTs of Impulses

a checker-board
pattern.
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Example: build the image of an A"
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FT of an Image (Spectrum + Phase)
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Examples

Figure 5.42: Four images (above) and their power spectrums (below). The power spectrum
of the brick texture shows energy in many sinusoids of many frequencies, but the dominant
direction is perpendicular to the 6 dark seams running about 45 degrees with the X-axis.
There is noticable energy at 0 degrees with the X axis, due to the several short vertical
seams. The power spectrum of the building shows high frequency energy in waves along
the X-direction and the Y-direction. The third image is an aerial image of an orchard:
the power spectrum shows the rows and columns of the orchard and also the “diagnonal
rows” . The far right image, taken from a phone book, shows high frequency power at about
607 with the X-axis, which represents the texture in the lines of text. Energy is spread
more broadly in the perpendicular direction also in order to model the characters and their
i DLR
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Examples

Example building patterns in a
satellite image and their
Fourier spectrum.

g o
by Selim Aksoy
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to its spectrum!
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Filtering in the Frequency Domain

i DLR
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Blurring: Averaging / Lowpass Filtering

Blurring results from:

— Pixel averaging in the spatial domain:
— Each pixel in the output is a weighted average of its neighbors.

— Is a convolution whose weight matrix sums to 1.

—Lowpass filtering in the frequency domain:
— High frequencies are diminished or eliminated

— Individual frequency components are multiphied-by a nonincreasing function of o such
as 1w = 1A(uz+v2).

I The values of the output image are all non-negative.
i DLR
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Sharpening: Differencing / Highpass Filtering
Sharpening results from adding to the image, a copy of itself that has been:

— Pixel-differenced in the spatial domain:

— Each pixel in the output is a difference between itself and a weighted average of its
neighbors.

— Is a convolution whose weight matrix sums to 0.

— Highpass filtered in the frequency domain:

— High frequencies are enhanced or amplified.

— Individual frequency components are multiplied by an increasing function of o such as aw
= oV(u2+v2), where o is a constant.

I The values of the output image positive & negative.
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image below:

Power Spectrum and Phase of an Image
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ldeal Lowpass Filter |§'§“ﬁii‘:i;§t§?‘?é2

I Original Image I Power Spectrum I Ideal LPF in FD
i DLR /
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. Image size: 512xb512
Ideal Lowpass Filter I FD fgil’rer radius: 16

I Filtered Image I Filtered Power Spectrum I Original Image
i DLR
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Ideal Lowpass Filter

Hu.v)
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abe
FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross section.

a b FHGURE 4.12 (a) Original image. (b)—(f) Results of ideal lowpass filtering with cutoff
¢ d frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b). The
§8.5

3
¢ [ power removed by these filters was 8,5.4,3.6.2, and 0.5% of the total. respectively.
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Ideal Highpass Filter Image size: 512x512
FD notch radius: 16

I Original Image I Power Spectrum I Ideal HPF in FD
i DLR
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“signed image; O
mapped to 128
. . Image size: 512x512
Ideal nghpass Filter I FD r?o’rch radius: 16

I Filtered Image™ I Filtered Power Spectrum I Original Image
i DLR
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Ideal Highpass Filter

y Wy

abc

FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with Dy = 15, 30, and 80,
respectively. Problems with ringing are quite evident in (a) and (b).

g B8H Spring 2011
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Ideal Filters Do Not Produce Ideal Results

TIdeal LPF

Blurring the image above ..distorts the results with
w/ an ideal lowpass filter... ringing or ghosting.
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Optimal Filter: the Gaussian

x 10° 1 D Gaussian with mean 256 and standard deviation 64.
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One-Dimensional Gaussian

g(x) = —Le ~(x-p)? /25
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Two-Dimensional Gaussian

R =512, C =512

I u=257,0=64

i DLR
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If nand o are
different forr &c...

g(r.c)=g(r)g(c)
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Optimal Filter: The Gaussian

Gaussian LPF

With a gaussian lowpass .. is blurred without ringing
filter, the image above ... or ghosting.
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. . Image size: 512x512
Gaussian Lowpass Filter I Ery i sigma = 8

I Original Image I Power Spectrum I Gaussian LPF in FD
i DLR
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. . Image size: 512x512
Gaussian Lowpass Filter I sd ?i,m sigma = 8

I Filtered Image I Filtered Power Spectrum I Original Image
i DLR
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Gaussian Lowpass Filter

0.667

Diu.v)

abc

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D,,.
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FIGURE 4.18 (a) Original image. (b)—(I) Results of Glering with Gaussian lowpass
filters with culofl frequencies sel at radii values of 5. 15, 30, 8, and 230, as shown in
Fig 4.11(b). Compare with Figs. 4.12 and 4.15.
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Gaussian Highpass Filter "

I Original Image I Fourier Spectrum I Gaussian HPF in FD
i DLR




Institut fur Methodik der Fernerkundung

“signed image; O
mapped to 128

. . . Image size: 512x512
Gaussian Highpass Filter I FD S sigma = 8

I Filtered Image™ I Filtered Power Spectrum I Original Image
i DLR




Gaussian Highpass Filter

Ah e

FIGURE 4.26 Results of highpass filtering the image ol Fig. 4.11(a) using a GHPF ol order 2 with D, = 15,

30, and 80, respectively. Compare with Figs. 4.24 and 4.25.
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“signed image; O
mapped to 128

Comparison of Ideal and Gaussian Filters
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“signed image; O
mapped to 128

Comparison of Ideal and Gaussian Filters

I Gaussian LPF I Original Image I Gaussian HPF”
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“signed image; O
mapped to 128

Another Highpass Filter

original image filter power spectrum filtered image™

i DLR
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Original Image + Horiz. + Vert. Edges
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Original Image + Horiz. + Vert. Edges
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Gaussian Bandpass Filter Image size: 512x512
sigma = 2 - sigma = 8

Gaussian Bandpass Filter sigmas = 28
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. . Image size: 512x512
Gaussian Bandpass Filter I Sigm% - 2 - sigma < 8

I Original Image I Power Spectrum I Gaussian BPF in FD
i DLR
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“signed image; O

mapped to 128
. . Image size: 512x512
Gaussian Bandpass Filter I Sigm% - 2 - sigma < 8

I Filtered Image” I Filtered Power Spectrum I Original Image
i DLR
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signed image; O
I mapped to 128
. . Image size: 512x512
Gaussian Bandpass Filter I Sigm% 210 sigma=8
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“signed image; O
mapped to 128

Comparison of Ideal and Gaussian Filters
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Removal of Horizontal Stripes

Original image | Log power spectrum Filter H
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Removal of Horizontal Stripes

Original image | Filtered Image Inverse FT of H
[*Hreject

i DLR




Institut fur Methodik der Fernerkundung

Bandreject Filter

Bandreject filter

Original image Log power spectrum

\
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FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject

filters.
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Bandreject Filter

Original image Bandreject filter
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Summary: Global & Local Techniques
Histogram Stretching + Sharpening

Original RGB image Histogram stretch Image Sharpening

Warning - sharpening increases noise: do not sharpen a noisy image!
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Effects of Noise on Enhancement of High
Frequencies

DLR
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Effects of Noise on Enhancement of High Frequencies

i DLR
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Effects of Noise on Enhancement of High
Frequencies

DLR
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Effects of Noise on Enhancement of High
Frequencies
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Effects of Noise on Enhancement of High
Frequencies

DLR
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Effects of Noise on Enhancement of High
Frequencies

i DLR
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Effects of Noise on Enhancement of High
Frequencies

DLR
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Some Interesting Applications

(Optional, we will probably stop here ©)

i DLR
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CMYK color model

— Cyan-Magenta-Yellow is the standard color
model for paper printing

— How are the colors superimposed?

.
M|=|1]-|G
_Y_ . _B_

i DLR




Institut fur Methodik der Fernerkundung

Processing Scanned Press-Printed Images
4-color printing:

1. A photograph or other color image is separated into four
Intensity band images: cyan, magenta, yellow, and black.

2. Each of these i1s multiplied by a halftone screen — a dot mask
with a unique orientation.

3. Each of the resulting four images shows a pattern of dots
whose individual sizes indicate the amount of ink to be
applied at each point.

4. The four images are printed, one atop the other, in the
corresponding color.
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Halftone Screen
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Halftone Screens
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Each band has 2 perpendicular
sinusoids + an impulse in the origin...

CMYK Standard Halftone Screens

Power Spectra

i DLR
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.. which creates rectangular
grids at 4 different angles.

CMYK Standard Halftone Screens
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When the 4 are summed, the
result is a "rosette” image.

CMYK Standard Halftone Screens
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To print an image, it is
separated into 4 color bands ...

Example: Color Separation [ Halftoning

Original

That is, an intensity image is
created for each of the four
color bands.

i DLR
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.. each of which is multiplied by
a corresponding screen.

Color Separation / Halftoning

Each intensity image is multiplied
by a corresponding screen, then

TN
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e
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"

each screened image is printed in
its own color on the same page.

i DLR
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To print an image, it is
separated into 4 color bands ...

Example: Color Separation / Halftoning
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.. each of which is multiplied by
a corresponding screen ...

Example: Color Separation / Halftoning

Here the screens tinted in
their corresponding colors.

i DLR




Institut fur Methodik der Fernerkundung

..to get dot patterns for printing.
The 4 are printed over each other
to get the final resulft.

Example: Color Separation / Halftoning

DLR
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Halftone Dots

Image scanned (600 dpi) Detail: Circular patterns, the rosettes,
from a magazine are the result of the halftone dots.

i DLR
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Filtering Out Halftone Dot Distortion

log power spectrum
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Filtering Out Halftone Dot Distortion Each pair of peaks
corresponds to a

sinusoidal sub-pattern
in the HTD pattern.

log power spectrum

i DLR
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Blurring with a Gaussian (o = 1)

blurred image o=1 log power spectrum o=1

i DLR
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Blurring with a Gaussian (o = 2)

log power spectrum o=2
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Blurring with a Gaussian (o = 4)

log power spectrum o=4

i DLR
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Blurring with a Gaussian (o = 8)

log power spectrum 0=8
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Blurring with a Gaussian (o = 1)

original difference blurred o =1

middle gray = o, normalized
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Blurring with a Gaussian (o = 2)

blurred o =2 difference

middle gray = o, normalized

i DLR
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Blurring with a Gaussian (o = 4)

difference

middle gray = o, normalized

i DLR
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Blurring with a Gaussian (o = 8)

blurred 0 =8 difference

middle gray = o, normalized

i DLR
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Problem with Blurring to Reduce HTD Distortion

It blurs everything.

Better to remove the HTD frequency components selectively:

D

-

B o9 =l v O o Lo N [

=]

Read in the image.

Compute the log power spectrum of the image.

Find the locations of the HTD spectrum peaks.

Mark these on a mask.

Enlarge the points to regions that cover most of the energy.
Blur the mask for used as a notch filter.

Multiply the Fourier transform of the image by the mask.
Take the inverse Fourier transform of the result.
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Remove HTD Distortion Selectively | - {ieush roreh

1. 2. 3.

HTDlocs = 499 297
545 320
571 358
569 400
542 438
493 458
439 457
393 434
367 396
369 354
396 316
445 296

1. Read inimage; 2. Compute power spectrum; 3. Locate HTD frequency components; 4. Mark locs on a mask;
5. Enlarge points to regions; 6. Blur the mask; 7. Multiply FT of image by mask; 8. Take inverse FT of result;

i DLR
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Notch Filtering of Halftone Dot Distortion

log power spectrum
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Notch Filtering

log power spectrum

i DLR
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Notch Filtering

log power spectrum

i DLR
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Notch Filtering

log power spectrum

i DLR
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Notch Filter Difference Images

:
O,
z :"" L
original difference

middle gray = o, normalized
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Notch Filter Difference Images

frequency masked 2 difference

middle gray = o, normalized

e AR e
DLR N L )




Institut fur Methodik der Fernerkundung

Notch Filter Difference Images

original difference frequency masked 3

middle gray = o, normalized

i DLR
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Notch Filter Difference Images

frequency masked 1 difference

middle gray = o, normalized
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Notch Filter Difference Images

frequency masked 2 difference frequency masked 3

i DLR

middle gray = o, normalized
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Noise Enhancement: Problem with Sharpening

—The spectra of most natural images fall-off toward the high frequencies.
—1ID noise has a flat spectrum.

—Therefore, at some relatively high frequency (HF) the energy in the noise
is greater than that in the uncorrupted image.

—Sharpening multiplies the FT of the image by u and v (or by linear
combinations of them) which, at HF, increases the noise more than the
uncorrupted image.

i DLR
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Effects of Noise on Images

noise field
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Effects of Noise on Images

What is this peak?

/
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image center row log power spectrum noise field center row log power spectrum
ﬁ_ Recall: Fourier transform of an impulse at (0,0) is a constant.
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Effects of Noise on Images
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Effects of Noise on Images (Power Spectra)

original image noise image
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Effects of Noise on Images (Power Spectra)

original image noisy image

i DLR
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Effects of Noise on Images (Power Spectra)

original image blue indicates noise > image
DLR R
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Effects of Noise on Images (Power Spectra)

noise image red indicates image > noise
DLR £ _,‘:'
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Effects of Noise on Images (Power Spectra)

noisy image Image & noise
DLR 1 ,,.‘r -




DLR.de « Chart1 > Lecture > Author « Document > Date

Contextual Analysis of Image Elements

Daniele Cerra, German Aerospace Center (DLR)
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Summary

- Image Acquisition
- Image enhancement
- Sampling & Aliasing

« Image Features

- Spectral Features

«  We will see more about this in the introduction to
hyperspectral remote sensing

« Features based on relations between pixels
- Image Clustering
- Image Classification

- ANGCG




Which features can we extract from an image?

Pixel Value for each band Texture Parameters




Context Analysis: Edge Extraction

# Deutsches Zentrum
DLR fiir Luft- und Raumfahrt e\

in der Helmholtz-Gemeinschaft
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Sobel operator

—1 -2 —1 —1
0 0 0 -2
1 2 1 —1

Sobel Operator
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Marr-Hildrith Edge detector

Original Image I

Laplacian of
Gaussian Thresholded I

2 -1
3 -114 -1
2 -1

< Edges? I

Sobel Operator I |
Gradient I

Output
(zero crossings of thresh.)
E PRy v e S
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Canny Edge detector

Gradient I Thresholded I




Canny edge detector

Original image

- ANGCG




Canny edge detector

How to turn
these thick
regions of the
gradient into
curves?




Canny edge detector

- Non-maxima suppression:
«  Check if pixel is local maximum along gradient direction.
-  Select single max across width of the edge.
- Requires checking interpolated pixels p and r.
- This operation can be used with any edge operator when thin boundaries are

wanted.
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Canny edge detector

courtesy of G. Loy

Non-maxima

Original image Gradient magnitude suppressed

NGOy
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Canny edge detector

Problem: pixels
along this edge
did not "survive"
the thresholding

Original image

- ANGCE




Canny edge detector

 Hysteresis thresholding:

Use a high threshold Th to start edge curves, and a low threshold
Tl to continue them.

- Select the pixels with value v > Th

 Then collect the pixels with value v > Tl that are
connected to selected pixels




Canny Edge Detector: Final Result

gap is gone

2 Strong +
connected
weak edges

Original
image

Strong | Weak
Edges Edges.
(gradient > (gradient >

Thigh)

i DLR



Canny Edge detector

Gradient I Thresholded I

Original Image I

Non-maxima
Suppression

# — ,4 HYSTCF'CSiS T
o (G5O Resur Thresholding R
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- Canny algorithm is very sensitive to its parameters, which
need to be adjusted for different application domains.

«  Smoothing parameter o
« Threshold for strong edges
« Threshold for weak edges

i i '&h lr? My Ilu

[}
|r—"

W -Lj:rﬂ R
1 Ll .I'I? -J I | -

original Ccmny with 0 =

iccCaNy




Canny Edge Detector in Remote Sensing
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Texture

- An important approach to image description is to quantify
Its texture content.

 Texture gives us information about the spatial arrangement
of the colors or intensities in an image.

block pattern checkerboard striped pattern
Figure 7.2: Three different textures with the same distribution of black and white.
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Texture Analysis = Local Analysis of Pixels Distribution




Statistical moments

- The easiest thing we can do is
to check the statistics of the
histogram of a small window
In the Image

« Mean

- Standard deviation
« Variance -2

« Kurtosis

« Skewness...

« This gives us hints on the
strength of the texture only

« How to characterize it
better?
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Gabor Texture Features

Hn
= “
E

Sample filter bank

- ANGCG




Texture Classification

IKONOS image g :;?:Ztiljrr;mmau Euldings : E::ir;u;:i:iu;::gsaomnmag
acquired in the
Bam Iran aftermath of the Classific.a‘rion obtained on
suffered an earthquake the basis of the texture

earthquake in parameters only

2003




Change Detection based on Texture

©European Space Imaging / DigitalGlobe

Example: Palmyra — Temple of Bel: destroyed by IS oz



DLR.de < Chart 28> Lecture > Author ¢ Document > Date

Palmyra: Difference of Gabor Features (based on texture values)




(ad)=(0.1) (ad)=(02) (ja’d) =02

A b

Grayscale image

Grayscale image

(a.d)=(03) (ad)=(04)
Co-occqrrcncp matrices
(a,d) = (orientation.distance)

(a,d)=(0,3) (a,d)=(0.4)
Co-occurrence matrices
(a.d) = (orientation,distance)
(b) Co-occurrence matrices for an image
with a large amount of local spatial varia-

tions.

(a) Co-occurrence matrices for an image with
a small amount of local spatial variations.
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Example building groups (first column), Fourier spectrum of these images (second column) and the corresponding
ring- and wedge-based features (third and fourth columns). X-axes represent the rings in the third column and the
wedges in the fourth column plots. The peaks in the features correspond to the periodicity and directionality of the
buildings, whereas no dominant peaks can be found when there is no regular building pattern.
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. Yegataian O Distreyad Buildings & Opan Araas

IKONOS image

[] roads & very Smal Bulldings B intact Buildings
acquired in the
ey T aftermath of the Classific.a‘rion obtained on
suffered an earthquake the basis of the texture

parameters only

earthquake in
2003
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Satellite images sorted according to the amount of land development (left). Properties of
the agrangements of line segments can be used to model the organization in an area (right).
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Multiple View
Geometry

I tomnuler vision

Object recognition: Find correspondences between feature points
In training and test images.
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Two images from NASA Mars Rover: very hard matching case
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Two images from NASA Mars Rover: matching using local features
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Remote ensing: Building Detection

?.
-
3 4

"W

s

Model Building Database

{a) Bright building (b) Dark building

Each feature is matched with the most similar features

Detected ,Interesting Points" Detected buildings
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What do you do when you choose Ground Control Points (GCP)?

bl Measuring tie points R09_S87-R09_586 o Iﬁll)_q[
Stereopairs Points  Orientation Options

A.S. Kiseleva

4544.000 £373.000 1082.343 5625.551

-22.800 16.825 -94.804 0117

—f——— 12m| 8| | —F——— 12 M| 5]




A
NN

|_ocal features

What makes a good feature?

