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Summary 
 

The specific deliverable summarizes the material related to the 2nd Summer School of the 

project entitled “Special issues of Optical Remote Sensing”. The deliverable contains actions 

completed prior the accomplishment of the Summer School, such as the agenda, while it 

also includes all the material delivered during the Summer School (e.g. presentations, 

supportive documents etc.), the list of participants and pictures from the event.  
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1. Introduction 
 

The 2nd Summer School of ATHENA project has been successfully accomplished in line to 

the timeline of the project. The ATHENA Summer School took place in Cyprus University of 

Technology premises in Limassol, Cyprus between the 12th and the 15th of June 2017.  

 

Visiting scientist from the Remote Sensing Technology Institute of DLR (Dr Daniele Cerra) 

met with members of the Remote Sensing and Geo-Environment Research Lab of the 

Department of Civil Engineering and Geomatics to introduce them to the typical processing 

chain for applications using satellite images, with a special focus on hyperspectral image 

processing and archaeological applications. 

 

On Monday a reminder on image characteristics has been given, along with the properties of 

image filters carried out in time domain. The attendees have programmed and applied 

sample filters during the hands-on sessions. 

 

On Tuesday, the concept of Fourier transform has been used to introduce filtering operations 

in the frequency domain. An overview on contextual analysis of image elements (edge 

extraction, texture estimation, invariant features) has been given, along with practical 

exercises building up from previous topics. 

 

Wednesday and Thursday have been completely allocated to hyperspectral image 

processing. On Thursday, the related basic concepts have been introduced along with an 

overview on the applications, and a tutorial on dimensionality reduction has been given and 

tested by the attendees in the Matlab environment.  

 

Following, spectral unmixing techniques have been used in the frame of a longer exercise 

aimed at performing supervised classification of different kinds of crops in a hyperspectral 

image. To close, an interactive tutorial on band selection has been given.  
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2. Agenda of the summer school 
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3. List of Participants 
 

Contracted Researchers as well as graduate and Master students of the Cyprus University of 

Technology attended the Summer School. The list of participants for each day is given 

below. 

Monday, 12th June 2017 
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Tuesday, 13th June 2017  
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Wednesday, 14th June 2017 
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Thursday, 15th June 2017 
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 4. Presentations during the summer school 
 

All presentations of the Summer School are given in the Annex of the present Deliverable, in 

the following order: 

 

4.1 Image Characteristics  

4.2 Filtering in Time Domain  

4.3 Filtering in Frequency Domain 

4.4 Contextual Analysis – Texture, Edges, Invarant Features 

4.5 Clustering and Classification 

4.6 Introduction to Hyperspectal Image Processing  

4.7 Hyperspectral Data - Applications 

4.8 Dimensionality Reduction – PCA Tutorial 

4.9 Spectral Unmixing 

4.10 Tutorial on Band Selection 

 

Additionally, a manual prepared by the trainer relative to Remote Sensing Exercises with 

Matlab with a special focus on Hyperspectral Image Processing has been disseminated to 

the trainees and is attached at the end of the Annex. 
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5.Photographs taken during the 2nd Summer School  
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ANNEX 
 

PRESENTATIONS OF THE SUMMER SCHOOL (4.1-4.10) and Manual on Remote 
Sensing Exercises with Matlab with a special focus on Hyperspectral Image 

Processing 

 



Remote Sensing Image Processing with Matlab

with a special focus on hyperspectral data analysis

Limassol, Cyprus University of Technology

12-15.06.2017

Daniele Cerra, German Aerospace Center (DLR)



Image Processing Workflow

Daniele Cerra, German Aerospace Center (DLR)



Processing of Remotely Sensed Data:
from a Bunch of Numbers to… 

Land Cover Classification

Target Detection
(here: Forest Fires) 3D Surface Modelling

Feature Extraction

Multitemporal Analysis

(here: Urban Sprawl Monitoring)



• Image Acquisition & Correction
• Raw Data Raw Image  Image

• Low-level Analysis
• Image  Image

• Time domain

• Frequency domain

• Mid-level Analysis
• Image  Features / Attributes

• Feature Extraction

• Clustering / Segmentation

• High-level Analysis
• Features  Recognition

• Classification

Beach Bar

Wave Breakers

Vegetation1

Vegetation2

Golf Course

Urban Area

Shadows

Sea

Mountains (bright slopes)

03 29 38 48 

59 96 94 04 

05 06 96 97 

87 76 75 45



A nice book!



Summary

• Image Acquisition & Characteristics

• Spatial, radiometric & spectral resolution

• Image Correction

• Image enhancement

• Time Domain

• Frequency Domain

• Sampling & Aliasing

• Image Features 

• Image Clustering

• Image Classification



Summary

• Image Acquisition & Characteristics

• Spatial, radiometric & spectral resolution

• Image Correction

• Image enhancement

• Time Domain

• Frequency Domain

• Sampling & Aliasing

• Image Features 

• Image Clustering

• Image Classification



Gonzales and Woods

Image Acquisition



Image representation

• In a digital image, both the coordinates and the image 

value become discrete quantities

• Images can be represented as 2D arrays (matrices) of 

integer values: I[i,j] (or I[r,c])

• The term gray level is used to describe monochromatic 

intensity

A rasterized form of 

the letter 'a' 

magnified 16 times 
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Sampling and quantization



Spatial resolution  Sampling

• Spatial resolution is the smallest discernible detail in an image

• Ground Sampling Distance is the principal factor determining 
spatial resolution

1024 x 1024 samples 30m

256 pix  120 m

128  240m

64  480
32  1 km

512 pixels  60m



Ground Sampling Distance (GSD) is not directly 
proportional to the number of pixels!

1024 x 1024 512 x 512 256 x 256

128 x 128 64 x 64 32 x 32

These images have been resampled to 1024 x 1024 pixels



Spatial resolution: Resampling

128 x 128 64 x 64 32 x 32

128 x 128 64 x 64 32 x 32

Resampling 

without 

interpolation 

(nearest-neighbour 

resampling)

Resampling with 

interpolation (each 

pixel is a 

combination of 

neighbouring 

pixels)



Radiometric Resolution



Radiometric resolution  Quantization
• Radiometric resolution refers to the smallest discernible change in gray level (often power 

of 2)

• The human eye is inefficient at distinguishing differences in gray levels much beyond the
limit of 16 (but to the machine it may make a big difference)

256 gray levels 128 64 32

16 8 4 2



Spectral Resolution & Color Display

Reflected energy for each 
pixel in the frequencies Blue, 
Green, Red & Near Infrared

R G B

3 2 1

NIR R G

4 3 2



Remote Sensing: multiband Images (Landsat)

Band 1 Band 2 Band 3

Band 4 Band 5 Band 7



Remote Sensing: multiband Images

• We can visualize 3 bands at a time: pseudocolor

R G B

3 2 1

NIR R G

4 3 2

SWIR NIR R

7 4 3

True Color False Color CompositeFalse Color Composite



How many Sensors / kinds of images / datasets in RS?

Panchromatic

Multispectral

Hyperspectral

Radar (SAR)

Thermal Lidar

Sonar

O
p

ti
ca

l P
as

si
ve



Optical Passive Sensors in Remote Sensing

Spatial Resolution

Sp
e

ct
ra

l R
es

o
lu

ti
o

n

Multispectral

Panchromatic

Hyperspectral



Image Correction

• Raw images  are minimally processed images coming 

directly from the image sensors

• They usually go through several correction steps

• Some important ones are:

• Dark Signal Correction

• Non-linearity Correction

• Odd-even Effect Correction

• Dead Pixels Flagging



Dark Signal Correction

• Electronic interferences make the recorded

signal (a bit) different than it really is

• Dark Signal Measurements

• Shutter Method

• Before every take an acquisition is made

with the shutter closed. The resulting

signal is the „dark current“

• Deep Space Looking

• Measures thermal radiation that can

affect Dark Signal measurements

• Dark pixels of the SWIR detector

• Dark signal depends on the stability of

the supplied voltage

• During image special pixels which stay

dark are used as reference

Dark Signal Measurement



Non-linearity Correction

• The response of a detector as a function of integration time is

not linear

• The (non-linear) pixel response is measured at different 

exposition times and a correction is estimated as a linear 

function

• During the process dark signal has to be taken into account



Odd-Even Effect

• The odd-even column effect 

consists of variations of the 

signal between the columns of 

the array
• It is due to differences between

sensor arrays

• It is easy to correct
• Check the difference between the

average values of a given column

and its neighbouring columns

Raw Image with Odd-even Effect



Dead Pixel Map

• A list of pixels which readings do not have any meaning

• They are declared as „dead“ and ignored (set to 0)

• Different kinds of dead pixels:

• No response

• Very large output (hot pixel), saturates easily

• Flickering pixel (constantly changing output)

• Constant output



Image Correction

• Once our raw data are corrected, the image is formed and usually

undergoes other correction steps….

• Atmospheric Correction (more about it later - Hyperspectral)

• Geometric Correction / Orthorectification (more about it later- SIFT)

Image by C. Wu



• Image Acquisition & Correction
• Raw Data Raw Image  Image

• Low-level Analysis
• Image  Image

• Time domain

• Frequency domain

• Mid-level Analysis
• Image  Features / Attributes

• Feature Extraction

• Clustering / Segmentation

• High-level Analysis
• Features  Recognition

Beach Bar

Wave Breakers

Vegetation1

Vegetation2

Golf Course

Urban Area

Shadows

Sea

Mountains (bright slopes)

03 29 38 48 

59 96 94 04 

05 06 96 97 

87 76 75 45



Summary

• Image Acquisition & Characteristics

• Spatial, radiometric & spectral resolution

• Image Correction

• Image enhancement 

• Time Domain

• Global Techniques: Histogram Stretch

• Local Techniques: Moving Window Transform

• Frequency Domain

• Sampling & Aliasing

• Image Features 

• Image Clustering

• Image Classification



Image enhancement

• Enhance: to make greater (as in value, 

desirability, or attractiveness)

• The principal objective of 

enhancement is to process an image so 

that the result is more suitable than the 

original for a specific application

• Enhancement is subjective!

• A good technique for a given application 

is not valid for another one
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Sample Histograms, Natural Images



Histogram processing

How do you expect the histograms for these pictures?



Histogram Stretching

In how many ways can 
we stretch this?



Histogram Stretching

Selective Linear Stretch

• We take Digital Numbers between 5 and 65
• We expand these from 0 to 255
• All values < 5 are set to 0
• All values > 65 are set to 255
• All values in between are stretched proportionally 

So?



Histogram Stretching

Selective Linear Stretch, let us try to get rid of these dark areas!

• We take now the DNs between 0 and 45
• We expand these from 0 to 255

Or better 
so?



Histogram Stretching

Linear-with-Saturation stretch

We assign 5% of pixels at each end (tail) of the histogram to single values,
and stretch the values in between 

That looks 
better...



Histogram Stretching: Comparison

Automatic 
Linear-with-
Saturation

Selective
Stretch I

Selective 
Stretch II



Linear Histogram Stretch

• All 4 images are mapped 

to a similar output image 

by applying the same 

histogram stretch function



Histogram Equalization vs. Linear Stretch

Equalized Contrast StretchLinear Contrast Stretch

Equalized Contrast Stretch

Linear Contrast Stretch 
(w Saturation 2%)



Histogram Equalization vs. Linear Stretch

Buried Roman ruins in Carnuntum, Austria, stretch 0-255

Dataset courtesy of prof. M. Doneus, University of Wien

ImageOriginal histogram Stretched hist.



Histogram Equalization vs. Linear Stretch

Buried Roman ruins in Carnuntum, Austria, linear stretch

ImageOriginal histogram Stretched hist.



Histogram Equalization vs. Linear Stretch

Buried Roman ruins in Carnuntum, Austria, linear stretch with 2% saturation

ImageOriginal histogram Stretched hist.



Histogram Equalization vs. Linear Stretch

Buried Roman ruins in Carnuntum, Austria, histogram equalization

ImageOriginal histogram Stretched hist.



Summary

• Image Acquisition

• Spatial, radiometric & spectral resolution

• Image Correction

• Image enhancement 

• Time Domain

• Global Techniques: Histogram Stretch

• Local Techniques: Moving Window Transform

• Frequency Domain

• Sampling & Aliasing

• Image Features 

• Image Clustering

• Image Classification



Image Filtering in Time Domain

> Lecture > Author  •  Document > DateDLR.de  •  Chart 1

Daniele Cerra, German Aerospace Center (DLR)
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Histogram Stretching : Multiband - Recap

Original RGB image Histogram equalization 
of each individual 

band/channel

Histogram linear with 
saturation stretch at 

2% (from each 
individual 

band/channel)



Summary

• Image Acquisition & Characteristics

• Spatial, radiometric & spectral resolution

• Image Correction

• Image enhancement
• Time Domain

• Global Techniques: Histogram Stretch

• Local Techniques: Moving Window Transform

• Frequency Domain

• Image Features 

• Image Clustering

• Image Classification
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Local Techniques:

Convolution by Moving Window















ihg

fed

cba

c

g
f

i


R. A. Peters

Exercise 6



17

Institut für Methodik der Fernerkundung

Moving Window Transform: Example

original 3x3 average

Low-pass Filter

R. A. Peters
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Institut für Methodik der Fernerkundung

Moving Window Transform: Example

original 3x3 average

Low-pass Filter

R. A. Peters
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Institut für Methodik der Fernerkundung

Moving Window Transform: Example

original 3x3 average

Low-pass Filter

R. A. Peters
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Moving Window Transform: Example

original 3x3 average

Low-pass Filter

R. A. Peters
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Blurring = Arithmetic Mean Filter

4 22

3 21

4 21
2.333

Mean of a window Sxy

of size m x n centered in (x, y)

1 11

1 11

1 11

Output of a m x n lowpass
(blurring) filter, m = n = 3

1
9
_

1. Removes noise to 
some extent

2. Makes image 
smoother

1. Destroys details
2. Affects edges
3. Blurring
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Convolution Examples:  Original Images
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Convolution Examples:  33 Blur















111

111

111

9

1 Low-pass Filter
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Convolution Examples:  55 Blur




















11111

11111

11111

11111

11111

25

1
Low-pass Filter
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Convolution Examples:  99 Blur





























111111111

111111111

111111111

111111111

111111111

111111111

111111111

111111111

111111111

81

1

Low-pass Filter
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Convolution Examples:  1717 Blur







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











































11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

11111111111111111

289

1

Low-pass Filter
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)1,(

)1,(),(2





crI

crIcrI

),1(

),1(),(2

crI

crIcrI





)1,()1,(

),1(),1(

),(4







crIcrI

crIcrI

crI

),( crI

0

255

-255

510

2 -1-1 2

-1

-1

4 -1-1

-1

-1

Moving Windows for Edge Detection

High-pass Filter

R. A. Peters
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Convolution Examples:  Original Images
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Convolution Examples:  Vertical Difference



















1

2

1 High-pass Filter
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Convolution Examples: Horizontal 
Difference

 121 
High-pass Filter
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Convolution Examples:  Diagonal Difference



















100

020

001 High-pass Filter
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Convolution Examples:  Diagonal Difference



















001

020

100 High-pass Filter
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Convolution Examples:  H + V + D  Diff.





















111

181

111 High-pass Filter
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Convolution Examples:  Original Images
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Convolution Examples:
Sharpening





















010

141

010
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The Median Filter

Returns the median value of the pixels in a neighborhood

Morphological filter

 It does not “create” new pixel values but only rearranges values already present 
in the image, therefore..

 It preserves edges
original

median 

filtered

original

median 

filtered
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Median Filter

2 2 3 4 41 1 2 2

4 22

3 21

4 21
2

1. Good choice to 
remove impulse noise

2. Preserves edges
3. Avoids blurring
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Example: A Noisy Step Edge
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3225.0
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Blurred Noisy 1D Step Edge

   



4

49

1

k

knhnh
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Blurred Noisy 1D Step Edge

J(32-4:32+4)=

0.1920

0.3416

0.0464

0.0177

0.3062

1.3043

1.0079

1.0082

1.0950
J(33-4:33+4)=

0.3416

0.0464

0.0177

0.3062

1.3043

1.0079

1.0082

1.0950

1.2935

0.5910

0.7134

mean

mean
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Median Filtered Noisy 1D Step Edge

    4

4med  kknhnh
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Median Filtered Noisy 1D Step Edge

J(32-4:32+4)=

0.1920

0.3416

0.0464

0.0177

0.3062

1.3043

1.0079

1.0082

1.0950

0.0177

0.0464

0.1920

0.3062

0.3416

1.0079

1.0082

1.0950

1.3043
J(33-4:33+4)=

0.3416

0.0464

0.0177

0.3062

1.3043

1.0079

1.0082

1.0950

1.2935

0.0177

0.0464

0.3062

0.3416

1.0079

1.0082

1.0950

1.2935

1.3043

sorted

sorted

median

median
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Median vs. Blurred (Low-pass)

blurred

median
The median filter 
preserves the step 
edge better than the 
low-pass (blurring) 
filter.

step

A Noisy Step Edge

R. A. Peters
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Median Filtering of Binary Images

OriginalNoisy
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Median Filtered Noisy Original

Median Filtering of Binary Images
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OriginalBlurred Noisy

Filtering of Grayscale Images
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Color Median Filter

noisy 3×3 MF (3×3 MF)2

original 3×3 MF (3×3 MF)2

The output 
color at (r,c) is 
always selected 
from a nbhd of 
(r,c) in the 
input image.

R. A. Peters



48

Institut für Methodik der Fernerkundung

Noisy

Filtering of Multiband Images

Noisy
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3x3 Blur

Filtering of Multiband Images

3x3 Median
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3x3 Blur X 2

Filtering of Multiband Images

3x3 Median X 2
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3x3 Blur X 5

Filtering of Multiband Images

3x3 Median X 5
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3x3 Blur X 10

Filtering of Multiband Images

3x3 Median X 10
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Limit and Root Images

3x3-median root3x3-blur x n



Image Filtering in Frequency Domain

> Lecture > Author  •  Document > DateDLR.de  •  Chart 1

Daniele Cerra, German Aerospace Center (DLR)



• Image Acquisition & Correction
• Raw Data Raw Image  Image

• Low-level Analysis
• Image  Image

• Time domain
• Frequency domain

• Mid-level Analysis
• Image  Features / Attributes

• Feature Extraction
• Clustering / Segmentation

• High-level Analysis
• Features  Recognition

Beach Bar

Wave Breakers

Vegetation1

Vegetation2

Golf Course

Urban Area

Shadows

Sea

Mountains (bright slopes)

03 29 38 48 

59 96 94 04 

05 06 96 97 

87 76 75 45
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Image enhancement

 Images can be represented (and enhancement can be done in):

 Time domain

 Measurements with respect to a point in time and/or positions in space

 Direct manipulation of pixels

 Frequency domain

 Representation of a signal in terms of its ondulations

 Main concept: Fourier Transform

Physical reason: the universe works with
„waves“... is just that us humans see things
differently

Practical reason: operating in the frequency
domain is often computationally convenient, and
enables operations which are very difficult to
conduct in the spatial domain
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The Fourier Transform

Jean Baptiste Joseph Fourier

• Fourier had a crazy idea: Any periodic function can be written as a weighted sum of sines and 
cosines of different frequencies (1807)

 Fourier series

• Even functions that are not periodic can be expressed  as the integral of sines and cosines 
multiplied by a weighting function.

 Fourier transform
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The Fourier Transform

Jean Baptiste Joseph Fourier

• (Part of) the result of such transform can be represented like this…

• Don’t panic! 
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What is the idea of the Fourier Transform?

 Newton‘s prism separates a stream of white light into different colors

 These colors are components of the light at different frequencies
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What is the idea of the Fourier Transform?

 A prism separates a stream of light into different colors

 These colors are components of the light at different frequencies

 The FT decomposes any periodic (or time-limited) signal in terms of its 
frequency components

FT
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Frequency-Domain Representation 

The sinusoids (in blue) are 

called “basis functions”.

Surprise: any signal can be described by a sum of sinusoids!  

The coefficients which 

make them “larger” or 

“smaller” are the “Fourier 

coefficients”.

Their sum is the black

function approximating the 

square wave in red.

R. A. Peters
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Example: Partial Sums of a Square Wave

1 sine 2 sines 4 sines

8 sines 16 sines 32 sines

The limit of the  
given sequence 
of partial sums1

is exactly a 
square wave

1 the limit as n
approaches 
infinity of the 
sum of n sines. 



11

Institut für Methodik der Fernerkundung

    12.0

1024

0

 dttgtf

Inner Products: a measure of similarity

a function, f

g is a component of f

pointwise product f(t)g(t)
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    0

1024

0

 dtthtf

a function, f

h is a not a comp. of f

pointwise product f(t)h(t)

Inner Products: a measure of similarity
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2D Sinusoids:

orientation

... are plane waves with 

grayscale amplitudes,  

periods in terms of lengths, ...