- We want uniqueness.
Look for image regions that are unusual.
Lead to unambiguous matches in other images.

« How to define “unusual”?

structure
not useful for matching

structure
edge, can be localized in 1D, not so
good for matching

structure
corner, can be localized in 2D,
good for matching
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Which points make good features?

Good candidates are points with strong variations in all directions

==
=00 W

ey

L

fc? Forsyth &' I.>-c.>nce
Detail of image with gradient covar-
iance ellipses for 3 x 3 windows

Full image
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Sample Output of a Corner Detector
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Scale Invariant Point of Interest Detection

« The problem: “corners” are dependent on the scale of the
Image

- How do we choose corresponding circles independently in
each image?

# Deutsches Zentrum
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Scale
(first
octave)

Difference of
Gaussian (DOG)
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Image gradients

Keypoint descriptor
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Matching exam
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Deutsches Zentrum Final result
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f : ' e k \"

'AIBO® Entertainment Robot

Official U.S. Resources and Online Destinations

Sony Aibo

« SIFT usage:

- Recognize
charging
station

« Communicate
with visual

cards
« Teach object WLAN Manager CO
o Bathtery & AC Adapter
recognition | ‘ :
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Photo tourism: exploring photo collections

N

- Joint work by University of Washington and Microsoft
Research

http://phototour.cs.washington.edu/
http://research.microsoft.com/IVM/PhotoTours/

 Photosynth Technology Preview at Microsoft Live Labs
http://labs.live.com/photosynth/
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http://phototour.cs.washington.edu/
http://research.microsoft.com/IVM/PhotoTours/
http://labs.live.com/photosynth/

Photo tourism: exploring photo collections

 Detect features using SIFT.
¢ Deutsches Lentrum iy PV 838X B & Uk . 4.V o " g
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Photo tourism: exploring photo collections

 Detect features using SIFT.
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. AN
Photo tourlsm explormg photo collectlons

 Detect features using SIFT.

076 4 ’ ; “ r ‘,,.,—1“ YL
? I ’ A A _ ] i ;. e _. )
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‘ 0. 4 e N
Photo tourism: exploring photo collections

« Match features between each pair of images.
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W, -
Photo tourlsm explormg photo collectlons

 Link up pairwise matches to form connected components
of matches across several images.

Image 1 Image 2 Image 4
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Summary

- Image Acquisition

- Image enhancement
- Sampling & Aliasing
« |Image Features

- Image Clustering

- Image Classification
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What is Clustering?

» Organizing data into classes such that there is

* high intra-class similarity
* low inter-class similarity

 Finding the class labels and the number of classes directly
from the data (in contrast to classification).

« More informally, finding natural groupings among objects.

« K-means: a very popular clustering algorithm
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DLR fiir Luft- und Raumfahrt eV Folie 56
in der Helmholtz-Gemeinschaft



Algorithm k-means
1. Decide on a value for k.

2. Initialize the k cluster centers (usually randomly).

3. Decide the class memberships of the objects by
assigning them to the nearest cluster center.

4. Re-estimate the k cluster centers, by assuming the
memberships found above are correct.

5. If none of the objects changed membership in the
last iteration, exit. Otherwise goto 3.
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K-means Clustering: Step 1

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clusterig: Stp 2

Algorithm: k-means, Distance Metric: Euclidean Distance
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Algorithm: k-means, Distance Metric: Euclidean Distance

5

K-means Clusterig: Stp 3
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K-means Clusteig: Stp 4

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clusteig: Stp 5

Algorithm: k-means, Distance Metric: Euclidean Distance
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A (very short) Introduction to
Classification & Clustering
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What is Clustering?

» Organizing data into classes such that there is

* high intra-class similarity
* low inter-class similarity

 Finding the class labels and the number of classes directly
from the data (in contrast to classification).

« More informally, finding natural groupings among objects.

« K-means: a very popular clustering algorithm
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Algorithm k-means
1. Decide on a value for k.

2. Initialize the k cluster centers (usually randomly).

3. Decide the class memberships of the objects by
assigning them to the nearest cluster center.

4. Re-estimate the k cluster centers, by assuming the
memberships found above are correct.

5. If none of the objects changed membership in the
last iteration, exit. Otherwise goto 3.
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Algorithm: k-means, Distance Metric: Euclidean Distance

K-means Clustering: Step 1 '
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Algorithm: k-means, Distance Metric: Euclidean Distance

K-means Cluterin: Step 2 -
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Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Cluterin: Step 3 a
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Algorithm: k-means, Distance Metric: Euclidean Distance

K-means Clterin: Step 4
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K-means Clterin: Step 5 :

Algorithm: k-means, Distance Metric: Euclidean Distance
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From Clustering to Image Segmentation

- If we divide an image into homogeneous clusters we obtain
a segmentation of the image

.Google
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Image Segmentation

Partitioning of an image in
homogeneous regions (segments)
-  According to inter-pixel similarity

Pre-processing step for machine
recognition

- Simplification of the image in something
simpler to analyze

«  Decisions may then be taken on each
segment rather than on each pixel
Problems

- Which characteristics make two pixels
similar?

- According to which criteria should we join
the pixels into segments?

# Deutsches Zentrum
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Results of image segmentation with
varying number of segments
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The Classification Problem
(informal definition)

Given a collection of annotated data. In
this case 5 instances Katydids of and five
of Grasshoppers, decide what type of
Insect the unlabeled example Is.

N

’\
‘,{‘“
S

Katydid or Grasshopper?
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http://buzz.ifas.ufl.edu/258dj.jpg
http://buzz.ifas.ufl.edu/258dj.jpg
http://buzz.ifas.ufl.edu/091dmj.jpg
http://buzz.ifas.ufl.edu/091dmj.jpg

“;.\ \
t

For any domain of interest, we can measure features

Color {Green, Brown, Gray, Other} Has Wings?
Abdomen Thorax=
Length Length Antennae
. Length

A .. -l d-w -agé\ Mandible
— / iy Size

l

/_,

Spiracle
- Leg Length
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In the case of images, which features can we use?

Pixel Value for each band Texture Parameters
{RGB, NIR, SWIR, TIR, ...}

# Deutsches Zentrum
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We can store features

In a database.

The classification

problem for images can
now be expressed as:

 Given a training database

(My Collection), predict

the class label of a
previously unseen pixel

previously unseen pixel =

in der Helmholtz-Gemeinschaft

Pixel ID Band 1 Band 2 Pixel Class
1 27 95 Water
2 80 91 Vegetation
3 9 47 Water
4 11 31 Water
5 54 85 Vegetation
6 29 19 Water
7 61 66 Vegetation
8 5 10 Water
9 83 66 Vegetation
10 81 47 Vegetation
My Collection
11 51 70 2222222




previously unseen pixel = 11

51 70 999999

100
90
80
70 4
60
0 o S
40
30
20 O
10| @

N
N

N N

Band 2

10 20 30 40 50 60 70 80 90100

Band 1
# Deutsches Zentrum
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* We can “project” the
previously unseen pixel into
the same space as the
database.

 \We have now abstracted
away the details of our
particular problem. It will
be much easier to talk about
points In space.

Vegetation
® \\ater

Folie 16
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o

R DD W s~ 01 OO N 00 ©

R.A. Fisher
1890-1962

If previously unseen pixel above the line
then

class is Vegetation
else

class is Water

Vegetation

4,1 2345678 910 ©Water

Deutsches Zentrum
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If the nearest instance to the previously
unseen pixel is Vegetation

class is Vegetation
else

class is Water
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Band 2
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Ross Quinlan
Band 1> 7.17
/ N
¢ i
Band 2 > 6.0? Vege;cation
nlo y(|95
Water Vegetation
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The Idea Behind the Maximum Likelihood Classifier

With a lot of data, we can build a histogram. Let us just build one for “Band 1” for now...

10
9
8
7
6

_ 5

2 4

(qv]

@ 3
2
1

Deutsches Zentrum
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: ® \Water
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We can leave the
histograms as they are,
or we can summarize
them with two normal
(Gaussian)
distributions.

et us use two normal
distributions for ease
of visualization in the
following slides...
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 We want to classify a pixel. Its brightness value in band 1 is equal to 3. How
can we classify it?

» We can just ask ourselves, give the distributions of brightness values we have
seen, If it iIs more probable that our pixel belongs to Water or Vegetation.
 There is a formal way to discuss the most probable classification. ..

I p(c-I | d) = probability of class C'I’ given that we have observed d

I

3
Value of band 1 is 3
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p(c;| d) = probabilit of class c,, gienthat Wé have obser

ved d ﬁ

P(Water | 3) =10/ (10 + 2) = 0.833
P(Vegetation|3)=2/(10+2) =0.166

10

3

Value of band 1 is 3
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p(c;| d) = probabilit of class c,, gienthat we have obser\/éd aﬁ

P(Water | 7)=3/(3+9) = 0.250
P(Vegetation| 7)=9/ (3 + 9) =0.750

~ N

Value of band 1 i1s 7
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p(c;| d) = probabilit of class c,, gienthat Wé have observéd a@

P(Water |5)=6/ (6 + 6) = 0.500
P(Vegetation|5) =6/(6+6) =0.500

66
Value of band 1i1s 5
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Training Patterns
Classified into Class

Independent Patterns

Classified into Class

No. of %o No. of Yo
Class Samples 1 2 3 Correct | Class Samples 1 2 3 Correct
1 484 482 2 0 99.6 1 483 478 3 2 98.9
2 933 0 885 48 94.9 2 932 0 880 52 94.4
3 483 0 19 464 96.1 3 96.7

Sample Application

# Deutsches Zentrum
DLR fiir Luft- und Raumfahrt eV
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FIGURE 12.13 Bayes classification of multispectral data. (a)—-(d) Images in the visible blue, visible green,
visible red, and near infrared wavelengths. (¢) Mask showing sample regions of water (1), urban
development (2), and vegetation (3). (f) Results of classification; the black dots denote points classified
incorrectly. The other (white) points were classified correctly. (g) All image pixels classified as water (in
white). (h) All image pixels classified as urban development (in white). (i) All image pixels classified as
vegetations (in white).



Support Vector Machine (SVM)

 Non-probabilistic binary linear classifier

- Finds an optimal hyperplane to separate the instances of the
two classes

- Extends to patterns that are not linearly separable by
mapping the data onto a higher-dimensionality space

« Resistent to outliers

- Handles very well high-dimensionality data such as
hyperspectral images

 One of the most popular classification algorithms since the
"90s
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SVM et al. — Story of a Success

TVM
GVM Wang, Vutetic,
BVM Mansoory. 2010
Tsang et al. 2009 AVM VM
2007 Wang, Wu, Hastie, Zhu,
2009 2005

RVM

Tipping.

2001 [ SVM J [ BVM J
F .

QVM Vapnik et al. riedman et al IVM
Wang, Wu, 1992 1998 Lawrence
2007 DVM 2003
[ Awad et al. }
2004 CVM EVM
Tsang et al. Chen et al.
2007 2008
VVM LVM
Minka et al. PVM Singer
2009 Zhang et al. 2000
2007 OVM
FVM [ Yang. J
XVM Li et al. 2009
Haffner, 2006
2002
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Let’s go back to linear
classifiers...

o denotes +1

o denOTCS "1

How would you
classify this data?
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_inear Classifiers

o denotes +1

o denOTCS "1

How would you
classify this data?
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_inear Classifiers

o denotes +1

o denOTCS "1 )
. o How would you
Jd° classify this data?
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_inear Classifiers

X > f > yESt

. denotes +1 fix,w,b) = sign(w x + b)

o denOTCS "1 e

Any of these
would be fine..

..but which is
best?

7
# Deutsches Zentrum
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in der Helmholtz-Gemeinschaft

O\




_inear Classifiers

o denotes +1

o denOTCS "1

How would you
classify this data?
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Misclassified
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Classifier Margin

o denotes +1

o denOTCS "1

# Deutsches Zentrum
DLR fiir Luft- und Raumfahrt eV
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Define the margin of
a linear classifier as
the width that the
boundary could be
increased by before
hitting a datapoint.
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Maximum Margin

1. Intuitively this feels safest.

2. If we made a small error in locating
* denotes +1 the boundary, we have a smaller
chance of having misclassifications.

* | 3. Implies that only support vectors are
of o * important; other training examples
TN are ignorable.

° denotes -1

Support Vectors 7+ 4. Empirically it works very very well.
are those s — —
datapoints that ° .~ Mmaximum margin.
the margin S This is the
g;:?nist B ° e simplest kind of
SVM (Called an
_—LSVM)

Linear SVM
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Non-linar SI\/lS |

- Datasets that are linearly separable with some noise work out great:

- But what are we going to do if the dataset is just too hard?
® = —— *0—0—0—0—0—

0 X
- How about... mapping data to a higher-dimensional space:
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Kernel Trick
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Non-linear SVMs: Feature spaces

- General idea: the original input space can always be mapped to some higher-
dimensional feature space where the training set is separable:
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SV-basd Classification

Lnat _’ QuickBird

Airborne Sensor Multispectral - Multispectral -
4 low resolution High resolution
I)_fautsches Zentrum .
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Disadvantages of SVM

- SVM is robust, works with any kind of data, and yields good
classification results. Why should we take care with using an
SVM classifier then?

— |t does not give in output a probability density function
— It is designed only to separate two classes
— It often needs a high number of SVs (computation time)
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Summary of Classification

We have briefly introduced 4 classification techniques:
 Simple linear classifier
 Nearest neighbor
* Decision tree
« Maximum Likelithood

There are other, more sophisticated techniques:

 Support Vector Machines (briefly described if we have time)
* Neural Networks, Genetic algorithms..

In general, there is no one best classifier for all problems. You have to
consider what you hope to achieve, and the data at hand...
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“Your x-ray showed a broken rib,
but we fixed it with Photoshop.”
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O\

A structuring element is a small image — used as a
moving window — whose support delineates pixel
neighborhoods in the image plane.

(dp]

% | ] e e | 89
2 ] |22
= 55
n 2 /., FatPlus 2x3sq ShiftOp. | ®-

It can be of any shape, size, or connectivity (more than 1 piece, have
holes). In the figure the circles mark the location of the structuring
element’s origin which can be placed anywhere relative to its support.

DLR fiir Luft- und Raumfahrt eV
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Dilation

- Dilation expands the connected sets of 1s of a binary
Image. |

« |t can be used for

« growing features

« filling holes and gaps
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Dilation
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Dilation
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Structuring element B
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Structuring
Element

Pablo Picasso, Pass with the Cape, 1960
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Erosion
- Erosion shrinks the connected sets of 1s of a binary image.

« |t can be used for

- Shrinking features

- Removing bridges, branches and small protrusions

- -
# Deutsches Zentrum
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Erosion
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Erosion
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Erosion result
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Structuring element B
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Erosion

Structuring
Element

b

£

P

Pablo Picasso, Pass with the Cape, 1960
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FIGURE 9.14

(a) A simple
binary image, with
I's represented in
white. (b) Result
of using

Eq. (9.5-1) with
the structuring
element in

Fig. 9.13(b).

Boundary(l)=1—-(1 — erosion(Z))

l
Boundary(l)=1-(162)
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Opening

A A= B = U{(B)|(B);C A}
Translates of B in A

abcd

FIGURE 9.8 (a) Structuring element B “rolling™ along the inner boundary of A (the dot
indicates the origin of B). (¢) The heavy line 1s the outer boundary of the opening.
(d) Complete opening (shaded).
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FIGURE 9.7 (a) Image of squares of size 1, 3,5, 7.9, and 15 pixels on the side. (b) Erosion of (a) with a square
structuring element of 17s, 13 pixels on the side. (¢) Dilation of (b) with the same structuring element.
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Opening
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Opening
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Structuring element B
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Opening

Structuring
Element

.

allP &° amn

Pablo Picasso, Pass with the Cape, 1960
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D 3
SN

Closing

A

abc

FIGURE 9.9 (a) Structuring element B “rolling”™ on the outer boundary of set A. (b) Heavy
line 1s the outer boundary of the closing. (¢) Complete closing (shaded).
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Closing
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Structuring element B
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Closing result
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Examples

THE
TEST

IMAGE

Original image Eroded once Eroded twice
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Examples: Remote Sensing

Original Data I

Hyperspectral I T :
Image (1 band) Gr'ou.md_r'u’rhl Classification I ?.}‘;rer'. morphological
iltering I

Soybean-min till
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Detecting runways in satellite airport imagery

http://www.mmorph.com/mxmorph/html/mmdemos/mmdairport.htmi
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Material from...

 Richard Alan Peters, university of Vanderbild (slides)
- Eamonn Keogh, university of California (slides)

- Digital Image Processing, Gonzalez & Woods (book)
« Selim Aksoy, university of Istanbul (slides)

- Daniele Cerra, DLR
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Hyperspectral Remote Sensing

Basic Principles

Daniele Cerra, German Aerospace Center (DLR)




Sensors in Remote Sensing

Institut fur Methodik der Fernerkundung

Sun Fs"assive I;assive éﬁ\ctive
\\| , ensor ensor ensor
A —
Reflected Earth’
Sunlight energy
Earth’s surface
Panchromatic Radar (SAR)
Multispectral Thermal Lidar
Hyperspectral Sonar
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Electromagnetic (EM) spectrum

THE ELECTROMAGNETIC SPECTRUM
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Human visual system

pupl
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aqueous
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humor ogeid 8

sclera

— Color perception

— Light hits the retina, which contains photosensitive cells.

— These cells convert the spectrum into a few discrete values.

T

i DLR
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Human visual system

—Two types of photosensitive cells:

— Cones
— Sensitive to colored light, but not very Receptor Spectral Sensitivity
sensitive to dim light ‘
- ROdS 18
— Sensitive to achromatic light

—We perceive color using three

sensitivity

different types of cones.
— Each one is sensitive in a different region of the
spectrum. 02
— 440 nm (BLUE) a,;ﬁ«waw,@@'»ww@awe,@iiﬁﬁf&;@&mwmwemw
_ 545 nm (GREEN)

— 580 nm (RED)
— They have different sensitivities

ey

> % \v*. é‘_l
N

'&dapted from

Gonzalez & Woods
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Human visual system

Receptor Spectral Sensitivity

1.8

1.6

14

1.2

sensitivity
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wavelength (nm)
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Can you trust your senses?

Roadway where
puppeteers perform

— Plato’s Myth of the Cave

— What we see with our eyes is our ,perception® of reality

v

'{& E AR

e R J_ﬁ}'/ '-‘.7?" =
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Can you trust your senses?