A

q

f = phase shift
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We can represent 2D Signals as a sum of these….

I

R. A. Peters
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Fourier Spectrum

(related to the amplitude of the sinusoids)

 IFlog

R. A. Peters
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Fourier Phase
(related to the “location” –shifting- of the sinusoids)

 IF
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How to map frequencies onto an image? 

fftshifted

lowest-possible-frequency horizontal sinusoid

“horizontal” is the 
wavefront direction.

Frequency Domain

Spatial Domain

R. A. Peters
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Inverse FFTs of Impulses

fftshifted

lowest-possible-frequency vertical sinusoid

“vertical” is the 
wavefront direction.

R. A. Peters
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Inverse FFTs of Impulses

fftshifted

lowest-possible-frequency negative diagonal sinusoid

“negative diagonal” is  
the wavefront direction.

R. A. Peters
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Inverse FFTs of Impulses

fftshifted

lowest-possible-frequency positive diagonal sinusoid

“positive diagonal” is  
the wavefront direction.
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Frequencies and Wavelengths in the Fourier Plane

frequencies: (u,v) = (0,2);  wavelength: λv= 192

v = # of complete 

cycles in the 

vertical direction

λv = R / v

512 columns

3
8

4
 r

o
w

s
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Frequencies and Wavelengths in the Fourier Plane

frequencies: (u,v) = (3,0);  wavelength: λu= 170⅔

u = # of complete cycles 

in the horizontal direction

λu = C / u

512 columns

3
8

4
 r

o
w

s
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Frequencies and Wavelengths in the Fourier Plane

frequencies: (u,v) = (0,3);  wavelength: λv= 128

v = # of complete 

cycles in the 

vertical direction

λv = R / v

512 columns

3
8

4
 r

o
w

s
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Frequencies and Wavelengths in the Fourier Plane

frequencies: (u,v) = (3,3);  wavelengths: (λu, λv) = (170⅔,128)

512 columns

3
8

4
 r

o
w

s
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Frequencies and Wavelengths in the Fourier Plane

frequencies: (u,v) = (4,3);  wavelengths: (λu, λv) = (128,128)

512 columns

3
8

4
 r

o
w

s
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Inverse FFTs of Impulses

highest-possible-frequency horizontal sinusoid (C is even)

“horizontal” is the 
wavefront direction.

fftshifted

R. A. Peters
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Inverse FFTs of Impulses

highest-possible-frequency vertical sinusoid (R is even)

“vertical” is the 
wavefront direction.

fftshifted

R. A. Peters
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Inverse FFTs of Impulses

highest-possible-freq horizontal+vertical sinusoid (R & C even)

a checker-board 
pattern.

fftshifted

R. A. Peters
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Example: build the image of an ‚A‘

Final Image Original 2D 
functions

Weighted 2D 
functions

Low Weight

High Weight

2D functions
(similar to Fourier impulses)
(each may correspond to a given 
pixel in the spectrum)
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FT of an Image (Spectrum + Phase)

Image Fourier spectrum Phase (‘Panning’

of each sinusoid)
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Examples

Adapted from Shapiro and Stockman
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by Selim Aksoy

Examples

Example building patterns in a 

satellite image and their 

Fourier spectrum.
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Test: Associate each image to its spectrum!

Adapted from Antonio Torralba

A B C

1 2 3
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Filtering in the Frequency Domain
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Blurring: Averaging / Lowpass Filtering 

Blurring results from: 

Pixel averaging in the spatial domain:

 Each pixel in the output is a weighted average of its neighbors.

 Is a convolution whose weight matrix sums to 1.

 Lowpass filtering in the frequency domain:

 High frequencies are diminished or eliminated

 Individual frequency components are multiplied by a nonincreasing function of  such 

as 1/ = 1/(u2+v2).

The values of the output image are all non-negative.
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Convolution Examples:  55 Blur




















11111

11111

11111

11111

11111

25

1

First lecture (yesterday)
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Sharpening: Differencing / Highpass Filtering 

Sharpening results from adding to the image, a copy of itself that has been: 

 Pixel-differenced in the spatial domain:

 Each pixel in the output is a difference between itself and a weighted average of its 
neighbors.

 Is a convolution whose weight matrix sums to 0.

 Highpass filtered in the frequency domain:

 High frequencies are enhanced or amplified.

 Individual frequency components are multiplied by an increasing function of  such as 
= (u2+v2), where  is a constant.

The values of the output image  positive & negative.
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Power Spectrum and Phase of an Image

Consider the 
image below:

Original Image Power Spectrum Phase
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Ideal LPF in FDOriginal Image Power Spectrum

Ideal Lowpass Filter Image size: 512x512
FD filter radius: 16
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Original ImageFiltered Image Filtered Power Spectrum

Ideal Lowpass Filter
Image size: 512x512
FD filter radius: 16
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CS 484, Spring 2011 ©2011, Selim Aksoy 41

Ideal Lowpass Filter
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Ideal HPF in FDOriginal Image Power Spectrum

Ideal Highpass Filter Image size: 512x512
FD notch radius: 16
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Original ImageFiltered Image* Filtered Power Spectrum

Ideal Highpass Filter
Image size: 512x512
FD notch radius: 16

*signed image; 0 
mapped to 128 Why?
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CS 484, Spring 2011 ©2011, Selim Aksoy 44

Ideal Highpass Filter

Adapted from Gonzales and Woods
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Ideal Filters Do Not Produce Ideal Results

Ideal LPF

Blurring the image above 
w/ an ideal lowpass filter…

…distorts the results with 
ringing or ghosting.
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Optimal Filter: the Gaussian

22 2)(

2

1)( 



 xexg

One-Dimensional Gaussian
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Two-Dimensional Gaussian

22

2222

2

2

2

2
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
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If  and  are 
different for r & c…

…or if  and  are 
the same for r & c.

r

c

R = 512, C = 512

 = 257,  = 64
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Gaussian LPF

With a gaussian lowpass 
filter, the image above …

… is blurred without ringing 
or ghosting.

Optimal Filter:  The Gaussian
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Gaussian LPF in FDOriginal Image Power Spectrum

Image size: 512x512
SD filter sigma = 8Gaussian Lowpass Filter
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Original ImageFiltered Image Filtered Power Spectrum

Gaussian Lowpass Filter
Image size: 512x512
SD filter sigma = 8
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51

Gaussian Lowpass Filter
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Gaussian HPF in FDOriginal Image Fourier Spectrum

Gaussian Highpass Filter

R. A. Peters
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Original ImageFiltered Power Spectrum

Gaussian Highpass Filter
Image size: 512x512
FD notch sigma = 8

*signed image; 0 
mapped to 128

Filtered Image*
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Gaussian Highpass Filter

Adapted by Selim Aksoy from Gonzales and Woods
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Original Image Ideal HPF*Ideal LPF

Comparison of Ideal and Gaussian Filters

*signed image; 0 
mapped to 128
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Original Image Gaussian HPF*Gaussian LPF

Comparison of Ideal and Gaussian Filters

*signed image; 0 
mapped to 128
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Another Highpass Filter

original image filter power spectrum filtered image*

*signed image; 0 
mapped to 128
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Original Image + Horiz. + Vert. Edges

originalsharpened

R. A. Peters
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Original Image + Horiz. + Vert. Edges

sharpenedoriginal

R. A. Peters
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Gaussian Bandpass Filter

Fourier Domain Rep. Spatial Representation Central Profile

Image size: 512x512
sigma = 2 - sigma = 8
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Gaussian BPF in FDOriginal Image Power Spectrum

Gaussian Bandpass Filter
Image size: 512x512
sigma = 2 - sigma = 8
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Original ImageFiltered Image* Filtered Power Spectrum

Gaussian Bandpass Filter
Image size: 512x512
sigma = 2 - sigma = 8

*signed image; 0 
mapped to 128
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Filtered Image* Negative PixelsFiltered ImagePositive Pixels

Gaussian Bandpass Filter
Image size: 512x512
sigma = 2 - sigma = 8

*signed image; 0 
mapped to 128
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Original Image Gaussian BPF*Ideal BPF*

Comparison of Ideal and Gaussian Filters

*signed image; 0 
mapped to 128
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Removal of Horizontal Stripes

Log power spectrum Filter HOriginal image I
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Removal of Horizontal Stripes

Original image I Filtered Image

I*Hreject

Inverse FT of H
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Bandreject Filter

Log power spectrum Bandreject filterOriginal image
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Bandreject Filter

Original image Bandreject filter

Filtered image

Noise components

*
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©2011, Selim Aksoy

Summary: Global & Local Techniques

Histogram Stretching + Sharpening

Original RGB image Histogram stretch Image Sharpening

Warning  sharpening increases noise: do not sharpen a noisy image!
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Effects of Noise on Enhancement of High 
Frequencies

Random noise

(several times magnified!)

original image

+
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noisy imageoriginal image

Effects of Noise on Enhancement of High Frequencies
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HF enhanced original HF enhanced noisy image

Effects of Noise on Enhancement of High 
Frequencies
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noisy imageoriginal image

Effects of Noise on Enhancement of High 
Frequencies
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HF enhanced original HF enhanced noisy image

Effects of Noise on Enhancement of High 
Frequencies



76

Institut für Methodik der Fernerkundung

HF enhanced originaloriginal image

Effects of Noise on Enhancement of High 
Frequencies
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noisy image HF enhanced noisy image

Effects of Noise on Enhancement of High 
Frequencies
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Some Interesting Applications

(Optional, we will probably stop here )
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CMYK color model

 Cyan-Magenta-Yellow is the standard color 
model for paper printing

 How are the colors superimposed?





















































B

G

R

Y

M

C

1

1

1
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Processing Scanned Press-Printed Images

4-color printing:

1. A photograph or other color image is separated into four 

intensity band images: cyan, magenta, yellow, and black.

2. Each of these is multiplied by a halftone screen – a dot mask 

with a unique orientation.

3. Each of the resulting four images shows a pattern of dots 

whose individual sizes indicate the amount of ink to be 

applied at each point.

4. The four images are printed, one atop the other, in the 

corresponding color.
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Halftone Screen 
s
p
a
c
e

fr
e

q
u
e
n
c
y
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Halftone Screens 
s
p
a
c
e

fr
e

q
u
e
n
c
y
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CMYK Standard Halftone Screens

Power Spectra

Each band has 2 perpendicular 
sinusoids + an impulse in the origin…
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CMYK Standard Halftone Screens

space domain images

cyan magenta

yellow black

105° 75°

90° 45°

… which creates rectangular 
grids at 4 different angles.
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CMYK Standard Halftone Screens

space domain images

cyan magenta

yellow black

105° 75°

90° 45°

When the 4 are summed, the 
result is a “rosette” image.
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That is, an intensity image is 
created for each of the four 
color bands.

Example:  Color Separation / Halftoning

To print an image, it is 
separated into 4 color bands …
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Color Separation / Halftoning

each screened image is printed in 
its own color on the same page.

Each intensity image is multiplied 
by a corresponding screen, then

Cyan Magenta

Yellow Black

… each of which is multiplied by 
a corresponding screen.
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Example:  Color Separation / Halftoning

To print an image, it is 
separated into 4 color bands …

Here the bands tinted in their 
corresponding colors.
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Example:  Color Separation / Halftoning

… each of which is multiplied by 
a corresponding screen …

Here the screens tinted in 
their corresponding colors.
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Example:  Color Separation / Halftoning

…to get dot patterns for printing.
The 4 are printed over each other 
to get the final result.
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Halftone Dots

Image scanned (600 dpi) 

from a magazine

Detail: Circular patterns, the rosettes, 

are the result of the halftone dots.
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Filtering Out Halftone Dot Distortion

original log power spectrum
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Filtering Out Halftone Dot Distortion

original log power spectrum

Each pair of peaks 
corresponds to a 
sinusoidal sub-pattern 
in the HTD pattern.
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Blurring with a Gaussian (σ = 1)

blurred image σ=1 log power spectrum σ=1
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Blurring with a Gaussian (σ = 2)

blurred image σ=2 log power spectrum σ=2
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Blurring with a Gaussian (σ = 4)

blurred image σ=4 log power spectrum σ=4
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Blurring with a Gaussian (σ = 8)

blurred image σ=8 log power spectrum σ=8
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Blurring with a Gaussian (σ = 1)

blurred σ = 1original

middle gray = 0, normalized

difference
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blurred σ = 2 original

Blurring with a Gaussian (σ = 2)

difference

middle gray = 0, normalized
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Blurring with a Gaussian (σ = 4)

blurred σ = 4original difference

middle gray = 0, normalized
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blurred σ = 8 original

Blurring with a Gaussian (σ = 8)

difference

middle gray = 0, normalized



103

Institut für Methodik der Fernerkundung

Problem with Blurring to Reduce HTD Distortion

It blurs everything.

Better to remove the HTD frequency components selectively:  

1. Read in the image.

2. Compute the log power spectrum of the image.

3. Find the locations of the HTD spectrum peaks.

4. Mark these on a mask.

5. Enlarge the points to regions that cover most of the energy.

6. Blur the mask for used as a notch filter.

7. Multiply the Fourier transform of the image by the mask.

8. Take the inverse Fourier transform of the result.
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Remove HTD Distortion Selectively

1. Read in image;  2. Compute power spectrum;  3. Locate HTD frequency components;  4. Mark locs on a mask; 
5. Enlarge points to regions;  6. Blur the mask;  7. Multiply FT of image by mask;  8. Take inverse FT of result;

… through notch 
filtering.
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Notch Filtering of Halftone Dot Distortion

original log power spectrum
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Notch Filtering

frequency masked 1 log power spectrum
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frequency masked 2 log power spectrum

Notch Filtering
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frequency masked 3 log power spectrum

Notch Filtering



109

Institut für Methodik der Fernerkundung

Notch Filter Difference Images

frequency masked 1original difference

middle gray = 0, normalized
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frequency masked 2 originaldifference

middle gray = 0, normalized

Notch Filter Difference Images
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frequency masked 3original difference

middle gray = 0, normalized

Notch Filter Difference Images
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frequency masked 2frequency masked 1 difference

middle gray = 0, normalized

Notch Filter Difference Images
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frequency masked 2 difference

middle gray = 0, normalized

frequency masked 3

Notch Filter Difference Images
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Noise Enhancement: Problem with Sharpening

The spectra of most natural images fall-off toward the high frequencies.

 IID noise has a flat spectrum.

Therefore, at some relatively high frequency (HF) the energy in the noise 
is greater than that in the uncorrupted image.

Sharpening multiplies the FT of the image by u and v (or by linear 
combinations of them) which, at HF, increases the noise more than the 
uncorrupted image.
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noise fieldimage

Effects of Noise on Images
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Effects of Noise on Images

noise field center row log power spectrumimage center row log power spectrum

Recall:  Fourier transform of an impulse at (0,0) is a constant.

What is this peak?
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Effects of Noise on Images

image + noise field image + noise field center row log PS
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noise imageoriginal image

Effects of Noise on Images (Power Spectra)
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noisy imageoriginal image

Effects of Noise on Images (Power Spectra)
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blue indicates noise > imageoriginal image

Effects of Noise on Images (Power Spectra)
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red indicates image > noisenoise image

Effects of Noise on Images (Power Spectra)
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image & noisenoisy image

Effects of Noise on Images (Power Spectra)



Contextual Analysis of Image Elements

> Lecture > Author  •  Document > DateDLR.de  •  Chart 1

Daniele Cerra, German Aerospace Center (DLR)



Summary

• Image Acquisition

• Image enhancement

• Sampling & Aliasing

• Image Features 

• Spectral Features

• We will see more about this in the introduction to

hyperspectral remote sensing

• Features based on relations between pixels

• Image Clustering

• Image Classification



Power Spectrum Features

Which features can we extract from an image? 

Pixel Value for each band Texture Parameters

…and more! 

„Interesting“ Points



Context Analysis: Edge Extraction



Sobel operator

> Lecture > Author  •  Document > DateDLR.de  •  Chart 5

Sobel Operator



> Lecture > Author  •  Document > DateDLR.de  •  Chart 6

Gradient

 Edges?



Marr-Hildrith Edge detector

Original Image
Laplacian of 
Gaussian Thresholded

Output 
(zero crossings of thresh.)

Sobel Operator
Gradient

 Edges?

4 -1-1

-1

-1

2

1

1

3

2

2

2

1

1



Canny Edge detector

Original Image

Gradient Thresholded

4 -1-1

-1

-1

2

1

1

3

2

2

2

1

1



Original image

Adapted from Chandra Kambhamettu

Canny edge detector

Magnitude of the gradient



Adapted from Chandra Kambhamettu

Canny edge detector

Magnitude of the gradient

How to turn 
these thick 
regions of the 
gradient into 
curves?



• Non-maxima suppression:

• Check if pixel is local maximum along gradient direction.

• Select single max across width of the edge.

• Requires checking interpolated pixels p and r.

• This operation can be used with any edge operator when thin boundaries are 

wanted.

Canny edge detector



courtesy of G. Loy

Original image Gradient magnitude
Non-maxima 
suppressed

Canny edge detector

Adapted from Chandra Kambhamettu



Canny edge detector
Problem: pixels 
along this edge 
did not “survive” 
the thresholding

courtesy 
of G. Loy

Original image Strong edges

Adapted from Chandra Kambhamettu



• Hysteresis thresholding:

• Use a high threshold Th to start edge curves, and a low threshold 

Tl to continue them.

Canny edge detector

• Select the pixels with value v > Th

• Then collect the pixels with value v > Tl that are 

connected to selected pixels



Canny Edge Detector: Final Result

courtesy of G. Loy

gap is gone

Original
image

Strong
Edges

(gradient > 
Thigh)

Strong +
connected
weak edges

Weak
Edges
(gradient > 
Tlow)



Canny Edge detector

Original Image

Gradient Thresholded

Non-maxima 
Suppression

4 -1-1

-1

-1

2

1

1

3

2

2

2

1

1

Hysteresis 
ThresholdingResult



Canny with Canny with original 

• Canny algorithm is very sensitive to its parameters, which 

need to be adjusted for different application domains.

• Smoothing parameter σ

• Threshold for strong edges

• Threshold for weak edges



Canny Edge Detector in Remote Sensing



©2011, Selim Aksoy

Texture

• An important approach to image description is to quantify 

its texture content.

• Texture gives us information about the spatial arrangement 

of the colors or intensities in an image.



©2011, Selim Aksoy

Texture

Bark                       Bark                        Fabric                     Fabric

Fabric                    Flowers                     Flowers                   Flowers



Texture Analysis  Local Analysis of Pixels Distribution



Statistical moments

• The easiest thing we can do is 

to check the statistics of the 

histogram of a small window 

in the image

• Mean

• Standard deviation

• Variance 

• Kurtosis

• Skewness…

• This gives us hints on the 

strength of the texture only

• How to characterize it 

better?



Gabor Texture Features

Sample filter bank



Texture Classification

IKONOS image 
acquired in the 

aftermath of the 
earthquake

Classification obtained on 
the basis of the texture 

parameters only

Bam, Iran, 
suffered an 

earthquake in 
2003



Change Detection based on Texture

©European Space Imaging / DigitalGlobe

Example: Palmyra – Temple of Bel: destroyed by IS (30.08.2015)



Palmyra: Difference of Gabor Features (based on texture values)

> Lecture > Author  •  Document > DateDLR.de  •  Chart 28
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Co-occurrence matrices
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Fourier power spectrum

Example building groups (first column), Fourier spectrum of these images (second column), and the corresponding 
ring- and wedge-based features (third and fourth columns). X-axes represent the rings in the third column and the 
wedges in the fourth column plots. The peaks in the features correspond to the periodicity and directionality of the 
buildings, whereas no dominant peaks can be found when there is no regular building pattern.
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Texture Classification

IKONOS image 
acquired in the 

aftermath of the 
earthquake

Classification obtained on 
the basis of the texture 

parameters only

Bam, Iran, 
suffered an 

earthquake in 
2003
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Edge texture

Satellite images sorted according to the amount of land development (left). Properties of 
the arrangements of line segments can be used to model the organization in an area (right).
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Matching based on “Interesting” Points

Object recognition: Find correspondences between feature points 

in training and test images.
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Local Features Detectors for Image Matching

Two images from NASA Mars Rover: very hard matching case
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Two images from NASA Mars Rover: matching using local features

Local Features Detectors for Image Matching
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Model Building Database

Model building

Each feature is matched with the most similar features

Remote Sensing: Building Detection

Adapted from B. Sirmacek, DLR

Detected „Interesting Points“ Detected buildings
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What do you do when you choose Ground Control Points (GCP)?

A.S. Kiseleva
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Local features

• What makes a good feature?

• We want uniqueness.

• Look for image regions that are unusual.

• Lead to unambiguous matches in other images.

• How to define “unusual”?