Color Perception: The Afterimage Effect

Stare at the dot in the center of the image
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Color Perception: The Afterimage Effect

1. The color "negatives” saturate the local receptors

2. When the color is removed these receptors are "mute”

3. The gray tones only have contributions from the agonist (opposite) colors
 Like the recoil after a gunshot

What is "real” is NOT only what we can see with our eyesl!

i DLR
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Hyperspectral
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Basic Principle

Scan Mirror and ﬂ
Other Optics A
P
/ Dispersing U
1 Element Imaging
Light from Optics Detectors
a single
ground- Schematic diagram of the basic
resolution elements of an imaging spec-
cell. trometer. Some sensors use

multiple detector arrays to mea-
sure hundreds of narrow
wavelength (A) bands.
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Acquisition Systems
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Acquisition Systems
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Acquisition Systems
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Radiation transmitted by the atmosphere

E‘,’\ Uowngomg Solar Radiation Upgomg I hermal Radiation

g 70-75% Transmitted 15-30% Transmitted

=

©

S

@

(s I

(V)

Infrared
o O . \\!/,
Sensor Type T <
2 ~ ]
: 28 —‘

Panchromatic |

Multispectral Shortwdve -1/2 CO2 & H20

visible & near-visible rp'li -~ ~15p absorption.
wWindow | = Re-emit 71, 10p,

Hyperspectral

Thermal (HS)
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Optical Passive Sensors in Remote Sensing

Hyperspectral
@)

2 3:5 f’,’;;”

Multispectral
@

Spectral Resolution
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Context of Optical EO Systems

i DLR
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Hyperspectral Images

-

Hasta 250 Bandas
Contiguas

=50 m 100,

A Hyperspectral image is adquired by a sensor with a high

) kaolinite
number of narrow and contiguous bands

-
-

Reflectance

S0t
Spatial resolution
10 —
o = 1t0 4 meters (airborne sensors, state of the art) g4s o 2 25
_ _ o Wavelength (um)
e =30 meters (satellites, sperimental, future missions)
Spectral range: usually 0.4 — 2.5 micrometers (um) The spectrum of a pixel
Each pixel has a characteristic spectrum is represented by its

_ o _ o values across all bands
e Inthis example it is related to a mineral (kaolinite) > R0 oW T e

[T i,
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Why are SPatla | and sy ctral
V

resolution ihversely proportional?
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In the city.. Zoom in!
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Image Correction :
In the last episode..

—Once our raw data are corrected, the image is formed and usually
undergoes other correction steps....

— Atmospheric Correction

— Geometric Correction / Orthorectification..
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Atmospheric Correction: Why is the sky blue?

— Atmospheric path radiance =

Lo =L A4 L4 L,
. Case 1 water, Chl = 1
N o % 0.06 ' ' 4 '
D SRS [L(0.4.2) |

TOA
30,000 m
10,000 m

o
o
I

300 m‘
100 m
Surface

¥

o

ho
T

total ot—sensor radiance L,
[Wm?2 s am™]

v N
A —

30 400 500 600 700 800 900
wavelength [nm]

1000
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From radiance to reflectance

Averaged measured it
brightness for a portion 2

of playa surface (red
square at right).

Relative Brightness at Sensor

0.5 1.0 1.5 2.0 25
Wavelength, (micrometers)

— If we want to know which fraction of the incoming solar energy is reflected by each
band, we have to process the radiance values (amount of light/radiation measured in
each band)

i DLR
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From radiance to reflectance

— The solar energy is not constant across all the bands! We must correct this

Solar energy arriving at the
top of the atmosphere

o
()
]

Spectral Irradiance
(kilowatts / m2 e [m)
o

0 0.5 1.0 1.5 2.0 2.5 3.0
Wavelength (micrometers, gm)
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From radiance to reflectance

— Geometric effects / shadows

lllumination differences can arise from
differing incidence angles (8) as for A
and B, or from shadowing (C).

H) W
 Figuré'by TNTmips

i DLR
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From radiance to reflectance

Radiation Transmitted by the Atmosphere

— Atmospheric effects

i DLR
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Why is the sky blue?

— Atmospheric path radiance =

Ly=L,+L+L,

Case 1 water, Chl = 1

; > 0.06
L.(0.p.2) N » S
u 8 oy 30,000 m
.S D 10,000 m
T € 0.04f
[l o ,‘_
Lr(ee(brf“,) g 1
8 'e 0.02+ ]
=
2 1% R
"9 0.00 Y e TN

30 400 500 600 700 800 900 1000
wavelength [nm]

i DLR




...and why is it red at sunset?

i DLR

sun at noon

long path . .

sun at sunset

atmosphere
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From radiance to reflectance

M GR Opters T Sowien vy M B Ogtore e Sy e

.................

— After correcting all these aspects, we can convert each pixel value into the
fraction of reflected energy for each band (from o to 1).

—To do this there are a lot of different methods

— We are not going to see them in detail
— It is not mandatory to do this (only if we need to work with physical values)

— For statistical operations we can also use the data in radiance

# S
DLR F

RIS

% WS AN Sl
‘Figure’courtesy of Exelis \
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What we cannot see in Multispectral images

2.0 =
% Multispectral Landsat(7band8)
Lé 148 =
C -  Laboratory (up to 1000 bands)
T o.5[
: N  Hyperspectral images (up to 250 bands)
TS TN FETWL .

WAVELENGTH (um)

® The main characteristic of hyperspectral sensors: their bands are contiguous
® [t is not just the number of bands they contain!
® We are going to see an application with a sensor having only 15 bands!

® The important thing is to represent a material with a continuous curve in a given
area of the spectrum

i DLR




Institut fur Methodik der Fernerkundung

Spectral Signatures

Each material can be identified through its characteristic spectral signature
— Inthis example 3 spectra of minerals adquired in laboratory
— Different members in each class (in this case different kinds of rocks):
—  Cannot always be identified by the “level” of the curves
— Inanimage these depend on illumination conditions

—  They are usually identified by small variations in frequency of the maxima and minima of the
slope (derivative) of the curve

I F e TR 2 " O T .



tral Signatures

HEMATITE 0— 1

Spectra and Spectral
Signatures

— Most of the information is in the absorbing
bands (less reflected energy)

— Spectra can be represented in an alternative
way to highlight this

— Continuum removal: the general shape of the
spectra is subtracted

— Absorbing bands become more evident

— This helps in distinguishing the classes of
interest for some applications

After Continuum Removal

- ,ﬂ
#' ,.
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Applications of Hyperspectral Images

Daniele Cerra, German Aerospace Center (DLR)




Slide by Mark Elowitz

Applications of Hyperspectral Imaging
REFLECTIVE

Red

600 nm

400 nm 500 nm 700 nm 1100 nm
llluminates materials Penetrates water for Partially penetrates water ~ Detects camouflage/netting
in shadows bathymetry for bathymetry Maps shorelines
Penetrates water for Discriminates oil on Differentiates vegetation Identifies vegetation
bathymetry surface from water Detects watercraft on ocean
Identifies vegetation Man-made object queing
< - EMISSIVE >
14000 nm

Discrimates oil from water Detection and identification of gases
Supports thermal analysis
Differentiates vegetation density and
canopy cover

Discriminates mineral and soil types

Dicriminates targets at night
Differentiates ocean temperatures
Detects smoke

Identification of gases
Thermometry

VP4 @ | e

Determines moisture content
Detects plumes

Discriminates camouflage/netting
Detects explosions

Identification of minerals —




Applications of Hyperspectral Images

Do | really need all the bands?

We can distinguish two ,families” of applications

We only may need two or three bands s 11
® Water Quality |1
B Vegetation health , #
® Gas leaks from gasoducts T e

D.45F

We consider the full spectrum of each pixel o=}

£ 0.35F

® Mineralogy
® Acid mine drainage

0.20f

0.15




Really all the bands?

L. ¥ = ‘u s

e & ‘e Several sources of noise in
: HS data

Coming from the
sensor/introduced in the
preprocessing steps

Atmospheric absorption &
interferences

Thermal noise

Electronic failures...

Hyperion Etna dataset
RGB false color composite

G

Animation of all the ﬁ

133 bands in the
dataset (0.4 - 2.5 uym)




Example: bands at the edge Ultraviolet-Visible Light

Radiation Transmitted by the Atmosphere
1 10

1

Downgoing Solar Radiation Upgoing Thermal Radiation

70-75% Transmitted 15-30% Transmitted
R

2 70

Spectral Intensity

Infrared

Percent
o oSS

42 A A

CI:J Carbon Dioxide

z N

Q

£ R A Oxygen and Ozone

L? A A Methane

o] . .

E L l l N Nitrous Oxide
Rayleigh Scattering

T T
0.2 1 10 70

AVIRIS Salinas
dataset, 380 nm

DLR




Percent

These bands are usually discarded!

Radiation Transmitted by the Atmosphere
1 10

0.2 70

L

?:-s Downgoing Solar Radiation Upgoing Thermal Radiation

pal 70-75% Transmitted 15-30% Transmitted

(7]

]

£ x

= o

c o >,

gl S

g o v

Q

wn

UV | Visible Infrared

L} T

"E BB
g Carbon Dioxide
]
(o}
= : N R A Oxygen and Ozone
@ A A Methane
Q " N
g‘ L l I R Nitrous Oxide

l Rayleigh Scattering

X T
0.2 1 10 20
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Water quality

Reflectance of water in visible fregs:
—  Reflected light
—  Bottom reflectance
Suspended matter in water has higher
reflectance
—  Mineral Sediments
—  Clorophyll
Measuring Clorophyll-a
—  Estimation of alga (seaweed) biomass
— Anomalous values indicate alga blooms

— Normally algas mono-species which fishes
don’t eat

— Not eaten algas drop on the bottom,
removing oxygen from there

—  Water quality drops down




Water quality

W Compact Airborne Spectrographic Imager (CASI)

W A hyperspectral airborne sensor which operates in the visible
and near infrared frequencies
W Fewer bands than other sensors (around 20)

®We want to investigate the quality of water reserves in this
Image acquired on the lakes of Vechstreek, Netherlands

W To measure the clorophyll in a pixel x we apply the following
equation:

®m Clor(x) = 90 (R1(x)/R2(X)) — 70

® Where R1(x) y R2(x) are the reflectances for x around 702 and
675 nm, respectively




Water Quality

mg/m3
® The water from the channel with a higher ] o-10
clorophyll concentration flows in the lake [] 10-40
® The bean-shaped lake is a drinkable water 1 40-70
reserve B 70-100
® It must be kept free from Algae blooms [ ] 100-130

Spectral Profile

Allg concentrs




What Information can we get from Band Ratios?
Examples for Landsat images

Separate water

from ice
_ Band 4
Ratio =
Band 5

Spot hidrotermally
altered rocks

Band 3
Band 2

Ratio =

Highlight Urban
Area

Band 3
Band 4

Ratio =

i DLR




Normalized Difference Vegetation Index (NDVI)
,, THE®” Band Ratio

50 55

i DLR




NDVI

Near Infrared Red Band

Band
AN /
NIR -R X :
NDVI = —A
NI R + R €02 01 00 01 02 03 NOE.)XI 05 06 07 08B 098 1.0

 Normalized Difference Vegetation Index

e Probably the most well-known and used band ratio
e -1<NDVI=<1

e Usedto:

e Detect vegetation
e Create masks to restrict the image analysis to areas of interest

e Roughly estimate green biomass

i DLR




NDVI, Landsat Example

True Color False Color NDVI
Bands 321 Bands 432 Bands 3-4
Bands 3+4




Vegetation & Spectra

REFLECTED IR

EPIDERMIS

MESOPHYLI

" == EPIDERMIS

)
;

= @ N [ QIR [ SWIR | HEALTHY LEAF

Wavelength ()

Band4 - Band3
Band4 + Band3

NDVI (Landsat) =

Chlorophyll strongly absorbs visible light (0.4 to 0.7 pm), with max absorption at 0.7 ym > Landsat band 3

Cell Structure strongly reflects Near-IR (0.7 - 1.1 ym) > Landsat band 4



NDVI & Landsat

Vegetation

149

NDVI derives
from empirical
= observationsl!

Shade/ = 4
Water =

Scatter Plot Band 3 vs. Band 4 for a
natural scene in a Landsat image

i DLR




NDVI & Vegetation‘s Health

104 HEALTHY VEGETATION

~

0.9
0.8
o7
0.6

0.5 UNHEALTHY VEGETATION

.y
f sOIL

0.4

REFLECTANCE

\

0.3

0.2

o1

0.0 I1III]'!I|II!_|.III1IIll!llll!lllllrll I!III[II_IIII!IIII

400 450 500 S50 500 650 OO 750 800 8BS0 900 950
WAVELENGTH

NDVI is related to the health
status of the vegetation

i DLR
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NDVI in Different Seasons...

average NDVI of October 2003

-1 -032 -24 & o

el 04 o4 ce o La ce ]

e32

DLR




..and In different years!

Time-series NDVI mmages between 1989-2001, Mongolia. NOAA/AVHRR

R 1 LLRI

Legend
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Hyper- vs. Multispectral: Vegetation Analysis

@




Limitations of NDVI

« NDVI can only measure the vegetation biomass only at surface and late
growth stages

» Gives 2D information rather than 3D
« Difficult to obtain from NDVI a good estimation of the biomass (volume in
cubic meters of forests/vegetation in general)

« NDVI cannot predict the amount of nitrogen concentration in the vegetation

» Key parameter to understand at early stages if the health status of crops is
worsening
* NDVI is limitated for the task of vegetation health estimation

i DLR




But in Hyperspectral Images we can do more!

images courtesy of NASA

!ill'l'l'lilll'l'rlllillll
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San Luis Valley, CO - Vegetation Distrtaition Map
Field Verification Data UL S, Geological Survey
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— Analyzing the spectra it is possible to extract information for each field/crop

— For vegetation the spectral range between red and near infrared is of special interest
(around 700 nm)

— We are looking for a steep increase in reflectivity in this area (red edge position)

— More about it later!
g .
i‘»




Spectral signhatures of vegetation: beyond NDVI

Cell
Clorophyll Water Content
Pny Structure
0.55 ;
0.45 ¢}
0.35¢
(:E - |_andsat bands
= 0.25]
Q ____ Healthy
<. Vegetation
<
0.15¢ —— Non-healthy
l Vegetation
0.05 //\
12 3 4 5 7
-0.05 :

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
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Near Infrared: the Red Edge

reflectivity (%
Y (%) e
60 I,
:llb — healthy
- — Not healthy
40 -«—
20 _
red edge
0

0.4 0.5 0.6 0.7 0.8
frecuency (um)

Transition between absorption into red and high reflectance in the near infrared portions of
the spectrum

The red edge is the spectral range in which this change is observable (flexion point in the
curve)

It depends on the amount on clorophyll in the plant and nitrogen in the soil

A displacemente to the left of the red edge characterizes ill vegetation
—  Scarce clorophyll in leaves
—  “Breathing” problems of the plant

i DLR




How to compute the red edge position?

60

50

: an
30 /

: /

) \‘L'—Ji = ‘ | |
A
600 650 700 w 750 800 850 900

Wavelength (nm)

Reflectance (%)

Pam

We need again only 4 bands among the available ones
First we compute the reflectivity in the inflection point in the spectrum x
_ (R1(x) + R2(x) ) / 2
— Where R1(x) and R2(x) are the reflectance values of x around 670 and 780 nm
Afterwards we compute the red edge frequency position by the following equation:
— (¥ 700 + 40 ((RE(x) — R3(x) ) / (R4(x) — R3(x) ))
— Where R3(x) is the reflectance of x at 700 nm and R4(x) at 740 nm

Y DLR / iﬁm g S MG
1 LA N N & ? VRS 2 ¥ R
e S R R




For which red edge values is the vegetation not in good health?

a0 20 4.0 A B0 10.0 120 14.0
ol Speciiic Mitrogen Index (g m®)

Red edge index as function of the Soil Specific Nitrogen Index for a potato crop

— Lack of nitrogen in the soil indicates respiratory problems of the plants
—  For potato fields this happens for values < 3.5
—  We have these values for red edge values < 727

- . =
/.- T R
v WA . —

e
Y s
!




Vegetation Health

Detection of potato fields

We want to see which potato fields are in good health

Let’s compute the red edge position in these fields and check where these values
are< 727




Vegetation Health

Red edge values in potato fields

— The fields in blue/green are not healthy
— Red edge position < 727 nm

— Fields in orange/yellow are very healthy

i DLR




Corn Fields

Chiara Cili et al.




Other Vegetation Parameters: Relative Leaf Water Content

5 A

Relative Leaf Water Content 1{%@4& f{
& Wedae®-

Normalized Difference Infrared Index (NDII) was used to estimate relative leaf water content. This index responds to reflectance changes
at 1649 nanometers, a small water absorption feature.

data couni 3LSRecTIR




SFSI-2/CASI Image Overview
of Cuprite, Nevada

BORSTAD
ASSOCIATES

REMOTE SENSING SERVICES

|
] Kilometers




Mineralogy: Spectral Distances

— We are interested in mountainous
areas in which potentially we can Band 3
find

— We are going to look fo alunite, a
mineral which indicates the
possible presence of gold

— We need a pixelwise classification
of the area

— We need therefore to quantify how
two spectra are similar to find
similar spectra to alunite

— Spectral Angle Mapper (SAM)

— Independent of illumination
conditions (vector length)

— Often the preferred choice to
measure the similarity between

‘#7 two spectra
DLR



Spectral Angle (SAM)

e
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Maps for specific materials

Kaolinite Map Alunite Map Buddingtonite




BORSTAD ‘W
ASSOCIATES

FEHI ITE SEMSING SERVICE

Image SFSI (SWIR Full
Spectrum Imager)

Clasification based on SAM

Minimum distances

between a pixel on the
ground and a spectrum
adquired in laboratory

We should start to look for
gold within ,,red” areas

JPL {Ps—m)‘l
Many spectral libraries are
freely available from:
— NASA (JPL)
— USGS

s
i
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Detection of Fires and Burned Areas

» Analyzing specific bands we can derive parameters in areas which suffered
damages from fire

Burned Area Index BAl BAl = (0.1+R )2+ [ D.06+NIR
i . NIR-LSWIR
MNormalized Burn Ratio NBR NBR= e e
F MNIE
Char Soll Index Csl Csl = T
Mid-Infrared Burn Index MIRBI MIREI = 10 LSWIR — 9.8 SSWIR + 2

The indices were calculated using the bands with following central wavelengths for each spectral
region: B: 499 nm; G: 552 nm; R: 699 nm; NIR: 801 nm; SSWIR: 1302 nm; LSWIR: 2332 nm.

i DLR




Case of Study: Belgium
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Case of StUdy Belg lum Birgen Haest, Lennert Schepers et al.

Dry heath (Calhma) Wet heath (Erica) Grass-encroached heath (Molinia)

unburned

o
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high burn severity




VIS Bands

Advantage over the NDVI in that it uses wavelengths that are transparent
to smoke (1.1 and 2.2 microns).

The Burn Index (BI) is used to detect burn scars due to wildfires. It has the 1

2
o
)
o
<
<
o
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Oil Spill

AVIRIS Visible
Color Composite
17 May 2010

5%

Qil Emulsion
Radatr image of the Prestige disaster in Galicia, Spain

OQil Emulsion

g

RGB, Gulf of Mexico Oil spill,
2010




Qil Spill
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Qil Spill

Map of oil-spill relative
thickness
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Ozone Mapping and Profiler Suite (OMPS)

Spectrum of Solar Radiation (Earth)

2.5 , ,
- UV | Visible | Infrared 14
E : !
C
X 2 :
_g__ i Sunlight without atmospheric absorption
~— 1.5
Q
- Ideal blackbody (5250 °C)
©
5 1 A/
© Sunlight at sea level
£ 0
0.5 Atmospheric
absorption bands
0.

750 1000 1250 1500 1750 2000 2250 2500

Wavelength (nm)

Spectral range'zgo to 1000
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OMPS: arecent result (total atmospheric ozone column) Cource NASA

Best Total Ozone Solution

2016-02-03 (day 034) Daily Gridded, Global Orbits = 22107 - 22134




Source: NASA

a recent result (aerosol index 2015)

OMPS

what can you see?

Question

1128 Mar

27 Mar

OMPS Aerosol Index, March 2014

1.2

18 2.1 2.4 2.7 3.0
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0.3

0.0
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OMPS: An interesting application for aerosol measurements
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Adapted from Mark Elowitz

Detection of Camouflage

40 .50 .60 0.7 1.3 1.6 1.9 2.2 2.5
Visible “NearIR~ Short Wave IR 2
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Support to Military Operations: the case of Osama Bin Laden

Abbottabad Compound, 2005
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Analysis of materials from hyperspectral data

i DLR

“the MH-60 helicopters made their way to Abbottabad [...]
Aboard were Navy SEALSs along with tactical signals,
intelligence collectors, and navigators using highly classified
hyperspectral imagers.”

Why?
1. Identify materials: walls, roofs, gates,..?

2. Important targets can be marked by undetectable chemical
agents. The hyperspectral sensor reveals where these
targets are (if there is no occlusion)




Environmental Application:
Acid Mine Drainage

— Acid mine drainages are waters with
high acidity and dissolved metals
content

— Result of the reaction between water
and sulphide minerals

— The sulphides are oxidated when
exposed to air and moved in large
amounts (when a mine is exploited)

— In the USA for example 10.000 km of
rivers contain metals such as
cadmium, copper and arsenic

— Major environmental contamination
between the 1940 and 1980°s

i DLR




Acid Mine Drainage: Consequences

Problems in the Corrosion of bridges bases Contamination of drinking
reproduction of aquatic water
flora and fauna

Damage to ecosystems

i DLR




Map for contamination from acid mine drainage

7 Sulphides are associated to different metals
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Images by Roger Clark



Contamination of mining sites in Leadville, Colorado: study area

Turquoise
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Images by Roger Clark
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Contamination of mining sites in Landville | .qes by roger clark
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images by NASA

M3 (Moon Mineralogy Mapper)
A hyperespectral mission on the moon

100 1000 1600 2200 2800

Ligt avelength (nm)
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Mineralogy of
the moon

— Transitions between red and
blue show variations in the
composition of the rocks

— In green zones rich of iron

— Vertical lines are artifacts
(information not present in
reality deriving from
interferences or other sources)

Map basad on Image acquired in the

Hyperespectral Data thermal infrared
DLR V/ G gl |

Loty R,



Water on the moon?

— A 10 years long debate

— In blue zones in which evidence
for the presence of water has
been found

— Available for the first spacemen
set to colonize our satellite

— To extrac a liter of water it will
be needed to process one ton of
rocks ©

DLR | 4 K,




Institut fur Methodik der Fernerkundung

Hyperspectral Imaging applications in art and archaeology

i DLR
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Spectral imaging systems

— Working scheme:

s hutter

source source

Iris and " filter wheel
[}

i DLR
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Spectral imaging systems

— Measurement at the Uffizi Gallery, Florence, Italy - Leonardo room

i DLR
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Pigment identification

— Introduction —What are paintings made of?

— A pigment is a colored material ground into a fine powder

— After the grinding it is suspended in some type of media that acts as a binder to hold the dry
pigments pigment together
— E.g. linseed oil for oil paints

— Over the eras, many different pigments were used

i DLR




Pigment identification

— E.g., the late gothic palette

Institut fur Methodik der Fernerkundung

Hieronymus Bosch’s Palette (1450-1516)

1
2
3
4
5
6
7
8
9

. Yellow Ochre

. Lead Tin Yellow
. Azurite

. Vermilion

. Carmine Lake

. Malachite

. Copper resinate
. Lead White

. Ilvory Black
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Pigment identification

— E.g., the early Italian Barocco palette

Caravaggio(1571-1610)
Palette

1.Umber

2. Yellow Ochre

3. Red ochre

4. Vermilion

5. Lead White

6. Carbon black

7. Lead tin yellow

8. Copperresinate
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Revealing hidden information

— For paintings:
— Maximum penetration of most paints can be achieved at wavelengths of around 2 um

— At wavelengths around 1-2 pm, the common drawing materials, namely iron gall ink and
sepia, become invisible

— Can use this to see underdrawings and preparatory sketches

i DLR
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Revealing hidden information

— A Byzantine icon at 640nm (a) and 100onm(b)
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Revealing hidden information

— Pablo Picasso —
“The Tragedy”

SLIDE BY OMER PAPARO

i DLR
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Revealing hidden information

— The optimal spectral window to visualize such features varies with the material used
as well as the thickness of the paint layer

By i Tl

‘Man, ~1100nm *Horse, ~1350nm

SLIDE BY OMER PAPARO
# 4 . A { L e
DLR V. ./ e
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Revealing hidden information

— A painting by Sellaio

520nm

DLR
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Revealing hidden information
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Revealing hidden information

— Studying archaeological manuscripts

— “Soft media” ancient documents (i.e. documents written on soft materials such as leather
or papyrus) are often unreadable

— The carbon-black ink is faded beyond recognition
— The carbon-black ink indistinguishable from the surface

— Not to mention the document itself is found in shreds

i DLR
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Revealing hidden information

— Studying archaeological manuscripts

— Can use IR to read previously invisible texts and scripts

— The dead sea scrolls can only be seen through IR light

IR vs Visible - Plate 412

[ - =

1 1 Note cellophane tape

650 NM IMAGE

'COLOR IMAGE |

IR spes through plastic
cellophare backing te
revesl restof letiers

980 NM IMAGE

i DLR




Institut fur Methodik der Fernerkundung

Art conservation

— Conserving Paintings
— Conservation monitoring
— Can identify continual damage to paintings, for example

— From alamp in front of the painting

— From a pipe going through the ceiling
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(b) (c)

half fat

—— full fat
0.8 -
ar
o
2 06
=
o
= 04 -
n::
02

an 500 600 700 BOO 900 1000
Wavelength (nm)

Figure 5a: RGB image of cheese samples studied; (b) Mean spectral of half and full fat cheese
samples; (c) cheese classification map (red = half fat, green = full fat) obtained using Spectral
Angle Mapper algorithm.

A. Mc Gowen
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Food

Cooked chicken (RGB) Detection of blood spots (in red)
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Food

60 min 120 min

180 min 240 min

Fig. 3. Visualization of water distribution of beef slice during dehydration (Wu et al,, 2013).
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Food

RGB & Infrared picture of an apple
(invisible defects)
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Medicine & Health

« Tissue sample analysis

« Blood analysis

« Chemical samples

 Diagnostics (e.g. skin diseases, cancer)
« Skin characterization

« Cosmetics

« Fluorescence imaging spectroscopy

 This image shows the bilirubin levels in bruised skin after 66 hours
(left) and 180 hours (right) based on analysis of HySpex data. [Lise L.
Randeberg, NTNU]




Are we alone in the universe?

Institut fur Methodik der Fernerkundung

Imaging Spectroscopy — Biosignatures on Earth-like Exoplanets

A hypothetical earth-like planet that shows water,
ozone, nitrous oxide, and methane in its spectrum
could be inhabited by plant life, bacterial life, and
intelligent life. The presence of ozone indicates
that oxygen must also exist in the atmosphere,

since ozone is created from UV radiation reacting
with oxygen.

A hypothetical planet showing methane and water
in its atmosphere suggest that the planet is a good
candidate for the evolution of life, assuming it does
not already exist. Both plant life and bacterial life
would be expected based on the biosignatures.
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...and in our solar system?

VENUS

MARS

8 10 14 20

| | | | |
#’ WAVELENGTH (MICRONS)
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Thermal Hyperspectral: Surveillance Systems
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Spectral Profile

10um 11um 12um

Source: http://www.photonik.de
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Tutorial on Principal Components
Analysis

Daniele Cerra, DLR
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Curse of Dimensionality

— Classification problem: 3 classes

Constant # examples |
s
H | ] v "
e | ™ AT Vi
o oal . i C! /’
A —

. 1

Xy A !,.#"

Ay
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Curse of Dimensionality

— Classification problem

Classifier performance

Dimensionalily {number of features)

Optimal number of features

i DLR
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Really the whole spectrum? Second part

B2

B1

—  We “change” the bands to have

e Correlation between bands independent information in the
bands
— Information redundancy - By rotating the feature space

— Then we select new “bands” with
high variance only

i DLR
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Principal Components Analysis

i DLR




A typical Landsat Image

‘Morro Bay, California, USA

-RGB Combination
-(First three bands from the Landsat TM
scene)
A#' e A JE TS
DLR /
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Morro Bay as Recorded In Different TM bands

=

Let's have a look...

— A typical Landsat image has 7 bands
— Blue
— Green
— Red
— Near Infrared
— Shortwave Infrared
— Thermal Infrared

— Shortwave Infrared2

— Do these bands look really different?

— How much redundant information is
there?

i DLR
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Principal Components Analysis

— Principal Components Analysis (PCA) is a technique used to reduce
multidimensional data sets to lower dimensions

— It describes n-dimensional data with a set of p synthetic variables, with p <n
— The new variables are uncorrelated and are called Principal Components (PC)

— This process leads to some information loss

— PCA ensures that this loss is minimal

— Also known as:
— Karhunen-Loeéve transform
— Hotelling transform

— Proper Orthogonal Decomposition (POD)

i DLR
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Principal Components Analysis

—PCA is widely used in remote sensing = dimensionality reduction aids
data exploration

— It reveals the internal structure of the data by ignoring not relevant
information

— It highlights similarities and differences within the data

— First of all, let’s see how PCA can be useful...

i DLR
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Let's compare some bands...
Morro Bay (California, USA) Landsat Scene

TM Band 1 DN Values

1
=1 140 ;
m F i
120 | n
- Sulh
* - -:."}::"‘
2100 |- oAt .
-Band 1 3 N Thig
© i St
- C *
Z 80 -
[m ) »
N C
- 60
c -
g B
- C
20 |
0 -. PR T T S TR S N 1 P T T W T A R R T
0 50 100 150 200 250

300

‘Band 2

* What do you understand from the scatter plot?

R6B Combinatin » Can we predict the value of band 2 knowing band 1?

.

i DLR
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Dimensionality reduction: why?

—How to visualize multidimensional data?

— In the previous example, out of a 7-band image only 3
bands could be visualized

— 1 Data = 71 Information? Not always.. &

— Redundancies

— In the previous plot we can predict the value of band 2 on 0

! L L L L
0 50 100 150 200 250 300

the basis of band 1
Do I really
—We would like each band to contain relevant "eega"r{gl;‘ese
information

— A decorrelation of the bands may help at analyzing the
images

i DLR




How does PCA work?

B2

B1

—PCA is a methodology for transforming a set of correlated variables into
a new set of uncorrelated variables

— Achieved through a rotation of the original dimensions/axes to new
orthogonal axes

—The rotation is performed in order to have maximum variability in each
new dimension

g - No correlation between new variables
DLR .

.
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Histograms of First and Second Principal Components

Morro Bay Landsat Scene

- -

27.00 51.30 F5.60 2090 12420 14850 17280 19710 22140 24570 Z70.00 24.00 54.30 8460 11480 44520 1TS40 20580 2 Z3G0 26540 29670 327.00

PCa PC2

Check both the histograms and the images:

Which principal component contains more information, PC1 or PC27?

i DLR
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Plot of First vs. Second Principal Component

350

[ ]

[=]

o
]

250 |
200 -
150 [

100 [

o
o
LI L

Second P. C. from 7 Band TM Image

o
T 11

0 50 100 150 200 250
First P. C. from 7 Band TM Image
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Each component has its characteristics...

PC 1
RGB Close to what we
Combination would expect for a
b/w picture of the
scene
Max Information
PC 2 PC 3
Several Bright and dark

gray for two
classes of
vegetation

features can
be spotted in
the sea
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Each component has its characteristics...

PC 4

RGB
Combination

Still some patterns in
medium gray over the
mountains

PC6

This component Different PC = different information!

appears noisy
The main keyword for PCA is...

Informational DECORRELATION!

content |

i DLR
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Two Different Band Combinations

RGB Combination ! 2 ,
(First three bands from the Landsat scene) Combination of 3 PC

The information available in the Principal Components can be better
revealed by combining them visually in a color composition
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Two Different Band Combinations

i iy
B
X

RGB Combination Three Principal Components

Which picture contains more information?

How many kinds of terrain can you spot in each one?

&= ekt

i DLR
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We can now identify many different areas...

[] -Beach Bar
. -Wave Breakers
. -Vegetationl
. -Vegetation2
-Golf Course
-Urban Area
-Shadows
*Sea

*Mountains (bright slopes)
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A more dramatic example

A second Landsat scene

RGB Combination Three Principal Components after Decorrelation
Stretch (DS)

DS= Emphatization of the differences in color
between the pixels

i DLR
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How do we get there?

—How do we express a principal component as a linear combination of the
image bands?

— A pixel p(i,j) at row i, column j is a vector of 7 bands b1...b7:

p(i.)) = [b1(1.)),b2(1.)),b3(1.)),b4(1.)),b5(1.)),b6(1.)),b7(1.))]

—Then a pixel of a PC can be expressed as:
PC1(i,j) = [a(1,1)b1(i,j), a(1,2)b2(i.j), a(1,3)b3(i,j), a(1,4)b4(i.j), a(1,5)b5(i j), a(1,6)b6(i,j), a(1,7)b7(i,j)]

‘How can we find these a(m,n) indices for each band and each PC?
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Let's see it through an Example...

' " PCAdata dat”  +

Data

That's X Y 3| . + -
better! 23 24 +

0.5 0.7 .

2.2 2.9 2 -

1.9 2.2 oot

3.1 3.0 :> (L " i

2.3 2.7 +

2 1.6 :

1 1.1

1.5 1.6

1.1 0.9 " 0 ; > 3 4

— Let's analyze this simple 2-dimensional dataset

— Easy to visualize and to work with

— The same procedure can be applied on the 7 dimensional Landsat scene, as well as on n-
dimensional data (as long as nis finite)

BF T . T TR N TR A T RN Ry s, R
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PCA Step by Step

1. Organize the data set

2. Subtract the mean

3. Compute covariance matrix

4. Find eigenvectors and eigenvalues for the covariance matrix
5. Sortthe eigenvectors

6. Select asubset of the eigenvectors as basis vectors

7. Project the values unto the new basis

i DLR
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PCA Step by Step

1. Organize the data set

2. Subtract the mean

3. Compute covariance matrix

4. Find eigenvectors and eigenvalues for the covariance matrix
5. Sortthe eigenvectors

6. Select asubset of the eigenvectors as basis vectors

7. Project the values unto the new basis

i DLR
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Organize the Dataset

— Represent the data with a m x n matrix M

— m variables (in our case x and y)

— n observations per variable 25 24

0.5 0.7

4 T PCAdatadat  + 2 ) 2 2 ) 9

: . 1.9 2.2

| C f 31 30
R |:'> M =

| 23 2.7

1.6

1 11

i 0 1 2 3 4 15 1 6

1.1 0.9

i DLR
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PCA Step by Step

1. Organize the data set

2. Subtract the mean

3. Compute covariance matrix

4. Find eigenvectors and eigenvalues for the covariance matrix
5. Sortthe eigenvectors

6. Select asubset of the eigenvectors as basis vectors

7. Project the values unto the new basis

i DLR
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Subtract the mean

—Let xand y be the means of the xand y

variables, respectively 25 24 0.69 0.49

— For every x value: X =X —X 0.5 0.7 -131 -121
— For everyyvame: y=y-y 22 2.9 0.39 0.99
1.9 2.2 0.09 0.29

—The mean of the data set is now zero 31 3.0 129  1.09

_ M = =
— Subtracting the mean makes next 2.3 2.7 049 0.79
variance and covariance _calculat_lon 5 16 019 —0.31
easier by simplifying their equations
1.1 -0.81 -0.81
—The variance and co-variance values are 15 1.6 ~031 -031
not affected by the mean value
1.1 0.9 -0.71 -1.01

f o

'l




PCA Step by Step

Institut fur Methodik der Fernerkundung

Organize the data set

Subtract the mean

Compute covariance matrix

Find eigenvectors and eigenvalues for the covariance matrix
Sort the eigenvectors

Select a subset of the eigenvectors as basis vectors

Project the values unto the new basis
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What is the covariance?

—The covariance Cov(x,y) between two variables x and y measures how
much x and y change together

—There are two extreme cases:

1. The variables are independent: knowing the value of x does not help in estimating the
value of y = Cov(x,y) =0

2. The link between the variables is so strong that we can recover the values of y only by
knowing the values of x = Cov(x,y) = Max

—Normally, this mutual dependance is somewhere in between

—High Cov(x,y) = High correlation = When x is positive/negative, so is y

— If the mean of x and y has been set to 0 as in the previous example

i DLR
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What Is a covariance matrix?

—If xand y are the mean values of x and y we can think of the covariance as
the average product of the deviations of x and y from the mean:

Cov(x,Yy) = average[(X - X)(y —X)J

- For the 2-dimensional case we can write in a matrix the covariances of any
combination of the two variables

CovM (x, y) = (Cov(x, x) Cov(x, y)j

Cov(y,x) Cov(y,y)

«  Where Cov(i,i) is the covariance of a variable with itself
« Better known as variance gi? of |

|
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Compute the covariance matrix

Cov(x,X) Cov(x,Y)

CovM (X, y) = Cov(y,x) Cov(y,y)

' " jPCAdatadat’  +

— Let’s focus on the non-diagonal elements

— Related to the mutual dependence of the variables

— This information cannot be found in the values of the 25
diagonal containing the variances vt
1+ .
— In this case we are interested in Cov(x,y) +
— Itis equal to Cov(y,x) since the covariance matrix is 0

always symmetric

— What kind of value do you think Cov(x,y) will i 0 1 2 3 y
assume for the data distribution in the figure?

i DLR
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Compute the covariance matrix

CovM (X, y) = (COV(X’ x)  Cov(x, y)j - (0.6166 O.6154j

Cov(y,x) Cov(y,y)) |0.6154 0.7166

— Cov(x,y) is positive and comparable to the
variances of xand y

T iPCAdatadat’  +

—The two variables are strongly correlated! o

—We expect them to vary together

i DLR




PCA Step by Step
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Organize the data set

Subtract the mean

Compute covariance matrix

Find eigenvectors and eigenvalues for the covariance matrix
Sort the eigenvectors

Select a subset of the eigenvectors as basis vectors

Project the values unto the new basis
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What are eigenvectors and eigenvalues?