0D structure
not useful for matching

1D structure
edge, can be localized in 1D, not so 

good for matching

2D structure
corner, can be localized in 2D,

good for matching
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Which points make good features?

Full image
Detail of image with gradient covar-

iance ellipses for 3 x 3 windows

from Forsyth & Ponce

Good candidates are points with strong variations in all directions
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Sample Output of a Corner Detector
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• The problem: “corners” are dependent on the scale of the 

image

• How do we choose corresponding circles independently in 

each image?

Scale Invariant Point of Interest Detection
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Look for “Corners” in Difference-of-Gaussians
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Scale Invariant Feature Transform (SIFT) descriptors
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Matching examples
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Matching examples
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Examples: panoramas
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Sony Aibo

• SIFT usage:

• Recognize

charging

station

• Communicate

with visual

cards

• Teach object

recognition



Folie 48
© Selim Aksoy

Photo tourism: exploring photo collections

• Joint work by University of Washington and Microsoft 

Research

• http://phototour.cs.washington.edu/

• http://research.microsoft.com/IVM/PhotoTours/

• Photosynth Technology Preview at Microsoft Live Labs

• http://labs.live.com/photosynth/

http://phototour.cs.washington.edu/
http://research.microsoft.com/IVM/PhotoTours/
http://labs.live.com/photosynth/
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Photo tourism: exploring photo collections

• Detect features using SIFT.
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Photo tourism: exploring photo collections

• Detect features using SIFT.
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Photo tourism: exploring photo collections

• Detect features using SIFT.
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Photo tourism: exploring photo collections

• Match features between each pair of images.
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• Link up pairwise matches to form connected components 

of matches across several images.

Image 1 Image 2 Image 3 Image 4

Photo tourism: exploring photo collections
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Photo tourism: exploring photo collections
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Summary

• Image Acquisition

• Image enhancement

• Sampling & Aliasing

• Image Features 

• Image Clustering

• Image Classification
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• Organizing data into classes such that there is

• high intra-class similarity

• low inter-class similarity

• Finding the class labels and the number of classes directly 

from the data (in contrast to classification).

• More informally, finding natural groupings among objects.

• K-means: a very popular clustering algorithm 

What is Clustering?

Keogh
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Algorithm k-means

1. Decide on a value for k.

2. Initialize the k cluster centers (usually randomly).

3. Decide the class memberships of the objects by 

assigning them to the nearest cluster center.

4. Re-estimate the k cluster centers, by assuming the 

memberships found above are correct.

5. If none of the objects changed membership in the 

last iteration, exit. Otherwise goto 3.
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0

1
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3

4

5

0 1 2 3 4 5

K-means Clustering: Step 1

Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3



Folie 59
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0 1 2 3 4 5

K-means Clustering: Step 2

Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3
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K-means Clustering: Step 3

Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3
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K-means Clustering: Step 4

Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3
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K-means Clustering: Step 5

Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2
k3
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K-means Clustering (k = 7)



A (very short) Introduction to 
Classification & Clustering
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• Organizing data into classes such that there is

• high intra-class similarity

• low inter-class similarity

• Finding the class labels and the number of classes directly 

from the data (in contrast to classification).

• More informally, finding natural groupings among objects.

• K-means: a very popular clustering algorithm 

What is Clustering?

Kmeans slides by Eamonn Keogh
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Algorithm k-means

1. Decide on a value for k.

2. Initialize the k cluster centers (usually randomly).

3. Decide the class memberships of the objects by 

assigning them to the nearest cluster center.

4. Re-estimate the k cluster centers, by assuming the 

memberships found above are correct.

5. If none of the objects changed membership in the 

last iteration, exit. Otherwise goto 3.



Folie 4

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 1

Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3
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K-means Clustering: Step 2

Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3
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K-means Clustering: Step 3

Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3
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K-means Clustering: Step 4

Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3
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K-means Clustering: Step 5

Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2
k3
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K-means Clustering (k = 7)
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From Clustering to Image Segmentation

• If we divide an image into homogeneous clusters we obtain 

a segmentation of the image
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Image Segmentation

• Partitioning of an image in 

homogeneous regions (segments)

• According to inter-pixel similarity

• Pre-processing step for machine 

recognition

• Simplification of the image in something 

simpler to analyze

• Decisions may then be taken on each 

segment rather than on each pixel

• Problems

• Which characteristics make two pixels 

similar?

• According to which criteria should we join 

the pixels into segments? Results of image segmentation with 
varying number of segments
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Grasshoppers

Katydids
The Classification Problem

(informal definition)

Given a collection of annotated data. In 

this case 5 instances Katydids of and five 

of Grasshoppers, decide what type of 

insect the unlabeled example is.

Katydid or Grasshopper?

Keogh

http://buzz.ifas.ufl.edu/258dj.jpg
http://buzz.ifas.ufl.edu/258dj.jpg
http://buzz.ifas.ufl.edu/091dmj.jpg
http://buzz.ifas.ufl.edu/091dmj.jpg
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Thorax 

Length

Abdomen 

Length
Antennae 

Length

Mandible

Size

Spiracle

Diameter Leg Length

For any domain of interest, we can measure features

Color {Green, Brown, Gray, Other} Has Wings?

Keogh



Folie 14

SIFT
Power Spectrum Features

In the case of images, which features can we use? 

Pixel Value for each band 

{RGB, NIR, SWIR, TIR, …}
Texture Parameters

…and more!
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Pixel ID Band 1 Band 2 Pixel Class

1 27 55 Water

2 80 91 Vegetation

3 9 47 Water

4 11 31 Water

5 54 85 Vegetation

6 29 19 Water

7 61 66 Vegetation

8 5 10 Water

9 83 66 Vegetation

10 81 47 Vegetation

11 51 70 ???????

We can store features 

in a database.

My_Collection

The classification 

problem for images can 

now be expressed as:

• Given a training database 

(My_Collection), predict 

the class label of a 

previously unseen pixel

previously unseen pixel = 

Adapted from E. Keogh
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Band 1

Vegetation

Water

• We can “project” the 

previously unseen pixel into 

the same space as the 

database.

• We have now abstracted 

away the details of our 

particular problem. It will 

be much easier to talk about 

points in space.

11 51 70 ???????previously unseen pixel = 

Adapted from E. Keogh
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Simple Linear Classifier

If previously unseen pixel above the line

then

class is Vegetation

else

class is Water

R.A. Fisher
1890-1962

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

Vegetation
Water

Keogh
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Nearest Neighbor Classifier

If the nearest instance to the previously 
unseen pixel is Vegetation

class is Vegetation
else

class is Water

Vegetation
Water

Joe Hodges
1922-2000

Evelyn Fix

1904-1965
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Decision Tree Classifier

Ross Quinlan
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Band 2

Band 1 > 7.1?

no yes

VegetationBand 2 > 6.0?

no yes

Water Vegetation
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Water

With a lot of data, we can build a histogram. Let us just build one for “Band 1” for now… 

The Idea Behind the Maximum Likelihood Classifier

Keogh
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We can leave the 

histograms as they are, 

or we can summarize 

them with two normal 

(Gaussian) 

distributions.

Let us use two normal 

distributions for ease 

of visualization in the 

following slides…

Keogh
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p(cj | d) = probability of class cj, given that we have observed d

3

Value of band 1 is 3

• We want to classify a pixel. Its brightness value in band 1 is equal to 3. How 

can we classify it?

• We can just ask ourselves, give the distributions of brightness values we have 

seen, if it is more probable that our pixel belongs to Water or Vegetation.

• There is a formal way to discuss the most probable classification…

Keogh
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10

2

P(Water | 3 ) = 10 / (10 + 2) = 0.833

P(Vegetation | 3 ) = 2 / (10 + 2) = 0.166

3

p(cj | d) = probability of class cj, given that we have observed d

Value of band 1 is 3

Keogh
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9

3

P(Water | 7 ) = 3 / (3 + 9) = 0.250

P(Vegetation| 7 ) = 9 / (3 + 9) = 0.750

7

p(cj | d) = probability of class cj, given that we have observed d

Value of band 1 is 7

Keogh
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66

P(Water | 5 ) = 6 / (6 + 6) = 0.500

P(Vegetation | 5 )  = 6 / (6 + 6) = 0.500

5

p(cj | d) = probability of class cj, given that we have observed d

Value of band 1 is 5

Keogh
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Sample Application
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Support Vector Machine (SVM)

• Non-probabilistic binary linear classifier

• Finds an optimal hyperplane to separate the instances of the 

two classes

• Extends to patterns that are not linearly separable by 

mapping the data onto a higher-dimensionality space

• Resistent to outliers

• Handles very well high-dimensionality data such as 

hyperspectral images

• One of the most popular classification algorithms since the 

´90s 
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Prof. Max Mustermann - Präsentationstitel

SVM et al. – Story of a Success

SVM
Vapnik et al.

1992

AVM
Wang, Wu, 

2009

BVM
Friedman et al.

1998

CVM
Tsang et al.

2007

BVM
Tsang et al.

2007

DVM
Awad et al.

2004
EVM

Chen et al.

2008

FVM
Li et al.

2006

GVM
Mansoory.

2009 IVM
Hastie, Zhu,

2005

IVM
Lawrence

2003

LVM
Singer

2000
OVM
Yang.

2009

PVM
Zhang et al.

2007

QVM
Wang, Wu,

2007

RVM
Tipping.

2001

TVM
Wang, Vutetic,

2010

VVM
Minka et al.

2009

XVM
Haffner,

2002

Adapted from Andreas Braun, KIT
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Let’s go back to linear 
classifiers…

How would you 
classify this data?

w x + b<0

w x + b>0
denotes +1

denotes -1
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Linear Classifiers

How would you 
classify this data?

denotes +1

denotes -1



Folie 31

Linear Classifiers

How would you 
classify this data?

denotes +1

denotes -1
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Linear Classifiers
f x yest

f(x,w,b) = sign(w x + b)

Any of these 
would be fine..

..but which is 
best?

denotes +1

denotes -1



Folie 33

Linear Classifiers

How would you 
classify this data?

Misclassified

to +1 class

denotes +1

denotes -1
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Classifier MarginClassifier Margin

denotes +1

denotes -1

Define the margin of 
a linear classifier as 
the width that the 
boundary could be 
increased by before 
hitting a datapoint.
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Maximum Margin

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin.

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Linear SVM

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against

1. Intuitively this feels safest.

2. If we made a small error in locating 
the boundary, we have a smaller 
chance of having misclassifications. 

3. Implies that only support vectors are 
important; other training examples 
are ignorable.

4. Empirically it works very very well.
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Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard? 