—Avector vis an eigenvector for a matrix M if and only if

Mv = Av

Where A is the eigenvalue related to the specific
eigenvector v and is a scalar

This means that v does not change if it is multiplied by M

The multiplication by the scalar A ,,stretches® the vector, but its
direction is unaffected

Eigenvectors are also known as characteristic vectors

4 Don't panic! )
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What are eigenvectors and eigenvalues?

—

O X

Example: here v is an eigenvector for the matrix M, as the result of
the multiplication Mv does not change the direction of v.
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Spot the eigenvector!

being multiplied by Al

Which one is an

-And the two vectors ;
eigenvector?

-Given the matrix A= 2 1] x did not change after

HINTE A.nd what is the
i |2 Y[3]_[2-3+1-(-3) eigenvalue of x?
T 2f|-8] T [1-342-(-3)
Itis 1!

AV — 2 1110 . 2-04+1-1 . 1
y = 1 21| " lt-0+2-1] |2 The vector remained

unchanged
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Eigenvectors and eigenvalues

— Any n x n covariance matrix A, being symmetric, has n real eigenvectors

— It can be factorized as:
A=QAQ™"

- Q - matrix composed by the eigenvectors of A
- A -> diagonal matrix containing the eigenvalues Al... An
- The eigenvectors can be chosen to be orthogonal

- They can form a new orthogonal basis - they can be thought of a new set
of uncorrelated variables to represent the data!
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Eigenvectors and eigenvalues

—Now we can compute the eigenvectors Q and eigenvalues A for our
covariance matrix...

06166 0.6154
CovM (X, ) =

0.6154 0.7166

0.678 -0.735

-0.735 -0.677
Q(x,Y) =( j

A(X,Y) =[

0.049]

i DLR
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Let‘s project them back...

Mean adjusted data with eigenvectors overlayed

e - Eigenvectors are plotted as diagonal

“PCAdataadiist dat” | +

\\ (- 7406824601 671856262 ~—----- .~ dotted lines on the plot
15 L \\ (- BT1855252/- T40682469) % "::,'-" i
i b AN . 1 - They are perpendicular to each other
., +
05 | \\\ + . ]
N ¢ - One of the eigenvectors goes
0 ey through the middle of the points, like
AN drawing a line of best fit
05k \ 4
N
11 e \\ . - The second eigenvector gives us the
P AN distance of the points from the first
e N eigenvector
L~ N
2 | | 1 | 1 | \\
2 15 -1 0.5 1] 05 1 15 2

- It contains the second, less important
aspect of the data
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PCA Step by Step

1. Organize the data set

2. Subtract the mean

3. Compute covariance matrix

4. Find eigenvectors and eigenvalues for the covariance matrix
5. Sortthe eigenvectors

6. Select asubset of the eigenvectors as basis vectors

7. Project the values unto the new basis

i DLR
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Sort the eigenvectors

—The eigenvector with the highest eigenvalue is the
principal component of the data set

— It contains the highest amount of information on the data

—In our example, it is “in the middle” of the data

—If we sort the eigenvectors from highest to lowest
eigenvalue we have them in order of significance

2 1
0.049 )\ -2 -0.735 -0.677
= |:'> X, =
AbY) [1.284) -1 Q) (0.678 -0.735J

i DLR




PCA Step by Step

Institut fur Methodik der Fernerkundung

Organize the data set

Subtract the mean

Compute covariance matrix

Find eigenvectors and eigenvalues for the covariance matrix
Sort the eigenvectors

Select a subset of the eigenvectors as basis vectors

Project the values unto the new basis
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-Select a subset of the eigenvectors

—You can now decide to ignore less meaningful

components
— Eigenvectors with low eigenvalue TN aeEE
\\\\
\\
—Dimensionality reduction is achieved i S
— Data compression is also achieved . \
g
—Some information is lost, but as few as possible 5 1
A(X, V) 0.049 )\ -2 QX y) -0.735 |-0.677
X’ y — :> X’ y -
1.284 0.678 |-0.735
Koy et TR NS, R R

i DLR

We can choose only the first component!
e, 4 W ETE .




PCA Step by Step
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Organize the data set

Subtract the mean

Compute covariance matrix

Find eigenvectors and eigenvalues for the covariance matrix
Sort the eigenvectors

Select a subset of the eigenvectors as basis vectors

Project the values unto the new basis
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-Deriving the new data

— We can multiply our old data by our chosen set of eigenvectors

— We obtain a new representation for the data

X y
-.827970186 -.175115307
1.77758033 142857227
-.992197494 1384374989
-274210416 130417207
-1.67580142 -.209498461
-.912949103 175282444
0991094375 349824698
1.14457216 0464172582
438046137 0177646297
1.22382056 -.162675287

i DLR
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-New representation of the data using both PCs

Data transformed with 2 eigenvectors
2 T T T

" jdolbleveciingl dat” = +

1k 4

05 —

0 + n

05 -

gL 4

158 -

2 1 1 1 1 1 1
-2 -1.5 -1 -0.5 0 05 1 15 2

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors,
and a plot of the new data points.

i DLR




X

-.827970186
1.77758033
-.992197494
-.274210416
-1.67580142
-.912949103
0991094375
1.14457216
438046137
1.22382056

i DLR
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What if we use only the first PC?

Criginal data restored using only a single sigenvechor

4 T 1 T
"Nossyplusmean.dat” +
+
3
+"'+
5 L +
+
1 - +
+
0
_1 1 1 1
-1 0 1 2 3

After adding
back the mean
values
subtracted in
the first steps

é

Figure 3.5: The reconstruction from the data that was derived using only a single eigen-

vector
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How much information are we keeping?

4 ' ' ! 4 T T T

"/PCAdatadal” + " flossyplusmean.dat”  +
Ir 4 + . 3+ ! -

+ &

+ ) +
2 L ] 2 b .
1 * . r + .
0 0
_1 1 1 1
-1 . : . -1 0 1 2 3 4
1 0 1 2 3 4
-Data reconstructed on the
-Original 2D Data basis of only 1 Principal

Component
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*That‘s how we got here!

-Beach Bar
*Wave Breakers
-Vegetationl
-Vegetation2
-Golf Course
-Urban Area
-Shadows

*Sea

*Mountains (bright slopes)

EH B OODR B3 OO

i DLR
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One Last Example

AVIRIS sensor RGB, Linden, CA, 20-Aug-1992

(Hsu, et al. in Frontiers of Remote Sensing Information Processing, WSP 2003)

i DLR
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Three Principal Components

1st PC (Clouds/background)

The 1st component again resembles a b/w picture of the area
The 2" highlights an area in which we have a thermal anomaly

The 5™ shows the cause of the anomaly (fire), which was hidden in the
true color composition

i DLR
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Classification using the 3 PCs

|:| Cloud
[]s

moke
small particle

Smoke
large particle

o [ clear

| Il shadow
B ot

[ ] Fire

i DLR
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A\

PCA is NOT Always Optimal!

x> (minor direction)

Class 1

x; (principal direction})

— What happens if xI and x2 are our first two PCs in
this example?

i DLR
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Questions

PC 2

—What is the relation between the eigenvectors of the covariance matrix and
the principal components?

— At what point in the PCA process can we decide to compress the data?
—Why are the principal components orthogonal?

—How many different covariance values can you calculate for an n-dimensional
data set?

i DLR
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Conclusions

PC 2

B1

—PCA can be viewed as a projection of the observations onto orthogonal axes
contained in the space defined by the original variables

— The first new variable (PC1) contains the maximum amount of variation 2
max information

—The remaining components PC2..PCn are sorted according to their
informational content, i.e. to their variance (which is not equal to the variance
of the variables!!)

—The rotation is a linear combination of the original bands
- No information loss, original data can be recovered

—> The last components can be ignored, achieving data reduction

S 4'_.
kY
) f Bt S
] '

ekt
w4
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Spectral Unmixing

Spectrum of the endmember n™
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Spectral Unmixing

Spectral Reflectance Endmember Computed

Vector [R] Matrix [A] Abundance Vector
[X]

1 Vegetation
2 Soil

3 Limestone
4 Marls

5 Shade

g

o
[~}
I

Reflectance

S |
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Tutorial on Spectral Unmixing of Hyperspectral Data

Contents

1. Introduction to spectral unmixing

2. Estimation of the number of endmembers
3. Endmember extraction

4. Abundance estimation

5. Recent advances and research directions

6. Parallel implementations

7. Briet outline on nonlinear unmixing

8. Summary and future directions
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Introduction to spectral unmixing

e Mixed pixels are frequent in remotely sensed hyperspectral images due to insufficient
spatial resolution of the imaging spectrometer, or due to intimate mixing effects.

* The rich spectral resolution available can be used to unmix hyperspectral pixels.

| S~
2000 A\\
1000

300 600 900 1200 1500 1800 2100 2400
Wavelength (nm)

07 f\/‘\/\/w

300 600 900 1200 1500 1800 2100 2400
Wavelength (nm)

Mixed pixel 5
(soil + rocks)

Reflectance

Pure pixel
(water) —

Reflectance
N
o
o
o

=
o
o
o

5000

N
o
o
o

%4 Mixed pixel
(vegetation + soil)

Reflectance

2000
1000 /\ /\\

300 600 900 1200 1500 1800 2100 2400
Wavelength (nm)

ge 'ng,iSig)néJ,;_Pjpcesgiﬁg:' Evolution in Remote Sensing. 25-28 June 2013, Gainesville, Florida, USA.




Tutorial on Spectral Unmixing of Hyperspectral Data

Introduction to spectral unmixing

* Mixed pixels can also be obtained with high spatial resolution data due to intimate
mixtures, this means that increasing the spatial resolution does not solve the problem.

* The mixture problem can be approached in macroscopic tashion, this means that a few
macroscopic components and their associated abundances should be derived.

* However, intimate mixtures happen at microscopic scales, thus complicating the
analysis with nonlinear mixing effects.

12 meters 4 meters
-
" Grass
5 &
s Q
Q 3
g T | Tree £ .
1
X N !
_______ Soil :
=
|
|
|
A4 \4
Macroscopic mixture: Intimate mixture:
15% soil, 25% tree, 60% grass in a 3x3 meter-pixel Minerals intimately mixed in a 1-meter pixel

geang_'Slg ‘;lir;ocess’;ﬁg Eyq!u;ion‘_!p Remote Seqsihg, 25-28_,_1uhe 2013, Gainesville, Florida, USA.




Tutorial on Spectral Unmixing of Hyperspectral Data

Introduction to spectral unmixing

* In /inear spectral unmixing, the macroscopically pure components are assumed to be
homogeneously distributed in separate patches within the field of view.

* In nonlinear spectral unmixing, the microscopically pure components are intimately
mixed inside the pixel. A challenge is how to derive the nonlinear function.

* Nonlinear spectral unmixing requires detailed @ priori knowledge about the materials.

F(xy) = Ma(xy)+n(x,y)] oY) =FIM, alx )]+ n(x.y)|

Linear mixture Nonlinear mixture

5
| o Rk
., s, . I 0
. . r\ A *
s, Y 4 . s, ¥ .
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L ” 3 “ W . v -
* o . 4
\ . Y \ . y
. N . . s X
o . . . y .
o ’ ) v, “ t’ “ .
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Tutorial on Spectral Unmixing of Hyperspectral Data

Introduction to spectral unmixing

* In /inear spectral unmixing, the macroscopically pure components are assumed to be
homogeneously distributed in separate patches within the field of view.

* In nonlinear spectral unmixing, the microscopically pure components are intimately
mixed inside the pixel. A challenge is how to derive the nonlinear function.

* Nonlinear spectral unmixing requires detailed @ priori knowledge about the materials.

// //<\'// /

Linear interaction Nonlinear interaction

ectral Irﬁagé,:éng§igiﬂg§ce§§iﬁg:=Evolutionjp Remote Sensing. 25-28 June 2013, Gainesville, Florida, USA.




Introduction to spectral unmixing

* In addition to spectral mixing effects, there are many other znterferers that can
significantly affect the process of analyzing the remotely sensed hyperspectral data.

 For instance, atmospheric interferers are a potential source of errors in spectral unmixing,
* On the other hand, muitiple scattering effects can also lead to model inaccuracies.

* Finally, shadows and variable i/umination conditions should also be considered.

Atmospheric -
Interferers

Multiple sca ttering

ge and Signal Processing: Evolution in Remote Sensing. 25-28 June 2013, Gainesville, Florida, USA.




Tutorial on Spectral Unmixing of Hyperspectral Data

Introduction to spectral unmixing

In /inear spectral unmixing, the goal is to find a set of macroscopically pure spectral
components (called endmembers) that can be used to unmix all other pixels in the data.

Unmixing amounts at finding the fractional coverage (abundance) ot each endmember
in each pixel of the scene, which can be approached as a geometrical problem:

(%) = Ma(x y)+n(x,y)

Linear interaction
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Introduction to spectral unmixing

[ Radiance Reflectance Reduced

data cube J data cube data cube

Atmospheric P Dimensionality ey £
correction 4 os’s;&d/&a‘? ' reduction (optional) x S5
IR : Hyperspectral | & 5
Iy library
Unlelng \ ‘ Qe B o i Find endmembers (+)
Sparse coding P gress inversion

Endmember signatures

ﬂ ‘ Abundance maps

A 4

Wavelength

J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader and J. Chanussot, “Hyperspectral unmixing overview: geometrical, statistical and sparse
regression-based approaches,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 2, pp. 354-379, April 2012.
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Contents

2. Estimation of the number of endmembers

2.1. Classic methods for subspace estimation

2.2. Virtual dimensionality (VD)

2.3. Hyperspectral subspace identification minimum error
2.4. Eigenvalue likelihood maximization (ELM)

2.5. Normal compositional model (NCM)

erspeciral Injageang.SlgrlaJ;ligocess’mg Evolution in Remote Seqsihg, 25-28__Juhe 2013, Gainesyville, Florida, USA.




Tutorial on Spectral Unmixing of Hyperspectral Data

Classic methods for subspace estimation

* Determining the dimensionality of remotely sensed imagery 1s a challenging problem.

e The intrinsic dimensionality 1s defined as the minimum number of parameters
needed to account for the observed properties of the data.

* Principal component analysis (PCA) transforms the data in a new coordinate system
so that the number of significant components can be used as an estimate.

Component 1

(. 'r:prf,lm«ffﬁ 2

"agé?mg§igna;g§§cg§§ﬁgz=Eggigg;iqnjp Remote Sensing. 25-28 June 2013, Gainesville, Florida, USA.
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Classic methods for subspace estimation

* The resulting PCA components are ordered in descending order of data variance:

I Band PCA 1 Band PCA 2 Band PCA 5
Signal and PCA2_

o

Band PCA 17 Band PCA 18 Band PCA 19 Band PCA 20

Noise

spe&tral Image and iSigrlal Processing: Evolution in Remote Sensing. 25-28 June 2013, Gainesville, Florida, USA.




Tutorial on Spectral Unmixing of Hyperspectral Data

Classic methods for subspace estimation

e Minimum noise fraction (MNF) orders the components in terms of signal to noise:

Signal Band MNF 1 Band MNF2

i and MNF 3 Bad MNF 4
A g

L E T

Band MNF 5
T

T
i
AR

]

Band MNF _

speétral Image and iSigr!aI;ﬁr_pcessing: Evolution in Remote Sensing. 25-28 June 2013, Gainesville, Florida, USA.



Tutorial on Spectral Unmixing of Hyperspectral Data

Contents

3. Endmember extraction

3.1. Classic methods for endmember extraction

3.2. Spatial-spectral endmember extraction

3.3. Spatial preprocessing prior to endmember extraction
3.4. Algorithms without the pure pixel assumption

3.5. Multiple endmember spectral mixture analysis

3.5. Comparative assessment using synthetic data

3.6. Comparative assessment using real data

3.7. The Hypermix open-source toolbox

erspectral Injageang Slgnq;ligocess’mﬁg Evolution in Remote Sensing. 25-28 June 2013 Gainesyville, Florida, USA.
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Classic methods for endmember extraction

e These methods assume a classic spectral unmixing chain made up of three stages:
dimensional reduction, endmember selection and abundance estimation.

* Here, the endmembers are directly derived from the original hyperspectral scene.

Pre-processing

FCLSU, LsU

Ab undanc e llllllllllllllllllllllllllllllllllllllllllllllll
estimation

RELECTANCE
[l

a T T T T T T
an s a0 1200 1300 @00 2100 2400
wavelen gih (nm)




Tutorial on Spectral Unmixing of Hyperspectral Data

Classic methods for endmember extraction

* The pixel purity index (PPI) is perhaps the most popular endmember extraction
algorithm due to its availability in commercial software packages such as ENVI.

1 Skewer1

Exctreme pixel

Skewer 2

N\
@ Exctreme picel
@

© @
© Skewer 3
@ L
@) @)
® (@) ® @) @
Exctreme pixcel
@)
@)

Exctreme pixel

J. W. Boardman, F. A. Kruse and R. O. Green, “Mapping target signatures via partial unmixing of AVIRIS data,”
Proceedings of the Fifth JPL Airborne Earth Science Workshop, vol. 95, pp. 23-26, 1995.

ge and Signal Processing: Evolution in Remote Sensing. 25-28 June 2013, Gainesville, Florida, USA.
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Classic methods for endmember extraction

* The N-FINDR algorithm is also a very popular approach for endmember extraction.

It assumes the presence of pure pixels in the original hyperspectral scene and further
maximizes the volume that can be formed with pixel vectors in the data cube.

‘
0.

( ]

’..’llb g..

e
e

« °

\\

|

M. E. Winter, “N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data,”
Proceedings of SPIE, vol. 3753, pp. 266-270, Oct. 1999.

ctra| Irﬁ;@féni,ﬁ&@nél}j?cesgi@rqu}ut_iqnin Remote Sensing. 25-28 Ju'he 2013, Gainesville, Florida, USA.
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Contents

4. Abundance estimation
4.1. Unconstrained least squares (UCLS)
4.2. Non-negative constrained least squares (NCLS)
4.3. Fully constrained least squares unmixing (FCLSU)
4.4. Iterative error analysis (IEA)

4.5. Remarks

ectral Image and Signal Processing: Evolution in Remote Sensing. 25-28 June 2013, Gainesville, Florida, USA.
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The idea of Least Squares

® @®Data

-----------------

- curve fit |

=~ U1 O N 00 W

| : : : | Find a line y=mx+q
....... lnor.der.-romlnlmlze-rhesum
' ' ' of the square distances of the

e ¥ i oo s | data points from the line

Min(sum(dist(line, points)*2))




How do we get m & g in this example (in an intuitive but not
effective way)?