• How about… mapping data to a higher-dimensional space:

0 x

0 x

0 x

x2
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Non-linear SVM

Kernel Trick
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Non-linear SVMs:  Feature spaces
• General idea:   the original input space can always be mapped to some higher-

dimensional feature space where the training set is separable:

Φ:  x → φ(x)
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Prof. Max Mustermann - Präsentationstitel

SVM Decisions Surface

Adapted from Andreas Braun, KIT
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Prof. Max Mustermann - Präsentationstitel

SVM-based Classification
RGB Picture Landsat QuickBird

Multispectral –
low resolution

Multispectral -
High resolution

Airborne Sensor

Adapted from Andreas Braun, KIT
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Prof. Max Mustermann - Präsentationstitel

Disadvantages of SVM

• SVM is robust, works with any kind of data, and yields good 

classification results. Why should we take care with using an 

SVM classifier then? 

→It does not give in output a probability density function

→It is designed only to separate two classes

→It often needs a high number of SVs (computation time)
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Summary of Classification

We have briefly introduced 4 classification techniques:
• Simple linear classifier

• Nearest neighbor

• Decision tree

• Maximum Likelihood

There are other, more sophisticated techniques:
• Support Vector Machines (briefly described if we have time)

• Neural Networks, Genetic algorithms..

In general, there is no one best classifier for all problems. You have to 

consider what you hope to achieve, and the data at hand…
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How to Improve & Regularize our results?
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Morphological Operators
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Structuring Element (SE)

A structuring element is a small image – used as a 

moving window – whose support delineates pixel 

neighborhoods in the image plane.

It can be of any shape, size, or connectivity (more than 1 piece, have 

holes).  In the figure the circles mark the location of the structuring 

element’s origin which can be placed anywhere relative to its support.  
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Dilation

• Dilation expands the connected sets of 1s of a binary 

image.

• It can be used for

• growing features

• filling holes and gaps

Adapted from Linda Shapiro, U of Washington



Folie 47

Dilation
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Binary image A

Structuring element B

Dilation result

1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 0 0 0

Dilation
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Dilation

Pablo Picasso, Pass with the Cape, 1960

Structuring

Element

Adapted from John Goutsias, Johns Hopkins Univ.
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Erosion
• Erosion shrinks the connected sets of 1s of a binary image.

• It can be used for 

• Shrinking features

• Removing bridges, branches and small protrusions
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Erosion



Folie 52©2011, Selim Aksoy

Erosion

Binary image A

Structuring element B

Erosion result

1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1

1 1

1 1 1

1 1 1

1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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Erosion

Pablo Picasso, Pass with the Cape, 1960

Structuring

Element

Adapted from John Goutsias, Johns Hopkins Univ.
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Boundary extraction

)()( ZIIIBoundary 

))(()( ZerosionIIIBoundary 
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Opening



Folie 57

Erosion + Dilation  Opening
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Opening
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Opening

Structuring element B

Opening result

1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1

1 1

1 1 1

1 1 1

1 1 1Binary image A

1 1

1 1

1 1

1 1 1 1

1 1

1 1

1 1

1 1 1 1
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Opening

Pablo Picasso, Pass with the Cape, 1960

Structuring

Element

Adapted from John Goutsias, Johns Hopkins Univ.
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Closing
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Closing
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Closing

Binary image A

Structuring element B

Closing result

1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1

1
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Examples

Original image Eroded once Eroded twice
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Examples

Original 
image

Original 
image

Opened 
twice

Closed 
once
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Examples: Remote Sensing

Hyperspectral 
Image (1 band)

Ground Truth
Classification

Original Data

After morphological 
filtering

Adapted from Plaza et al.
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Detecting runways in satellite airport imagery

http://www.mmorph.com/mxmorph/html/mmdemos/mmdairport.html
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Material from...

• Richard Alan Peters, university of Vanderbild (slides)

• Eamonn Keogh, university of California (slides)

• Digital Image Processing, Gonzalez & Woods (book)

• Selim Aksoy, university of Istanbul (slides)

• Daniele Cerra, DLR



Hyperspectral Remote Sensing

Basic Principles

> Lecture > Author  •  Document > DateDLR.de  •  Chart 1

Daniele Cerra, German Aerospace Center (DLR)
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Sensors in Remote Sensing

Panchromatic

Multispectral

Hyperspectral

Radar (SAR)

Thermal Lidar

Sonar
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Electromagnetic (EM) spectrum
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Human visual system

 Color perception

 Light hits the retina, which contains photosensitive cells.

 These cells convert the spectrum into a few discrete values.

Adapted from Steve Seitz, U of Washington
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Human visual system

Two types of photosensitive cells:

 Cones

 Sensitive to colored light, but not very 

sensitive to dim light

 Rods

 Sensitive to achromatic light

We perceive color using three
different types of cones.

 Each one is sensitive in a different region of the 

spectrum.

 440 nm (BLUE)

 545 nm (GREEN)

 580 nm (RED)

 They have different sensitivities 

Adapted from Gonzalez & Woods
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Human visual system

Adapted from Gonzalez & Woods
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Can you trust your senses?

 Plato´s Myth of the Cave

 What we see with our eyes is our „perception“ of reality
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Stare at the dot in the center of the image

Color Perception: The Afterimage Effect

Can you trust your senses?
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1. The color “negatives” saturate the local receptors 
2. When the color is removed these receptors are “mute”
3. The gray tones only have contributions from the agonist (opposite) colors

• Like the recoil after a gunshot

What is “real” is NOT only what we can see with our eyes!

Color Perception: The Afterimage Effect
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Kaolinite       

Alunite

Chalcedony

Buddingtonite
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Basic Principle

Image by TNTmips
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Acquisition Systems
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Acquisition Systems
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Acquisition Systems
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Radiation transmitted by the atmosphere

Panchromatic

Multispectral

Hyperspectral

Sensor Type

Thermal (HS)
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Optical Passive Sensors in Remote Sensing

Spatial Resolution

Sp
e
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ra

lR
es

o
lu

ti
o

n

Multispectral

Panchromatic

Hyperspectral
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Context of Optical EO Systems

•20

Detailed assessments
AVIRIS

(from 20 km)

HyMap
(from 3 km)

RapidEye
TM/ETM

xs
HRG xs

HRG pan
LISS-1C ETM pan

METEOSAT

AVHRR

MODIS
reflective

MODIS
thermal

MERIS
full spatial
resolution

MERIS
red spatial
resolution

Large area assessments

N
u
m

b
e
r 
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f 

s
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e
c
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b
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n
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1                                 10                            100                             1000                         10 000

300

100

10

1

from space

IKONOS,QB,WV-2,GeoEye pan

EnMAP,Hyperion,PRISMA

Spatial resolution (GSD in meter)

HyspIRI
from space

Chris/Proba
Land Mode 1

WV-2 MS

Sentinel-2
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Hasta 250 Bandas

Contiguas

Hyperspectral Images

• A Hyperspectral image is adquired by a sensor with a high 
number of narrow and contiguous bands

• Spatial resolution

• ≈  1 to 4 meters (airborne sensors, state of the art)

• ≈ 30 meters (satellites, sperimental, future missions)

• Spectral range: usually 0.4 – 2.5 micrometers (μm)

• Each pixel has a characteristic spectrum

• In this example it is related to a mineral (kaolinite) 

The spectrum of a pixel
is represented by its
values across all bands
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Why are spatial and spectral
resolution inversely proportional?
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Image Correction

Once our raw data are corrected, the image is formed and usually
undergoes other correction steps….

 Atmospheric Correction

 Geometric Correction / Orthorectification..

In the last episode..
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Atmospheric Correction: Why is the sky blue?

 Atmospheric path radiance La

Figure by Ocean Optics

 Less important at long waves (infrared), more evident at short wavelengths



27

Institut für Methodik der Fernerkundung

From radiance to reflectance

Figure by TNTmips

 If we want to know which fraction of the incoming solar energy is reflected by each
band, we have to process the radiance values (amount of light/radiation measured in 
each band)



28

Institut für Methodik der Fernerkundung

From radiance to reflectance

 The solar energy is not constant across all the bands!  We must correct this

Figure by TNTmips
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From radiance to reflectance

 Geometric effects / shadows

Figure by TNTmips
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From radiance to reflectance

 Atmospheric effects
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Why is the sky blue?

 Atmospheric path radianceLa

Figure by Ocean Optics

 Less important at long waves (infrared), more evident at short wavelengths
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…and why is it red at sunset?
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From radiance to reflectance

After correcting all these aspects, we can convert each pixel value into the
fraction of reflected energy for each band (from 0 to 1).

To do this there are a lot of different methods

 We are not going to see them in detail

 It is not mandatory to do this (only if we need to work with physical values)

 For statistical operations we can also use the data in radiance

Figure courtesy of Exelis VIS



34

Institut für Methodik der Fernerkundung

What we cannot see in Multispectral images

Landsat (7 bands)

• Laboratory (up to 1000 bands)

• Hyperspectral images (up to 250 bands)

The main characteristic of hyperspectral sensors: their bands are contiguous

It is not just the number of bands they contain!

We are going to see an application with a sensor having only 15 bands!

The important thing is to represent a material with a continuous curve in a given

area of the spectrum
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Spectral Signatures

Each material can be identified through its characteristic spectral signature

 In this example 3 spectra of minerals adquired in laboratory

 Different members in each class (in this case different kinds of rocks):

 Cannot always be identified by the “level” of the curves

 In an image these depend on illumination conditions

 They are usually identified by small variations in frequency of the maxima and minima of the
slope (derivative) of the curve
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Spectral Signatures

 Most of the information is in the absorbing
bands (less reflected energy)

 Spectra can be represented in an alternative 
way to highlight this

 Continuum removal: the general shape of the
spectra is subtracted

 Absorbing bands become more evident

 This helps in distinguishing the classes of
interest for some applications

After Continuum Removal

Spectra and Spectral

Signatures



Applications of Hyperspectral Images

> Lecture > Author  •  Document > DateDLR.de  •  Chart 1

Daniele Cerra, German Aerospace Center (DLR)



Slide by Mark Elowitz



Applications of Hyperspectral Images

Do I really need all the bands?

We can distinguish two „families“ of applications

We only may need two or three bands

Water Quality

Vegetation health

Gas leaks from gasoducts

We consider the full spectrum of each pixel

Mineralogy

Acid mine drainage



4

Really all the bands?