A
q

START

| =
T -
We have a surface in this space (think of it in 3d) which is given by the cost function for given

values of m and q:
sum(dist(line, points)”2)

We select a random point to start and compute its first derivative
We move towards the direction of the derivative and compute again the cost function

We go on until we stop in the optimum value!



What 1f we have 2 endmembers?

A
Vegetation

START

PN
-~ AN
\/ ~

é Soil -

We try to express our spectrum S as a linear combination of two sample spectra V and S, for
example:

S=04V+035S.

Our cost function is the difference (S - $)"2 between the original spectrum S and the
reconstructed one S".

We take another step and compute again the cost function = distortion, until convergence!



Tutorial on Spectral Unmixing of Hyperspectral Data

Unconstrained least squares (UCLS)

* When all the endmember information (i.e., the number of endmembers and their
spectral signatures) are known, abundances can be estimated by least squares.

e The idea is to find the abundances that minimize the reconstruction error obtained
after approximating the original hyperspectral scene using a linear mixture model:

e=|r-Ma ?

* Here, the least squares solution is given by the following simple term:

a=(M"M)"MTr

* However, this 1s an unconstrained solution which does not satisfy the abundance
non-negativity (ANC) and the abundance sum-to-one constraints (ASC).

A. Plaza, G. Martin, J. Plaza, M. Zortea and S. Sanchez,."Recent developments in spectral unmixing and endmember extraction, in:
Optical Remote Sensing - Advances in Signal Processing and Exploitation Techniques. Edited by S. Prasad, L. Bruce and J. Chanussot,
Springer, 2011, ISBN: 978-3-642-1241-6, pp. 235-268.

tion in Remote Sen/siﬁgr 25-28 }Jp'he 201 3;,Gainesville, Florida, USA.




Tutorial on Spectral Unmixing of Hyperspectral Data

Contents

4. Abundance estimation
4.1. Unconstrained least squares (UCLS)
4.2. Non-negative constrained least squares (NCLS)
4.3. Fully constrained least squares unmixing (FCLSU)
4.4. Iterative error analysis (IEA)

4.5. Remarks

ectral Image and Signal Processing: Evolution in Remote Sensing. 25-28 June 2013, Gainesville, Florida, USA.
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Non-negative constrained least squares

If the ANC constraint needs to be satisfied, the problem of abundance estimation
becomes a constrained optimization problem:

mine=min f(a)=r"r-2r' Mo +o'M' Ma

Subjectto:0<¢; <L forl<i<p

This optimization problem with inequality constraints can be solved effectively by
means of quadratic programming since the objective function is a quadratic function.

However, imposing the ANC constraint can significantly increase the computational
complexity of the abundance estimation problem.

Normally the ASC constraint alone is not imposed, but in conjunction with the

ANC.
When both ASC and ANC constraints need to be imposed in the abundance

estimation model we have a fullv constrained nroblem (more difficult to R()]VG),

C.- Chang and D. Heinz, "Constrained subpixel detection for remotely sensed images," IEEE
Transactions on Geoscience and Remote Sensing, vol. 38, no. 3, pp. 1144-1159, May 2000.

Slgnal;ggoces% Evolution in Remote Sen/siﬁgr 25-28 }Jp'he 2'91 3;,Gainesville, Florida, USA.




What happens with Non-negative Least Squares?

A
Vegetati
on

START

é Soil

If we enforce the non-negativity constraint, we search for a solution only in the area where all
parameters are positive....

In this case we have no problem, but if the optimum combination had a negative value for the
abundance of the soil spectrum, we should have found the best solution (usually with soil = 0).



Tutorial on Spectral Unmixing of Hyperspectral Data

Contents

4. Abundance estimation
4.1. Unconstrained least squares (UCLS)
4.2. Non-negative constrained least squares (NCLS)
4.3. Fully constrained least squares unmixing (FCLSU)
4.4. Iterative error analysis (IEA)

4.5. Remarks

ectral Image and Signal Processing: Evolution in Remote Sensing. 25-28 June 2013, Gainesville, Florida, USA.




Tutorial on Spectral Unmixing of Hyperspectral Data

Fully constrained least squares unmixing

e If both the ANC and the ASC constraints need to be satisfied, the problem of
abundance estimation becomes an even more complicated one:

mine=min f(a)=r'r-2r' Mo +o'M' Ma
Subjectto: oy +a, +---+a, =1
O<¢g <Llforl<i<p

* Fortunately, the ASC can be easily included in the ANC-constrained formulation by
simply adding a row vector with all elements set to one to the endmember matrix,
adding an element one to the pixel vector, and solving the resulting least squares

problem as follows:

D. Heinz and C.-| Chang, “Fully constrained least squares linear spectral mixture analysis method for material quantification in
hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 3, pp. 529-545, 2001.

ageang&gnalggocessmg Evolution in Remote Sensing. 25-28 June 2013, Gainesville, Florida, USA.




What happens with Fully Constrained Least Squares?

A
Vegetati
on

START

N
- NN
4 -

<
1~ __
& Soil

If we enforce the sum-to-one constraint, we search for a solution only in the area where the sum
of all abundances is one....

It can lead to unrealistic results as it restricts too much the search space



Daniele Cerra
German Aerospace Center (DLR)

Remote Sensing Technology Institute

Analysis of Hyperspectral Images
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Institut fur Methodik der Fernerkundung

Problem

— We have a hyperspectral image...

Pixel spectrum

radiance

wavelength

— ..and we want to classify it using a reduced number of dimensions
— We want to avoid overfitting — curse of dimensionality

— We do not have ,almighty" computers ©

i DLR




Sample image: Salinas AVIRIS Dataset

. Broccoli_green_weeds_1
D Broccoli_green_weeds_2
D Fallow

D Fallow_rough_plow

. Fallow_smooth

[] stubble
. Celery

. Grapes_untrained

- Sole_vineyard_develop
D Corn_senesced_weeds
- Lettuce_romain_4_weeks
Lettuce_romain_5_weeks
. Lettuce_romain_6_weeks
; . Lettuce_romain_7_weeks

. Vineyard_untrained

Institut fur Methodik der Fernerkundung

— Widely used as benchmark
dataset

— 512 X 217 pixels
— 224 bands

— 4 mresolution
— 15 classes

— Several crops

— Some classes very similar
— Broccoli1 & 2
— Grapes & Vineyard

— Lettuces
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Salinas Dataset

olz _gree;n

. Broccoli_green_weeds_1

I:I Brocecoli_green_weeds_2
D Fallow

D Fallow_rough_plow

. Fallow_smooth

Celery Soil_vineyard develop Corn_senseced green_weeds Lettuce_romaine 4 weeks Lettuce _romaine_35_weeks [ stubbe

. Celery

. Grapes_untrained
. Sole_vineyard_develop

I:I Corn_senesced_weeds

= = . Lettuce_remain_4_weeks
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. Lettuce_romain_5_weeks

. Lettuce_romain_6_weeks
Lettuce_remain_7_weeks

DLR
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Spactral Library Plots
T T |
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Problem
— How to select the “best" bands?
— For example, we want to select 10 bands

— Let's see how...

i DLR
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How to select these 10 bands?

— Several methods of band selection

— Let's do a small ,journey" into statistics up to the concept of mutual information

— What is the relationship between pixel values in a band and the amount of
information they contain?
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Solution 1

— Bands 1-10

i DLR
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Really?

® Noisy bands are not used in the analysis
® Why are there noisy bands?

DLR




Percent
o 08 o

10

Spectral Intensity

o

Major Components

Institut fur Methodik der Fernerkundung

Radiation Transmitted by the Atmosphere

i 1 10 70
2 " " " P | M L gyl " M M . M
Downgoing Solar Radiation Upgoing Thermal Radiation
70-75% Transmitted 15-30% Transmitted

Carbon Dioxide

) A Oxygen and Ozone
|I Methane
I ' Nitrous Oxide
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Solution 2

— Bands 41-50

— In the range with the best Signal-to-Noise Ratio (SNR)

0.2 1 10 70
i i A i al i i i i PO S | i i " A i
?:\ Downgoing Solar Radiation Upgoing Thermal Radiation
E\ 70-7§~= 15-30% Transmitted
(7] Y
— 4
L= "
©
=
L=}
[oF]
Q.
v




Correlation between bands

Institut fur Methodik der Fernerkundung

Matriz de correlacion entre bands para la imagen Salinas

A L
i 4
d




Mean
Seore XX (x - %

! 3

2

3 4

4 10

0 10

Totals 35

‘The mean is 35/5=7.

i DLR
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Standard Deviation

Seore XX (x - %
1 3 3-7=-4
? 5 5-7=-2
3 7 7-7=0
4 10 10-7=3
> 10 10-7=3
Totals 35 12

*The (population) SD is the square root of the ) +22+02+32+32
squared mean value of the difference from the  +Sdev(X) = \/ = 2.76
mean:

i DLR




Variance
>S(cor'e X_X (X _ Y)Z
: 3 3-7=-4 16
? 5-7=-2 4
3 7 7-7=0 0
4 10 10-7=3 9
0 10 10-7=3 9
Totals 35 38

i DLR
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Variance
Seore XX (x _ %
! 3 3-7=-4 16
2 5 5-7=-2 4
3 7 7-7=0 0
4 10 10-7=3 |9
5 10 10-7=3 |9
Totals 35 38
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Example

DLR
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Local Variance in a 7x7 Sliding Window

DLR
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What about hyperspectral data?

e Eachimage has hundreds of bands
e Each band has a histogram
e We can compute the variance of each histogram!

e Higher variance -> higher information
« Neglecting Noise Influences
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Really + Variance = + information?

6
2.5 (10 T

Variance

0.5 [— —

0 50 100 150 200 250
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Which image has a higher variance?

i DLR
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And which image contains more information?

i DLR
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Entropy in a nut-shell

Low Entropy: High Entropy: location of soup
location of soup

i DLR
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Entropy in a nut-shell

Institut fur Methodik der Fernerkundung

Low Entropy

i DLR

High Entropy /\

..the values (locations
of soup) sampled
entirely from within the
soup bowl

..the values (locations of
soup) unpredictable...
almost uniformly sampled
throughout our dining room
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Shannon Entropy

— Information content of the output of a random

variable X
1.0 =

— Example: Entropy of the outcomes of the toss of a

biased/unbiased coin
— Max H(X) -> Coin not biased

— Every toss carries a full bit of information!

— Note: H(X) can be (much) greater than 1 if the values
that X can take are more than two!

i DLR
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Two bits of Entropy (source:wikipedia)

H(X)=> p(x)log p(x)

i DLR
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Two bits of Entropy (source:wikipedia)

H (0= X p(0log () - 352

i DLR
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Bits

You are watching a set of independent random samples of X

You see that X has four possible values

P(X=A) = 1/4 |P(X=B) = 1/4 |P(X=C) = 1/4 | P(X=D) = 1/4

So you might see: BAACBADCDADDDA...

You transmit data over a binary serial link. You can encode each
reading with two bits (e.g. A=00, B=01,C=10, D =11)

0100001001001110110011111100...

i DLR




Fewer Bits
Someone tells you that the probabilities are not equal

P(X=A) = 1/2 |P(X=B) = 1/4 | P(X=C) = 1/8 | P(X=D) = 1/8
It’s possible...

...to invent a coding for your transmission that only
uses 1.75 bits on average per symbol. How?

A 0

B 10
C 110
D 111

4347 e gmhs |Vs just one of several ways)

Folie 32
z-Gem
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..\-?./ %

-X={A,B,C,D,E} ‘We should use 3 bits per symbol to encode the outcomes of X

x |A|B|C| D| E Symbol A B C D E
P(x) |2/5]|1/5|1/5(1/10|1/10 Code 00 01 10 110 111
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Test: Which distribution has higher entropy?

T T
0.01 0.025
0.008 0.02
0.0086 0.015
0.004 0.01
0.002 0.005




Entropy in a nut-shell

Institut fur Methodik der Fernerkundung

-Low Entropy

i DLR

*High Entropy /\

...the values (locations
of soup) sampled
entirely from within the
soup bowl

...the values (locations of
soup) unpredictable...
almost uniformly sampled
throughout our dining room
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Entropy: A Binary Image Example

07
G
(5
o4
.3
0.2
(L |

How many bits of information is
conveyed by each pixel?
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Entropy in the bands of the Salinas dataset

0 50 100 150 200 250
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Which image has higher entropy?

Binary Image Histogram

1500 2000 2500

Frequency

1000

b

o - N K .. N
I T T T E e, -
DLR 0 50 100 150 200 250 -

PNG

e
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0.004
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Test: Which distribution has higher entropy?

T T
0.01 0.025
0.008 0.02
0.0086 0.015
0.004 0.01
0.002 0.005
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Remember: Histogram of noise is flat!
Noise has maximum entropy/information!

0.025

0.008 0.02

0.006

0.015

0.004 0.01

0.002 0.005

-To use this concept in the best way, we must relate it to the objective of
our application, Let's see what happens when we use it to select the best
parameters for a classification procedure!
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WSO S

f‘}
7




o Katydids
The Classification Problem
(informal definition)

Given a collection of annotated data. In P L
this case 5 instances Katydids of and five A
of Grasshoppers, decide what type of | |
Insect the unlabeled example is.

j}'

Katygid or Grasshopper?

.



http://buzz.ifas.ufl.edu/258dj.jpg
http://buzz.ifas.ufl.edu/258dj.jpg
http://buzz.ifas.ufl.edu/091dmj.jpg
http://buzz.ifas.ufl.edu/091dmj.jpg
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For any domain of interest, we can measure features

Color Has Wings?
Abdomen
Length Antennae
Length
| ﬁ;\
“‘ Mandible

Size

Spiracle

Diameter



Institut fur Methodik der Fernerkundung

Pixel ID Band 1 Band 2 Pixel Class
We can store features : ~ = ——
In a database. |
2 80 91 Vegetation
The classification 3 ; 47 | Water
problem for images can | * 1 31| Water
now be expressed as: 5 54 85 | Vegetation
6 29 19 Water
Given a training database / 61 66 Vegetation
(My Collection), predict 8 5 10 Water
the class label of a 9 33 56 [ Vegetation
previously unseen pixel 10 a1 w Vegetation
My Collection
previously unseen pixel = 11 51 70 | 2222222

iy . T



previously unseen pixel = 11

100
90
80
70
60
50
40
30
20
10

Band 2

i DLR

51 70 9999979

N
N

N N

® N

10 20 30 40 50 60 70 80 90100
-Band 1

L, 4

X
o

We can “project” the
previously unseen pixel into
the same space as the
database.

We have now abstracted
away the details of our
particular problem. It will
be much easier to talk about
points In space.

Vegetation
o Water




Simple Linear Classifier

[EEN
o

R DD Wbk~ 01 OO N 0 ©
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R.A. Fisher

1890-1962
W

If previously unseen pixel above the line
then

class is Vegetation
else

class is Water

Vegetation

i DLR

1 2 3456 7 8 910 ©Wafer
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Nearest Neighbor Classifier
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If the nearest instance to the previously
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class is Vegetation
else

class is Water
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Abdomen Length > 7.17

N
n yleS
I ,
S Antenrj Length >6_\O? Katydid
qo y?s
Grasshopper Katydid

1 2 3 456 7 8 910

Abdomen Length

E DLR *Eamonn Keogm"
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Antennae shorter than body?
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Information Gain as A Splitting Criteria

Select the attribute with the highest information gain (information gain is the expected reduction

in entropy).

Assume there are two classes, P and N
Let the set of examples S contain p elements of class P and n elements of class N

The amount of information needed to decide if an arbitrary example in S belongsto P or N is

defined as

E(S)=——"—log,| —2—| - log, .
p+n p+n p+n p+n =

1.0

0 log(0) is defined as O

i DLR
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Information Gain in Decision Tree Induction

Assume that using attribute A, a current set will be partitioned into some
number of child sets

The encoding information that would be gained by branching on A

Gain(A) = H(Current set)— > H(all child sets)

Note: entropy is at its minimum if the collection of objects is completely uniform

Enm Adapted from Eam




Person Hair Weight | Age |  Class |
Length

Homer 0” 250 36 ”
Marge 10” 150 34 =
Bart 2% 90 10 v
Lisa 6> 78 3 =
Maggie 4” 20 1 F
Abe 1”7 170 70 M
Selma 8” 160 11 =
Otto 10” 180 38 Yy
Krusty 6” 200 45 M
Comic Guy 8” 200 38 >

i DLR

Adapted from Eamonn Keogh
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Entropy(S)z—Llogz[ P j A Iogz( n ]
p+n p+n p+n p+n

Entropy(4F,5M) = -(4/9)log,(4/9) - (5/9)log,(5/9)

= 0.9911
yes no
/ Hair Length <= 5? \
5 b
£%§ 3 4 A - 4 Let us tl’y
x ) ?u | ? splitting on Hair
R ¢ " length
5

Gain(A) = E(Current set)— > E(all child sets)

Gain(Hair Length <=5) = 0.9911 — (4/9 * 0.8113 + 5/9 * 0.9710 ) = 0.0
Yl . A RS SRR g

Adapted from Eamonn Keogh
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Ennopy(S):v———E—Jogz[ P j A Iogz( n ]
p+n p+n p+n p+n

Entropy(4F,5M) = -(4/9)log,(4/9) - (5/9)log,(5/9)
= 0.9911

yes no

Let us try
splitting on

Gain(A) = E(Current set)— > E(all child sets)

Gain(Weight <= 160) = 0.9911 — (5/9 * 0.7219 + 4/9 * 0) = 0.5900
¥y . LA A S— *

Adapted from Eamonn Keogh



Institut fur Methodik der Fernerkundung

Entropy(S)z—Llogz[ P j A Iogz( n ]
p+n p+n p+n p+n

Entropy(4F,5M) = -(4/9)log,(4/9) - (5/9)log,(5/9)
= 0.9911

Let us try
splitting on Age

Gain(A) = E(Current set)— > E(all child sets)

Gain(Age <=40) = 0.9911 - (6/9* 1 + 3/9 * 0.9183 ) = 0.0183
Yl . A Py S

Adapted from Eamonn Keogh
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Of the 3 features we had,
Weight was best. But while
people who weigh over 160 are
perfectly classified (as males),
the under 160 people are not
perfectly classified... So we
simply recurse!

This time we find that we
can split on Hair length, es no
and we are done! y Hair Length <= 2? \

Enm Eamonn Keogh
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We need don’t need to keep the
data around, just the test
conditions. Weight <= 1607?

How would these
people be classified? yes no

/ N\

Hair Length <= 2? Mal e

Enm Eamonn Keogh /{

o/
b
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The worked examples we have
seen were performed on small
datasets. However with small
datasets there is a great
danger of overfitting the data...

When you have few datapoints,
there are many possible
splitting rules that perfectly

classify the data, but will not
generalize to future datasets.

For example, the rule “Wears green?” perfectly classifies the data, so
does “Mothers name is Jacqueline?”, so does “Has blue shoes”...

# i S il A :‘ﬁ&? %"? e 3,
DLk Eamonn Keogh/ ol Y N
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Mutual Information (in terms of Entropy)

Marginal Entropies Joint Entropy Mutual Information

I(M:N)

\\\\“‘5‘:

Think of this quantity as
directly related to the

information gain we saw
I(M,N) = H(M) + H(N) — H(M,N) in the pr'evio%s examplel

i DLR
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Person Hair Weight Age Class
Length

Homer 0 250 36 M
Marge 107 150 34 F
Bart 2” 90 10 M
Lisa 6” 78 8 F
Maggie 4” 20 1 F
Abe 17 170 70 M
Selma 8” 160 41 F
Otto 107 180 38 M
Krusty 6” 200 45 M
Comic Guy 8” 290 38 ?
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Pixel | Vawen [ Naen [yahen| Cls

10 30 50 Broccoli

X:50, Y:100 25 130 50 Fallow

X:16, Y:12 13 12 48 Grapes

;__ X:200, Y:420 5 70 49 Corn

Which band is better to separate these classes? Which one will give me the

maximum information gain? And which one would only make things more
difficult?

i DLR
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Mutual Information

(can be expressed in terms of probability)

I(GY) =2, Ziﬂrﬂy)lﬂg( p(z;y) )

yeY zcX

(z) p(y)

i DLR
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Small Test

— Suppose we have the following random variables

— x ="is the temperature below o degrees?" = (0 =no, 1 = yes)
— y ="do | have ice or water?" = (o = ice, 1 = water)
— z ="is it snowing outside?"-> (0 = no, 1 = yes)

— w = ,Are the Simpsons today on Pro7?"-> (0 = no, 1 = yes)

— How do you expect the mutual information to be between:
— XandY
— XandZ
—YandZ
— Xand W

i DLR
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Mutual Information for HS data analysis

— What we REALLY want is how to select bands which are good to classify a
specific dataset.

— The Ml is great at finding correspondences between variables, even if their
values are very different!

— For example it has been used in our department to improve coregistration between
radar and optical data, which are completely different!!




The mutual information between any two bands in the Salinas dataset and
the ground truth are based on these joint distributions...

Il Broceoli_green_weeds_1
[ Broccoli_graen_waeds_2
D Fallow

] Fallow_rough_plow

I Fallow_smeoth

] stubble

I celery

. Grapes_untrained

B sole_vineyard_develop
[[] Corn_senesced_weeds
D Lettuce_romain_4_weeks
O Lettuce_romain_5_weeks
B Lettuce_romain_6_weeks
B Lettuce_romain_7_weeks

[l vineyard_untrained

Ground
oondal ] Sandad Truth |
iDLR

iy T

1000 2000 3000 4000 5000 6000 7000

8000

Mutual info band 42 / ground truth

|
w

:| ’ |

300

100 200 400 500 600

M

utual info band 1/ ground truth

700
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Mutual information Salinas / ground truth
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Mutual information Salinas / ground truth

Before (blue) and after (red) noise removal

0.8 [— —

0.6 ]

0.4
0 50 100 150 200 250
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Reminder: Correlation between bands

Institut fur Methodik der Fernerkundung

Intraband correlation matrix for the Salinas dataset

‘$¢

YL .




Summary

— How to select our 120 bands
now?

— Usye the information
derived so far and the
intraband correlation to
select them

— For example:
— Cluster bands

— Select the best band in
each cluster

i DLR

Variance I

Entropy l |

Mutual
Information
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K-means Clustering (k = 7)
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With pixels it is clear..

— How to do it with spectral bands?

We convert the bands (each originally in 2D) in pixel vectors (1D)

Our space in kmeans now has the same dimensionality as number of pixelsin the
image

EXAMPLE:

1. In which space are we doing the clustering with an image of 1200 x 1200 pixels and 200
bands?
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An interesting application

— Dataset: Carnuntum

— Capital of the former
Roman province
Pannonia superior

— Centuries IVBC—-1AD

— Airborne HS campaign

— AisaEAGLE
— 65 bands
— 400-1000 NM

— 0.4 mGSD

— Courtesy of prof.
Michael Donus

Michael Doneus et al., ,,New ways to extract archaeological information from hyperspectral pixels®, Journal of Archaeological
Science, Volume 52, December 2014

i DLR




Institut fur Methodik der Fernerkundung

How to highlight crop marks?

Evident crop marks in Grezac, France
RGB True Color Composite
(source: wikipedia)
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Not always that easy...
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Not always that easy...

| 4

i DLR
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Which band is better?

— Let's have a look at all available bands...

DLR
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Which band is better?

— The transition between red and NIR and the whole NIR spectral range looks good..
— If we find which band is best, we can apply it to other images to look for crop marks

— How to quantify the performance of each band?
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First Step: Entropy

— We can compute it directly for each band

— We get a score for each band
— How much ,information™ do we have in each portion of the spectrum?

— It works better if we select only the area of interest

— We are not interested in variations throughout the whole image
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First Step: Entropy

RGB True Color Composite
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Entropies for each band

" T T T T T T

10.5 7

95 7]

ss) VIS NIR |

76 —

] 10 20 30 40 50 60 70
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Let's take a step forward and compute Mutual Information

— Let's derive a reference image (manually)

=
3
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Mutual Information

— Between each band and the reference data in the area of interest

0.12

017

0.08 -

0.06 7

0.04

0.02 1
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What does the mutual information tell us respect to entropy?

i DLR

0.12

o1r

0.08

0.06 [

0.04 -

0.02 -

Mutual Information
— Entropy
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Next step: let's analyse the Principal Components
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Principal Components: Mutual Information

0.14 T T T T T T

0.12 T

0.08 7

0.06 .

0.02 1 7

10 20 30 40 50 ]
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Principal Components: Mutual Information

0.14 T T T T T T

0.12 - «—— Peak (PC 1) ]

0.08 7

00611 e——— Peak (PC 4) I

0.04 .

0.02 1 7
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Hyper- vs. Multispectral: Vegetation Analysis

Institut fur Methodik der Fernerkundung

@
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Near Infrared: the Red Edge

reflectivity (%)
M,
60 I,
— healthy
- - Not healthy
40 -—
20 _
red edge
0
0.4 0.5 0.6 0.7 0.8
frecuency (um)

Transition between absorption into red and high reflectance in the near infrared portions of
the spectrum

The red edge is the spectral range in which this change is observable (flexion point in the
curve)

It depends on the amount on clorophyllin the plant and nitrogen in the soil
A displacemente to the left of the red edge characterizes ill vegetation

—  Scarce clorophyll in leaves

"Breathing” problems of the plant
e " & - R
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Back to our example: Red Edge image

i DLR
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Summary (Mutual Information)

i DLR

0.45

0.4

0.35

=2
]

0.25
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=
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— spectral band
- — — — Red Edge position |




Mutual Info with what..?

i DLR
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MI 0.11

Bands
28/15/5 (RGB) BG?%?AE)IR

MI 0.42

Red Edge Position




Thanks a lot for your attention!

For any question / help:
Questions?

Daniele.cerra@dlr.de

# Deutsches Zentrum 0
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in der Helmholtz-Gemeinschaft
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Welcome to these Matlab exercises. At the end of this course we will have an idea of the
different tools, data types and algorithms that we can use in the processing of digital satellite
images. To do this we will make good use of the simplicity of programming with Matlab which
is a high level programming language. Nevertheless, we will give during our lectures a deeper
insight into mathematical models used in our analysis.

After an introduction to the program, we will learn how to load data and carry out simple op-
erations on them, we will apply different filters on digital images both in time and frequency
domain, we will extract edges and "play’ with histogram and spatial, spectral and radiometric
resolutions.

In the second part of this course we will focus on specific algorithm for feature extraction,
noise reduction and unmixing specific to hyperspectral data processing.

Have fun!

1 INTRODUCTION TO MATLAB

In this course we will use a toolbox developed independently from Matlab (the Hyperspectral
Toolbox), plus the image processing toolbox which is built-in in Matlab.

1.1 FIRST STEPS

Matlab’s interface is represented in Fig.

Download the Hyperspectral toolbox from:
http://sourceforge.net/projects/matlabhyperspec/

Add the toolbox to the path from File > Set Path. Then copy all the provided files (with
code/images) and copy them into a directory of your choice. Now you are set up for the
course.

Let’s try executing some operations directly from the command line, as a reminder of how
Matlab works. Execute and understand the following commands:

* 3%4

¢ 7-3

11/7

floor(11/7)
e mod(11,7)

* sin(pi/ 3)

a=5nA(7/2)


http://sourceforge.net/projects/matlabhyperspec/
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Figure 1.1: Matlab interface. The commands are executed from the command window (con-
sole). On the left the structure of the active directories. On the upper right the
active variables, that can be analysed by clicking on them. On the lower right a
window allows a quick reuse of the last commands given.



1.2 OPERATIONS WITH MATRICES

We will treat our images as 2- or 3-dimensional matrices, therefore before we start to use real
data we need to know how to play around with matrix calculus in Matlab.

DO NOT rush through the experiments: take your time and be sure you understood what a
command does before you go to the next. If you have problems just ask me.

Execute and understand the following commands (the symbol % at the end of a command
denotes a comment):

* a=[4-2-47;15-32;6-8-5-6;7301]

* a(2,3)

e a(2:3,3:4)

e a(2:3,)

e max(a)

* max(a(:)) % What is the difference with the previous command?
¢ inv(a) % Invert the matrix

e a*inv(a) % Is it the result you expected?

* a' % Transpose the matrix a

¢ size(a)

* test = reshape(a,8,2) % This command to change the dimensionality of the data is very
important, and we are going to use it often in hyperspectral data processing to switch
between 3D and 2D representations of the data.

e test=a+3

*b=[24-74,563-2;1-8-5-3;0-67 -1]

e c=2*a-3*b

e c=a*b

* c=a.*b % What is the difference with the previous command?
* test=a+Db

* test=a A2

¢ a>0 % conditional test



Figure 1.2: Cameraman - sample image.

1.3 LOAD AND DISPLAY DATA AND IMAGES
1.3.1 1-DIMENSIONAL DATA
Execute and understand the following commands.
e x=[0:0.1:2*pi]
* plot(x,sin(x))

* plot(x,sin(x),.,x,cos(x),’0")

1.3.2 2D DATA (IMAGES)

e cameramanData=load('cameraman’)
¢ ¢ =cameramanData.cameraman;
¢ imshow(c)

* imhist(c), axis tight

The parameter "axis tight" is given into the histogram plot. Try to visualize the histogram
without this additional parameter: what'’s the difference?

1.3.3 RGB IMAGES

An RGB image has 3 bands: understand how to perform basic manipulation of pixels and
bands in this section.

* rgbImg = imread(’sat.jpg’); % ; suppresses the output

* size(rgblmg)



Figure 1.3: Sample RGB image.

* rgbImg(100,200,1:3)

e imfinfo(’sat.jpg’)

Exercise 1

Display each band from the RGB image as a grayscale image.

2 BASIC OPERATIONS WITH IMAGES IN GRAYSCALE VALUES

2.1 MASKING / THRESHOLDS

Exercise 2

Use the conditional test seen before, and create a binary image 'mask’ containing the pho-
tographer silhouette, using as input the image ’cameraman’, in which therefore all pixels with
value larger than a given threshold have value 1, and all the others value 0.

You can create the mask with the command

mask = variableImage > selectedThreshold

Visualize it with imshow(mask), are you satisfied? If not, change the threshold.

You can use this mask to create a thresholded version of the image by copying the original
image in a new variable 'imCopy’ and then using the command

imCopy(mask) = 0;

Visualize the image with and without mask: what’s the difference?



Figure 2.1: Image with low contrast.

2.2 MODIFY THE SPATIAL RESOLUTION (DOWNSAMPLING/UPSAMPLING)
The function imresize(image, newSize) or imresize(image, newSize, parameter) modifies the
resolution of the image to the size

size = originalSize * newSize

with nearest neighbour interpolation. To change the resolution of an image keeping its size
unaltered, you have first to downsample it and then upsample it back to its original size.

Exercise 3

Change the resolution of the image to 1/4 of the original. The new image must have the
same size as the original image. To use nearest neighbour interpolation in the upsampling
you must use the command imresize with three input parameters, and use 'nearest’ as third
parameter.

To find more information about any matlab command, type it in the command line and hover
your mouse above it to visualize a short description in a pop-up window. You can also select
the text of the name of the routine and press F1 to open a help file on that routine.

2.3 OPERATIONS WITH HISTOGRAMS
Let’s load an image with low contrast.
* p =imread('pout.jpg’);
e imshow(p)

* imhist(p), axis tight
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Figure 2.2: The stretch function used by imadjust.
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11

Figure 2.3: Histogram stretch.

Now let’s use the function 'imadjust’ to improve the image with a histogram stretch. Ref. to
the graphical description of how imadjust works in Fig.

Exercise 4

Execute the command:

pstretch = imadjust(p,[a,b],[c,d]);

Which values would you choose for a, b, c and d? The values (a, b, ¢ & d) must be between 0
and 1.

Suggestion: check the histogram!

Exercise 5



Histogram Equalization vs. Linear Stretch
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Figure 2.4: Stretch and equalization of the histogram.

Carry out a histogram equalization using the built-in Matlab function histeq: for differences
between histogram stretch and equalization ref. fig.

peq = histeq(p);

Compare the results!

3 FILTERING OF DIGITAL IMAGES

Now we will apply some basic filters to a single-band image. Filtering can be done in time
domain (by direct manuipulation of the pixels) or in frequency domain (by manipulation of
the different sinusoidal functions which constitute the image). Let’s refresh some ideas before
we move forward and then let’s start with filtering in time domain.

3.1 FILTERING IN TIME DOMAIN

Exercise 6

Let’s create an analysing window that we are going to use to carry out some basic filtering
operations on the image 'cameraman), after checking some slides on low-pass and high-pass
filters..

Let’s start with a low-pass filter:



Convolution Examples: Original Images

Figure 3.1: Original.

Figure 3.2: Blur / lowpass.
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{_:_S’ " Convolution Examples: H+V + D Diff

Figure 3.3: Highpass.

* Use the command "ones(n,n)" to create a square matrix of size n x n filled with 1. Con-
sider n =3 or n =5, or n = 7 for a more extreme result.

 Divide the matrix by a constant, so that the sum of all its elements is equal to 1. Check
that it is correct with the command sum(your_matrix(:)).

» Use the function filter2(f, image) to apply the filter to the image.

* Use the command result=uint8(result) to convert the image, that now has decimal val-
ues, again in byte format.

¢ Visualize the results: imshow(result,[])

* The brackets [ ] stretch the image between its minimum and maximum values (as we
did manually until now by manipulating the histograms)

Exercise 7

Repeat the previous experiment using the built-in matlab function med2filt which applies a
3x3 filter:
medFiltered = medfilt2 (image);

Now visualize the original image, the low-pass filtered one and the median-filtered one. Which
differences can you see?

Now apply the low-pass and the median filters 10 times to its own output using a loop.

11



Figure 3.4: Original image and Fourier spectrum (the components in Fourier are computed
separately for each of the three canals RGB).

For example in the case of the low-pass filter you can write:

im2 = filterf(f,image);
fori=1:9

im2 = filterf(f,im?2);
end

Which one is more "stable"? Why?
Exercise 8
Repeat the previous experiment, this time use the filter:

f = fspecial('laplacian’)

Which filter is this? What do you expect to happen when you apply it to a pixel in a homo-
geneous area and when you apply it on a pixel which stands on the edge of a building? And
what can you see in the filtered image?

3.2 FILTERING IN FREQUENCY DOMAIN

Now let’s switch to the frequency (or Fourier) domain to perform similar operation in this
very different representation of the data.

Exercise 9

12
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Inverse FFTs of Impulses
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Ideal filtering in Fourier. The Fast Fourier Transform (FFT) is an algorithm which converts
an image from time domain (the one we are used to) to Fourier domain, where an image is
represented as a sum of 2-D sinusoids.

* Use the FFT to convert the image 'cameraman’ to the frequency domain:
ftp = fft2(image);

 For a better visualization, let’s put the low frequencies, which are now in the four cor-
ners of the power spectrum, in the center of the Fourier image:
af = fftshift(ftp);

* Visualize the Fourier spectrum. For this purpose it is better to compute the logarithm
of the spectrum. We must add 1 to obtain 'safe’ values (as the logarithm of 0 is —oo, this
could introduce some 'small’ numerical problems in our computations :) ).

imshow(log(1+abs(af)),[])

The parentheses [] are needed to perform an image stretch (as we did before manu-
ally by manipulating the histograms), and the function abs(n) computes the absolute
value of n (in this case we need it to obtain real values, as in origin the points in Fourier
also have an imaginary part).

* Let’s create an ideal circular filter, that is 1 in the center of the image and 0 in the rest of

it:

[x,yl= meshgrid(-128:127,-128:127);
Z=sqrt(x.A2 +y.A 2);
Cc= (Z < 15)

* Visualize z to understand what youre doing
* Visualize the ideal filter c (now you should already know which command to use...)

* Apply the filter to the spectrum. In Fourier the filtering is obtained with a simple mul-
tiplication:

afilt = af . *c;

* Visualize the resulting spectrum (remember to compute the logarithm and add 1 to its
argument)

* Let’s shift the spectrum in order to have again the low frequencies in the corners: afilt
= fftshift(afilt);
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Figure 3.5: Difference between ideal filter and Butterworth filter (in one dimension).

¢ Let’s switch back to time domain: afiltinv = ifft2 (afilt);
¢ Visualize the results
* Can you see the ringing artefacts?

* What happens if we do the Fourier transform of the ideal filter c? Try to visualize its
Fourier spectrum...

Exercise 10

Now let’s filter the image with a Butterworth filter. The differences with the ideal filter can
be seen in fig. and the difference in the filtering effects will be clear at the end of this
exercise.

* Let’s create a Butterworth filter, which has a constant value in the center and gradually
decreases to 0 on the edges of the circle:

bf=1./01+{(x.A2+y.A2)/60). A2);
* Filter the image as in the previous example.
* Compare the results (to open a new image write "figure, ’ before the command imshow).

* What happens if you change the size of the Butterworth filter (the value 60 in the equa-
tion)? Try to use a larger or smaller filter.
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Figure 4.1: Example of edge extraction.

4 EDGE EXTRACTION

Slides - Canny

Exercise 11

Canny algorithm, defined in the 80’s, keeps on being one of the favourite ways of extracting
edges from an image (fig. [4). Let’s apply it, and let’s see what happens if we want to extract
edges from a noisy image, and what we can do to solve the problem.

Load the image "cameraman" (from the matlab file with the same name, not the jpg
image)

Extract the edge using the function edge(image, 'canny’)
Visualize the results

Now let’s add some gaussian noise to the image: imgNoise = imnoise(image, gaussian’,0,0.01);
in which we are setting the mean and the variance of the noise to 0 and 0.01, respec-
tively.