Several sources of noise in 

HS data

Coming from the

sensor/introduced in the

preprocessing steps

Atmospheric absorption & 

interferences

Thermal noise

Electronic failures…

Hyperion Etna dataset
RGB false color composite

Animation of all the 
133 bands in the 

dataset (0.4 – 2.5 µm)



Example: bands at the edge Ultraviolet-Visible Light

AVIRIS Salinas 
dataset, 380 nm



These bands are usually discarded!



Water quality
 Reflectance of water in visible freqs:

 Reflected light

 Bottom reflectance

 Suspended matter in water has higher
reflectance

 Mineral Sediments

 Clorophyll

 Measuring Clorophyll-a

 Estimation of alga (seaweed) biomass

 Anomalous values indicate alga blooms

 Normally algas mono-species which fishes
don’t eat

 Not eaten algas drop on the bottom, 
removing oxygen from there

 Water quality drops down



Compact Airborne Spectrographic Imager (CASI)

A hyperspectral airborne sensor which operates in the visible 
and near infrared frequencies

Fewer bands than other sensors (around 20)

We want to investigate the quality of water reserves in this
image acquired on the lakes of Vechstreek, Netherlands

To measure the clorophyll in a pixel x we apply the following
equation:

Clor(x) = 90 (R1(x)/R2(x)) – 70

Where R1(x) y R2(x) are the reflectances for x around 702 and 
675 nm, respectively

Water quality



The water from the channel with a higher

clorophyll concentration flows in the lake

The bean-shaped lake is a drinkable water

reserve

It must be kept free from Algae blooms

0-10

10-40

40-70

70-100

100-130

mg/m3

Water Quality

R2 R1



What Information can we get from Band Ratios?
Examples for Landsat images

Ratio =
Band 4

Band 5

Separate water 
from ice

Ratio =
Band 3

Band 2
Ratio =

Band 4

Band 5

Spot hidrotermally 
altered rocks

Highlight Urban 
Area

Ratio =
Band 3

Band 4



Normalized Difference Vegetation Index (NDVI)

„THE“ Band Ratio



NDVI

RNIR

RNIR
NDVI






• Normalized Difference Vegetation Index

• Probably the most well-known and used band ratio

• -1 ≤ NDVI ≤ 1

• Used to:
• Detect vegetation

• Create masks to restrict the image analysis to areas of interest

• Roughly estimate green biomass

Red BandNear Infrared 
Band



NDVI, Landsat Example

True Color

Bands 321

False Color

Bands 432

NDVI

Bands 3-4

Bands 3+4



Vegetation & Spectra

Chlorophyll strongly absorbs visible light (0.4 to 0.7 μm), with max absorption at 0.7 μm  Landsat band 3

Cell Structure strongly reflects Near-IR (0.7 – 1.1 μm)  Landsat band 4

34

34
)(

BandBand

BandBand
LandsatNDVI








Band 3   

B
an

d
 4

  
 

Soil

Vegetation

Shade/
Water

NDVI & Landsat

Scatter Plot Band 3 vs. Band 4 for a 
natural scene in a Landsat image

NDVI derives 
from empirical 
observations!



NDVI & Vegetation‘s Health

NDVI is related to the health 
status of the vegetation



NDVI in Different Seasons…



..and in different years!



Hyper- vs. Multispectral: Vegetation Analysis



• NDVI can only measure the vegetation biomass only at surface and late 

growth stages

• Gives 2D information rather than 3D

• Difficult to obtain from NDVI a good estimation of the biomass (volume in 

cubic meters of forests/vegetation in general)

• NDVI cannot predict the amount of  nitrogen concentration in the vegetation

• Key parameter to understand at early stages if the health status of crops is

worsening

• NDVI is limitated for the task of vegetation health estimation

Limitations of NDVI



But in Hyperspectral Images we can do more!

 Analyzing the spectra it is possible to extract information for each field/crop

 For vegetation the spectral range between red and near infrared is of special interest

(around 700 nm) 

 We are looking for a steep increase in reflectivity in this area (red edge position)

 More about it later!

images courtesy of NASA



Spectral signatures of vegetation: beyond NDVI

Landsat bands

Healthy

Vegetation

Non-healthy

Vegetation
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Not healthy

1 2

frecuency (µm)

reflectivity (%)

red edge

Near Infrared: the Red Edge

 Transition between absorption into red and high reflectance in the near infrared portions of 
the spectrum

 The red edge is the spectral range in which this change is observable (flexion point in the
curve)

 It depends on the amount on clorophyll in the plant and nitrogen in the soil

 A displacemente to the left of the red edge characterizes ill vegetation

 Scarce clorophyll in leaves

 “Breathing” problems of the plant



How to compute the red edge position?

 We need again only 4 bands among the available ones

 First we compute the reflectivity in the inflection point in the spectrum x

 RE(x) = (R1(x) + R2(x) ) / 2

 Where R1(x) and R2(x) are the reflectance values of x around 670 and 780 nm

 Afterwards we compute the red edge frequency position by the following equation:

  = 700 + 40 ((RE(x) – R3(x) ) / (R4(x) – R3(x) ))

 Where R3(x) is the reflectance of x at 700 nm and R4(x) at 740 nm
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For which red edge values is the vegetation not in good health?

 Lack of nitrogen in the soil indicates respiratory problems of the plants

 For potato fields this happens for values < 3.5 

 We have these values for red edge values < 727



Vegetation Health

 We want to see which potato fields are in good health

 Let’s compute the red edge position in these fields and check where these values
are < 727

Crops Detection of potato fields



 The fields in blue/green are not healthy

 Red edge position < 727 nm

 Fields in orange/yellow are very healthy

Red edge values in potato fields

Vegetation Health

Crops



Corn Fields

Chiara Cili et al.



Other Vegetation Parameters: Relative Leaf Water Content

data courtesy of SpecTIR



Mineralogy



Mineralogy: Spectral Distances

Band 1

 We are interested in mountainous
areas in which potentially we can
find gold mines

 We are going to look fo alunite, a
mineral which indicates the
possible presence of gold

 We need a pixelwise classification
of the area

 We need therefore to quantify how
two spectra are similar to find 
similar spectra to alunite

 Spectral Angle Mapper (SAM)

 Independent of illumination
conditions (vector length)

 Often the preferred choice to
measure the similarity between
two spectra Band 2

Band 3



Spectral Angle (SAM)

Alunite Buddingtonite Calcite

Zeolites Illite Silica Kaolinite



Maps for specific materials



 Image SFSI (SWIR Full
Spectrum Imager)

 Clasification based on SAM

 Minimum distances
between a pixel on the
ground and a spectrum
adquired in laboratory

 We should start to look for
gold within „red“ areas

 Many spectral libraries are
freely available from:

 NASA (JPL)

 USGS



• Analyzing specific bands we can derive parameters in areas which suffered

damages from fire

• The Modified Geometrically structured Composite Burn Index (Geo-CBI) is a 

combination of these and other indices (Leaf Area Index and other vegetation 

parameters, soil indices…) (Birgen Haest, Lennert Schepers et al., 2014)

Detection of Fires and Burned Areas



Case of Study: Belgium Birgen Haest, Lennert Schepers et al.



Case of Study: Belgium Birgen Haest, Lennert Schepers et al.
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Oil Spill

Radatr image of the Prestige disaster in Galicia, Spain

b
y

D
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itris
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y
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a
s

RGB, Gulf of Mexico Oil spill, 
2010



Oil Spill



Oil Spill



Ozone Mapping and Profiler Suite (OMPS)

Spectral range: 290 to 1000



OMPS: a recent result (total atmospheric ozone column) Source: NASA



OMPS: a recent result (aerosol index 2015)

Question: what can you see?

Source: NASA



OMPS: An interesting application for aerosol measurements

Source: NASA



Detection of Camouflage
Adapted from Mark Elowitz



Support to Military Operations: the case of Osama Bin Laden

Source: http://www.globalsecurity.org



Analysis of materials from hyperspectral data

“the MH-60 helicopters made their way to Abbottabad […] 
Aboard were Navy SEALs along with tactical signals, 
intelligence collectors, and navigators using highly classified 
hyperspectral imagers.”

Why?

1. Identify materials: walls, roofs, gates,..?

2. Important targets can be marked by undetectable chemical
agents. The hyperspectral sensor reveals where these
targets are (if there is no occlusion)



Environmental Application: 

Acid Mine Drainage

 Acid mine drainages are waters with
high acidity and dissolved metals
content

 Result of the reaction between water
and sulphide minerals

 The sulphides are oxidated when
exposed to air and moved in large 
amounts (when a mine is exploited)

 In the USA for example 10.000 km of
rivers contain metals such as
cadmium, copper and arsenic

 Major environmental contamination
between the 1940‘s and 1980‘s



Acid Mine Drainage: Consequences

Problems in the
reproduction of aquatic
flora and fauna

Damage to ecosystems

Contamination of drinking
water

Corrosion of bridges bases



Courtesy Roger Clark

Sulphides are associated to different metals

Images by Roger Clark

Map for contamination from acid mine drainage



Contamination of mining sites in Leadville, Colorado: study area

Images by Roger Clark



Contamination of mining sites in Landville Images by Roger Clark



M3 (Moon Mineralogy Mapper)

A hyperespectral mission on the moon

images by NASA



Mineralogy of

the moon

Map basad on 
Hyperespectral Data

Image acquired in the
thermal infrared

 Transitions between red and
blue show variations in the
composition of the rocks

 In green zones rich of iron

 Vertical lines are artifacts
(information not present in 
reality deriving from
interferences or other sources)



Water on the moon?

 A 10 years long debate

 In blue zones in which evidence
for the presence of water has
been found

 Available for the first spacemen
set to colonize our satellite

 To extrac a liter of water it will 
be needed to process one ton of
rocks



58

Institut für Methodik der Fernerkundung

Hyperspectral Imaging applications in art and archaeology

A D A P T E D  F R O M  O M E R  PA PA R O ,  2 0 1 3
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Spectral imaging systems

 Working scheme:



60

Institut für Methodik der Fernerkundung

Spectral imaging systems

 Measurement at the Uffizi Gallery, Florence, Italy - Leonardo room
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Pigment identification

 Introduction – What are paintings made of?