Visualize the noisy image
Extract the edges from the noisy image and visualize them: what happened?
Use the window described in Exercise|6]to filter the noisy image

Extract the edges again: could you solve the problems?
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Figure 4.2: Canny’s algorithm for edge extraction. After a lowpass filtering, a high-pass filter
is applied to compute the gradients. A threshold selects only strong gradients.
Afterwards, the thickness of each border is reduced to the size of a pixel. Finally,
weak edges which are above a second lower threshold and were discarded in the
first step are added to the final results, if they are connected to 'strong’ edges.
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5 HYPERSPECTRAL IMAGE PROCESSING

Slides on Introduction to Hyperspectral images

Examine a hyperspectral image.

* Open the hyperspectral data set with the command load(test_image_new.mat’);

¢ Two variables are loaded:

— ImgData contains a 533 x 763 image with 65 bands acquired by the sensor AISA
Eagle on the place in which the Roman city of Carnuntum once stood, somewhere
in Western Austria.

— ImglInfo contains ancillary information on the image.

- You can retrieve the wavelength associated to each spectral band by accessing the
variable ImgInfo.wavelenght

To visualize a single band and a single spectrum in the image: imshow(ImgData(:,:,18),[]);
This for example visualizes band 18.

Then let’s select a single pixel and analyse its spectrum:
pixel = ImgData(100,100,:);
plot(pixel(:))

What does 100,100’ mean?

Exercise 12

Visualize an RGB combination of the image, in which a band related to red frequencies will
be loaded in the red (R) channel, a band related to green in G and a band related to blue in B.

* Let’s select a band in the middle of the red frequency range (0,6-0,7 um), a second one
in the middle of the green range (0,5-0,6 1m), and a third one in the middle of the blue
portion of the spectrum, (0,4-0,5 um), and let’s substitute the corresponding numbers
of the bands in the following command to save them into a data structure which we
name 'rgbsel’:

- rgbsel = [numbandRed numbandGreen numbandBlue]

* To visualize the image RGB use the command imshow(uint8 ( (ImgData(:,:,rgbsel) -
min(ImgData(:)) )/10),[])

* in the above command, we create a byte image by converting to byte format (uint8 in
Matlab) the 3 bands of the image stretched between 0 and 255 (we subtract the mini-
mum and divide by an empirical number to rescale quickly the values).
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6 SPECTRAL INDICES

Slides on NDVI

The Normalized Differential Vegetation Index (NDVI) is probably the most important spec-
tral index, as it is can be computed also on multispectral images. It gives us an indicative
quantification on the percentage of a pixel which is covered by green (alive) vegetation.

The NDVI is computed as:

NIR-R
NDV]=—— (6.1)
NIR+R

6.1 APPLICATIONS: ARCHEOLOGY

Would you like to investigate if the image you visualized before contains some secret? Let’s
look out for crop marks, which show local anomalies in the vegetation health status due to
underground structures not directly observable from the surface.

Exercise 13

 Create a new version of the image in double format, because if we divide two images in
integer format the result will also be integer! Use the command imageDouble = dou-
ble(ImgData)

» Take as reference again the frequencies corresponding to each band in the image.

* Select a band number in the middle of the red portion of the frequency spectrum and
another one in the NIR (Near InfraRed), around 800 nm.

* Assign to the variable NDVI_index the result of the Matlab function imdivide(numerator,denominator)
to compute the NDVI. Refer to the equation above to correctly express numerator and
denominator!

* Visualize the NDVI with imshow(NDVI_index, [0 0.2]),colormap(jet)

* compare with the RGB image you created previously. In which image can you spot the
profile of buried underground structures?

7 DIMENSIONALITY REDUCTION

Slides: reminder on PCA

Exercise 14

Explore a hyperspectral dataset by applying a Principal Components Analysis (PCA) rotation.

* Open the hyperspectral data set with the command load(’Salinas_Lib’);
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¢ Two variables are loaded:

- Salinas_corrected contains a 512 x217 image with 204 bands acquired by the AVIRIS
sensor over the Salinas valley, California.

— Lib contains 16 spectra selected from the image.

* Convert the image to 2D using the command 'reshape’, where the first dimension is the
number of bands and the second the total number of pixels. Therefore a hyperspec-
tral image of size 10 x 10 and 20 bands should have two dimensions sized 20 and 100
respectively.

* Use the function hyperPCT to perform a PCA rotation. Set the maximum number of
components to 50 and assign the output value to three variables. Check the help for
the function hyperPCT for more information.

* Let’s prepare some Principal Components in the new matrix M_pct to visualize them
correctly.
— First of all you must convert in 3D the results with the command reshape
- Subtract the minimum value in order not to have negative values: image = image
- min(image(:))
— Divide by the maximum number in order to have all the values between 0 and 1:

image = image / max (image(:))

* Now let’s check the eigenvalues (lambda) of the rotated features (in the third output
variable): how many components contain relevant information? What are the charac-
teristics of the last Principal Components?

* Compare the information in the first PCs with the different classes in the image.

— Load the ground truth for the Salinas dataset with the command the command
load(’Salinas_gt’)

- Visualize the ground truth (see legend in fig. [7), which identifies several crops in
the image (broccoli, lettuce, celery, grapes...) with the command imshow(salinas_gt,

m

— Let’s change the color map to separate visually the different classes: colormap(jet)

- Now visualize an RGB combination of the 3 first PCs using the command figure,
hyperlmagesc(computedPCs,[band1 band2 band3]); where in band1 band2 and
band3 you can try and use several PCs among the first 10.

- Can you more or less separate the different classes?

* Can you 'see’ more information in the first 3 PCs with respect to the RGB combination
of the original HS image that you created in the previous exercise? Use the command
figure, hyperImagesc(salinas_corrected,[10 20 30])
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Figure 7.1: Band 42 and ground truth for the Salinas dataset.

* hyperImagesc is a much better way of visualizing a 3 band combination of a hyperspec-
tral image: why we did not use it for the Carnuntum dataset? Try it out! What happens?
Where is the problem?

8 SPECTRAL UNMIXING: WHAT IT IS?

Slides: reminder on spectral unmixing & introduction to Least Squares

Unmixing generally refers to a process which includes two steps:

* 1-The identification of a set of pure (or purest) pixels in the scene known as endmem-
bers, which are related to the spectra of macroscopically homogeneous materials.

e 2 - An endmember abundance quantification algorithm (inversion step) to define the
percentage of different endmembers in each pixel.

* In our case step 1 has already been taken care of (results are collected in the spectral
library ’'lib’)
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Figure 8.1: Results of Spectral Unmxing
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How do we get m & g in this example?

We have a surface in this space (think of it in 3d) which is given by the cost function for given
values of m and q;

sum(dist(line, points)*2)

We select a random point to start and compute its first derivative

We move towards the direction of the derivative and compute again the cost function

We go on until we stop in the optimum value!

Figure 8.3: The idea behind the minimization of a cost function. The circles represent the
cost function, which is to be imagined in 3rd dimensions as an upside-down cone

pointing inside the page. Its center has then the lowest value.
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What if we have 2 endmembers?

Vegetation

\j

Soil

We try to express our spectrum & as a linear combination of two sample spectra V and S, for
example:

S'=04F+0585.

Our cost function is the difference (S - §7"2 between the original spectrum S and the
reconstructed one §°

We take another step and compute again the cost function = distortion, until convergence!

Figure 8.4: The case of linear spectral unmixing. In practice a direct solution is used, but it is

easier to understand the concept through this diagram.
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8.1 UNCONSTRAINED LEAST SQUARES

We will now perform a simple unmixing through Least Squares, which is a general method for
the approximate solution of overdetermined systems (systems of equations which have more
equations than unknown variables). We have an error function that we want to minimize,
and to do it we could use the intuitive but time-consuming method presented in the images.
Instead, we can solve this problem directly by multiplying each pixel by the pseudoinverse
matrix of the endmembers: the pseudoinverse computation is a kind of relaxation of the in-
verse matrix one, and it can be applied to non-square matrices. This makes sure that we
project each pixel orthogonally to the space spanned by the spectra related to the endmem-
bers, minimizing the error: a mathematical explanation is not given here, try just to keep in
mind the general idea which offers a direct (instead of iterative) solution to this problem.

Exercise 15

* Convert the HS image to 2D (you can reuse the variable you created in previous exer-
cises), where the first dimension is equal to the number of bands and the second to the
total number of pixels (use the command reshape). If the dimensions are in reverse
order (first pixels and then bands), you have to transpose the 2D image as we have seen
in the first pages of this exercise.

e Perform Unmixing through UCLS using the function hyperUcls(2dimage, spectralLi-
brary)

» Convert again the results to 3D. How many bands do you have now? What is each band
representing?

* Check the abundance map for each material (or endmember). Use the jet colormap for
a better visualization. Use the command ’colorbar()’ to understand each abundancy
map.

8.2 NON-NEGATIVE LEAST SQUARES

Exercise 16

Follow the same steps as in the previous exercise, but this time use non-negative Least Squares,
which forces all spectral abundances to be positive. This makes sense if we think about it, as a
pixel can be composed 50% by water and 50% by vegetation, but -10% of any material would
make no sense.

Use the function hyperNnls(2dImage, spectralLibrary). Is it faster or slower than its uncon-
strained version used in the previous exercise?
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8.3 ANALYSIS AND COMPARISON OF THE RESULTS

Exercise 17
Visualize all the results in two images. For each set of results, use the command subplot using
aloop:
A sample loop in Matlab:
fori=1:10
i*2 % Prints i*2
end

Which result looks better? Could you separate the different classes on the basis of these re-
sults?

8.4 CLASSIFICATION AND VALIDATION

We will now perform a classification of the image, in which we will label each pixel with the
class having the highest abundancy in the unmixing results.

Exercise 18

Classify the image using your unmixing results.

¢ Check the help for the function max by typing "help max’. You will need to use the ver-
sion with two outputs, one of which is the maximum abundance among all bands while
the other shows which band has this maximum value: [outputl, output2] = max(UnmixingResults)

* Try to build a single band image (in grayscale) which has as a value for each pixel the
number of the material with highest abundancy in it (which is the number of the band
with highest abundancy in the unmixing results).

» Take care: you don’t want the abundancy value in the image you are creating, but only
the number identifying the material (the results should range from 1 to 16).

* Now merge classes 10 and 16: assign to all pixels with class 16 the value 10, using some-
thing like: image(image_condition) = value;
in which your condition is that the image is equal to 16.

* Mask your classification results using the ground truth: set to 0 all values for which
salinas_gt is 0 (these are unclassified pixels, they are not part of the ground truth and
we don’t know which class they have).

* Visualize the results with the jet color map.
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* Compare with the ground truth image. Does the classification results look good? Which
ones look better between the results of unconstrained least squares and non-negative
least squares?

Exercise 19

Validate the accuracy of your classifier. To do this, you can simply count the percentage of
relevant pixels which are assigned to their correct class.

* You should have your classification results ranging from 1 to 15.

* Class 16 in salinas_gt was not included in the spectral library, therefore we have to ig-
nore it. Create a new ground truth image containing the values of salinas_gt up to 15
(set to 0 all values equal to 16).

* Now count the total number of 'valid’ pixels in the ground truth using the command
sum. Inside you must write the condition salinas_gt > 0. Save this number in the vari-
able 'TotValid’.

* Count the number of pixels in salinas_gt which are both greater than 0 and equal to the
value in your classification images. You can do a test on two conditions at the same
time in Matlab like this (try to execute this commands first to have an idea):

2>0&mod(4,2) ==0

1<3&2+2>7

Save this quantity in the variable totCorrect
e Compute the accuracy as totCorrect * 100 / totValid.

* How much is the accuracy for the two classifiers?

9 NOISE REDUCTION THROUGH SPECTRAL UNMIXING

Until now we saw how to represent a pixel as a linear combination of 'pure’ spectra (end-
members) through spectral unmixing. You probably noticed that unmixing results have a
dimensionality much lower than the original dimensionality of the data (we went from over
200 to only 16 dimensions).

What happened then with all the rest of our data? A part of them was redundant, therefore
this synthetic way of representing it did not imply a loss of information. On the other hand,
we have a part of the informational content of each pixel that of course couldn’t be repre-
sented just as a linear combination of a restricted number of spectra in our spectral library.
Now we will see how this information we lost is mostly composed by noise. This is due to
several sources: atmospheric absorption effects which decrease the signal-to-noise ratio in
some bands, electronic interferences, variability in the path that a ray of light takes in coming
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Figure 9.1: Summary of the simple algorithm for noise reduction based on spectral unmixing
(UBD).

from the atmosphere, getting reflected on the ground and reaching the hyperspectral sensor.
To do this, we are going to reconstruct the original data starting from our unmixing results
and our spectral library.

Exercise 20

Unmixing-based Denoising (UBD).

This methodology, developed in our research group at DLR, takes as input a hyperspectral im-
age and a spectral library (this must have some characteristics which we will describe later).
The same image is given as output in which the noise is strongly reduced in the most prob-
lematic bands.

* Visualize band 1 and band 42 of the Salinas dataset. What can you say about the differ-
ent level of noise affecting the two bands?

* Use the code 'UBD.m’ using as input the image and the spectral library lib:
¢ Execute the command [reconstructed errors] = UBD (salinas_corrected, lib);

* UBD carries out a spectral unmixing step based on non-negative least squares, and
reconstructs the original image ignoring any component of the signal which cannot be
represented as a combination of the spectra contained in the spectral library lib.

* Visualize band 1 in the original and in the new dataset. Try improving visualization re-
sults using the command: imshow(image(:,:,1),[200 800]), which performs a histogram
stretch between the values 200 and 800.

10 BAND SELECTION

We saw how hyperspectral datasets contain redundant information as neighbouring bands
are highly correlated. How can we select bands which contain the highest amounts of infor-
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Figure 9.2: Example of noise reduction through UBD: band 224 for the AVIRIS image acquired
over Cuprite, Nevada.

mation?

10.1 INSPECT THE DATA
Open band 1 and band 42 of the Salinas dataset. Which band you expect to have more infor-
mation?
10.2 VARIANCE
Slides about variance

Exercise 21

* Convert the Salinas image to 2 dimensions (pixels x bands).

* Create an array with the same number of elements as bands in the image: variances =
zeros(numberOfBands, 1);

* For each value compute the variance of a band with the command var(mySingleBand)

Plot the variances: plot(variances)

What can you see? Do you see any correlation between the variances and something else you
have been creating lately?

10.3 ENTROPY

The variance only tells us the absolute variation in each band. Bands reflecting more energy
will of course have higher variance, while "dark" bands will naturally have a low one. That’s
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because there is no direct relation between variance and information! To have that, let’s look
at the concept of entropy...

Slides about entropy

Exercise 22
Compute the entropy for each band, in a similar way to what you have done before.

1. Create an array with the same number of elements as bands in the image (as you did
before with the variances)

2. For each value compute the entropy of a band with the function entropy(image2D,
bandNumber)

3. The entropies are computed as H(X) = -}, p(x)log, p(x) and the histogram of each
band is considered as the probability density function p(x)

4. Plot the entropies

Check the single bands in ENVI. How does it look like: is it getting better with respect to
results from simple variance analysis? What do you have in correspondence of bands with
low entropy?

10.4 MUTUAL INFORMATION

The point is, it is difficult to know which band is better a priori with measures which are
computed for each band such as the entropy: a band with high entropy could be better for
a given task and worse for another, or the entropy could be high just because the band is
specially noisy. What you need is some kind of joint information measure, and what you
need is to know if a band is better or worse for a given task at hand.

Let’s look at the concept of mutual information, which is the base of many band selection
algorithms.

Slides about mutual information

Mutual information allows us to quantify the information shared from two datasets, even if
the values are completely different.

Exercise 23

First of all let’s see what the differences in the joint probability function between the ground
truth and different bands in the Salinas dataset represent (slide).

1. Save in a variable n the total number of pixels in Salinas, nRows x nColumns

2. Save in the variable testl the Salinas ground truth, converted to one dimension with
the command reshape: testl = reshape(salinas,n,1);
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3. Now create a new array that will contain the mutual information between each band
and the ground truth: each value must be the result of applying the routine mutual-
info(testl, image2D(:,bandNumber));

4. Now you can plot the mutual information. This is a very good indicator on which bands
are the best to be used in our classifier.

Exercise 24

Now let’s verify what is an usual effect of denoising the dataset. Do you think the mutual
information will increase or decrease?

1. create a denoised version of band 1 of the salinas dataset using the Unmixing-based
Denoising (UBD) you applied last time: [reconstructed errors] = UBD(salinas_corrected,lib);

2. Compute again the mutual information between band 1 of the denoised dataset and
the ground truth image.

3. did the mutual information go up? This hints that this band is now much better (if
taken singularly) to classify the areas of interest.

11 CLUSTERING

Slides on Clustering

Exercise 25

1. Let’s open the Landsatimage "subset" with the routine var = enviread('imageName’,’headerName’)

2. Let’s visualize an RGB combination with the command imshow(uint8(x(:,:,[3 2 11)),[])
or better open the image with ENVI and visualize an RGB combination (Yes, Matlab is
not the best to visualize color images in a simple way).

3. Use the Matlab function var = kmeans(2D_image,nClusters) where 2D_image is the im-
age reshaped to 2 dimensions (pixels, bands). Choose a number between 6 and 9 for
the number of clusters.

4. Reshape the results in var to 2 dimensions and visualize the results. Apply the jet color
map: colormap(jet)

5. Do the different clusters represent different targets in the scene?
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12 MORPHOLOGICAL PROCESSING

Slides on Morphological Processing
We will now perform some basic morphological processing operations. We know already the
median filter which will be not taken into account.

Exercise 26

1. Create your own structuring element: it can be a 3x3 matrix filled with ones using the
command: w = ones(3,3) or a cross with the command: w=[010;111;010]

2. Get your own binary image by creating a mask! Select all pixels in band 7 (Short Wave
Infrared) with a value smaller than 10. Visualize the mask.

3. Let’s see and understand what happens when we apply the following morphological
functions:

a)
b)
c)
d)

e)
f)

g)

h)

i)

)

Dilation -> imMorph = imdilate(image,w);
Erosion -> imerode(image,w)
Opening -> imopen(image,w)

Verify that the result of imopen is the same as applying a dilation to an eroded
image.

Closing -> imclose(image,w)

Verify that the result of imclose is the same as applying an erosion to a dilated
image.

What operator would be the best to extract this particular sea area you are inter-
ested in?

Now fill the holes in the processed sea mask with the command newMask = im-
fill(seaMask);

Click on the areas with value 0 you want to be filled with value 1. Take care not to
click on anything which is connected to the large black area, if not everything will
be filled by 1! When you are done, right click on the image to close the tool.

Does it look nice?

4. Let’s see how to use morphology to improve some bad classification results..

a)

b)

c)

Open one of your previous classification results, better if it is a bad one such as the
one computed on the basis of the unconstrained least squares unmixing results.

"open" and "close" the image a couple of times: does it improve the results?

What happens if you use a very large structuring element such as w=ones(9,9)? Is
it improving results more than a small one?
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