 A pigment is a colored material ground into a fine powder

 After the grinding it is suspended in some type of media that acts as a binder to hold the dry 
pigments pigment together

 E.g. linseed oil for oil paints

 Over the eras, many different pigments were used
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Pigment identification

 E.g., the late gothic palette
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Pigment identification

 E.g., the early Italian Barocco palette
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Revealing hidden information

 For paintings:

 Maximum penetration of most paints can be achieved at wavelengths of around 2 μm

 At wavelengths around 1-2 μm, the common drawing materials, namely iron gall ink and 
sepia, become invisible

 Can use this to see underdrawings and preparatory sketches
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Revealing hidden information

 A Byzantine icon at 640nm (a) and 1000nm(b) 
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Revealing hidden information

 Pablo Picasso –
“The Tragedy”

S L I D E  B Y  O M E R  P A P A R O
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Revealing hidden information

 The optimal spectral window to visualize such features varies with the material used 
as well as the thickness of the paint layer

•Man, ~1100nm •Horse, ~1350nm •Sketch, 
~1600nm

S L I D E  B Y  O M E R  P A P A R O
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Revealing hidden information

 A painting by Sellaio

520nm 885nm RGB
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Revealing hidden information
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Revealing hidden information

 Studying archaeological manuscripts

 “Soft media” ancient documents (i.e. documents written on soft materials such as leather 
or papyrus) are often unreadable

 The carbon-black ink is faded beyond recognition

 The carbon-black ink indistinguishable from the surface

 Not to mention the document itself is found in shreds



71

Institut für Methodik der Fernerkundung

Revealing hidden information

 Studying archaeological manuscripts

 Can use IR to read previously invisible texts and scripts

 The dead sea scrolls can only be seen through IR light
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Art conservation

 Conserving Paintings 

 Conservation monitoring

 Can identify continual damage to paintings, for example

 From a lamp in front of the painting

 From a pipe going through the ceiling
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Food

A. Mc Gowen
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Food

Cooked chicken (RGB) Detection of blood spots (in red)
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Food
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Food

RGB & Infrared picture of an apple 

(invisible defects)
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Medicine & Health

• Tissue sample analysis
• Blood analysis
• Chemical samples
• Diagnostics (e.g. skin diseases, cancer) 
• Skin characterization
• Cosmetics
• Fluorescence imaging spectroscopy

• This image shows the bilirubin levels in bruised skin after 66 hours
(left) and 180 hours (right) based on analysis of HySpex data. [Lise L. 
Randeberg, NTNU] 
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Are we alone in the universe?
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…and in our solar system?
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Thermal Hyperspectral: Surveillance Systems

Source: http://www.photonik.de
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Tutorial on Principal Components 
Analysis

Daniele Cerra, DLR
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Curse of Dimensionality

 Classification problem: 3 classes
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Curse of Dimensionality

 Classification problem
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Really the whole spectrum? Second part

• Correlation between bands

 Information redundancy

 We “change” the bands to have
independent information in the
bands

 By rotating the feature space

 Then we select new “bands” with
high variance only
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Principal Components Analysis

Exercise 10
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A typical Landsat Image

•Morro Bay, California, USA

•RGB Combination

•(First three bands from the Landsat TM 
scene)
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Let‘s have a look...

 A typical Landsat image has 7 bands

 Blue

 Green

 Red

 Near Infrared

 Shortwave Infrared

 Thermal Infrared

 Shortwave Infrared2

 Do these bands look really different?

 How much redundant information is 
there?
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Principal Components Analysis

Principal Components Analysis (PCA) is a technique used to reduce 
multidimensional data sets to lower dimensions

 It describes n-dimensional data with a set of p synthetic variables, with p <n

 The new variables are uncorrelated and are called Principal Components (PC)

 This process leads to some information loss

 PCA ensures that this loss is minimal

Also known as: 

 Karhunen-Loève transform

 Hotelling transform

 Proper Orthogonal Decomposition (POD)
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Principal Components Analysis

PCA is widely used in remote sensing  dimensionality reduction aids 
data exploration

 It reveals the internal structure of the data by ignoring not relevant 
information

 It highlights similarities and differences within the data

 First of all, let’s see how PCA can be useful…



10

Institut für Methodik der Fernerkundung

Let‘s compare some bands...
Morro Bay (California, USA) Landsat Scene

• What do you understand from the scatter plot? 

• Can we predict the value of band 2 knowing band 1?

•Band 1

•Band 1

•Band 2

•RGB Combination
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Dimensionality reduction: why?

How to visualize multidimensional data? 

 In the previous example, out of a 7-band image only 3 

bands could be visualized

 ↑ Data  ↑ Information? Not always..

 Redundancies

 In the previous plot we can predict the value of band 2 on 

the basis of band 1

We would like each band to contain relevant 
information 

 A decorrelation of the bands may help at analyzing the 

images

Do I really 
need all these 

bands?



12

Institut für Methodik der Fernerkundung

How does PCA work?

PCA is a methodology for transforming a set of correlated variables into 
a new set of uncorrelated variables

Achieved through a rotation of the original dimensions/axes to new 
orthogonal axes

The rotation is performed in order to have maximum variability in each 
new dimension

No correlation between new variables

In one slide, 
please?
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Histograms of First and Second Principal Components
Morro Bay Landsat Scene

PC1 PC2

Check both the histograms and the images:

Which principal component contains more information, PC1 or PC2?
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Plot of First vs. Second Principal Component

Check the scatter plot:

In which area are most of the uncorrelated data to be found?

Which pixels are still correlated?
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PC 1

Close to what we 
would expect for a 
b/w picture of the 
scene

Max Information

PC 2

Several 
features can 
be spotted in 

the sea

PC 3

Bright and dark 
gray for two 
classes of 
vegetation

RGB 
Combination

Each component has its characteristics...
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Still some patterns in 
medium gray over the 
mountains

PC 6

This component 
appears noisy

Informational 
content ↓

RGB 
Combination

Different PC = different information!

The main keyword for PCA is... 

DECORRELATION!

PC 4

Each component has its characteristics...
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RGB Combination

(First three bands from the Landsat scene) Combination of 3 PC

The information available in the Principal Components can be better 
revealed by combining them visually in a color composition 

Two Different Band Combinations
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RGB Combination Three Principal Components

Which picture contains more information?

How many kinds of terrain can you spot in each one?

Two Different Band Combinations
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•Beach Bar

•Wave Breakers

•Vegetation1

•Vegetation2

•Golf Course

•Urban Area

•Shadows

•Sea

•Mountains (bright slopes)

•....

We can now identify many different areas...
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A second Landsat scene

RGB Combination Three Principal Components after Decorrelation 
Stretch (DS)

DS= Emphatization of the differences in color 
between the pixels

A more dramatic example
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Kaolinite       

Alunite

Chalcedony

Buddingtonite
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How do we get there?

How do we express a principal component as a linear combination of the
image bands?

A pixel p(i,j) at row i, column j is a vector of 7 bands b1...b7: 

Then a pixel of a PC can be expressed as:

p(i,j) = [b1(i,j),b2(i,j),b3(i,j),b4(i,j),b5(i,j),b6(i,j),b7(i,j)]

PC1(i,j) = [a(1,1)b1(i,j), a(1,2)b2(i,j), a(1,3)b3(i,j), a(1,4)b4(i,j), a(1,5)b5(i,j), a(1,6)b6(i,j), a(1,7)b7(i,j)]

•How can we find these a(m,n) indices for each band and each PC?
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Let‘s see it through an Example...

 Let‘s analyze this simple 2-dimensional dataset

 Easy to visualize and to work with

 The same procedure can be applied on the 7 dimensional Landsat scene, as well as on n-
dimensional data (as long as n is finite)

 Same workflow

Data

x      y

2.5 2.4

0.5 0.7

2.2 2.9

1.9 2.2

3.1 3.0

2.3 2.7

2 1.6

1 1.1

1.5 1.6

1.1 0.9

That‘s
better!
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PCA Step by Step

1. Organize the data set

2. Subtract the mean

3. Compute covariance matrix

4. Find eigenvectors and eigenvalues for the covariance matrix

5. Sort the eigenvectors

6. Select a subset of the eigenvectors as basis vectors

7. Project the values unto the new basis
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PCA Step by Step

1. Organize the data set

2. Subtract the mean

3. Compute covariance matrix

4. Find eigenvectors and eigenvalues for the covariance matrix

5. Sort the eigenvectors

6. Select a subset of the eigenvectors as basis vectors

7. Project the values unto the new basis
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Organize the Dataset

 Represent the data with a m x n matrix M

 m variables (in our case x and y)

 n observations per variable









































9.01.1

6.15.1

1.11

6.12

7.23.2

0.31.3

2.29.1

9.22.2

7.05.0

4.25.2

M
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PCA Step by Step

1. Organize the data set

2. Subtract the mean

3. Compute covariance matrix

4. Find eigenvectors and eigenvalues for the covariance matrix

5. Sort the eigenvectors

6. Select a subset of the eigenvectors as basis vectors

7. Project the values unto the new basis
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Subtract the mean

 Let x and y be the means of the x and y 
variables, respectively

 For every x value: x = x – x

 For every y value: y = y – y

The mean of the data set is now zero

Subtracting the mean makes next 
variance and covariance calculation 
easier by simplifying their equations

The variance and co-variance values are 
not affected by the mean value 


























































































01.171.0

31.031.0

81.081.0

31.019.0

79.049.0

09.129.1

29.009.0

99.039.0

21.131.1

49.069.0

9.01.1

6.15.1

1.11

6.12

7.23.2

0.31.3

2.29.1

9.22.2

7.05.0

4.25.2

M
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PCA Step by Step

1. Organize the data set

2. Subtract the mean

3. Compute covariance matrix

4. Find eigenvectors and eigenvalues for the covariance matrix

5. Sort the eigenvectors

6. Select a subset of the eigenvectors as basis vectors

7. Project the values unto the new basis
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What is the covariance?

The covariance Cov(x,y) between two variables  x and y measures how 
much x and y change together

There are two extreme cases:

1. The variables are independent: knowing the value of x does not help in estimating the 

value of y  Cov(x,y) ≈ 0

2. The link between the variables is so strong that we can recover the values of y only by 

knowing the values of x  Cov(x,y) = Max

Normally, this mutual dependance is somewhere in between

High Cov(x,y)  High correlation When x is positive/negative, so is y

 If  the mean of x and y has been set to 0 as in the previous example
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What is a covariance matrix?

 If x and y are the mean values of x and y we can think of the covariance as 
the average product of the deviations of x and y from the mean: 

 ))((),( yyxxaverageyxCov 

• For the 2-dimensional case we can write in a matrix the covariances of any 
combination of the two variables











),(),(

),(),(
),(

yyCovxyCov

yxCovxxCov
yxCovM

• Where  Cov(i,i) is the covariance of a variable with itself

• Better known as variance σi² of i
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Compute the covariance matrix

 Let’s focus on the non-diagonal elements

 Related to the mutual dependence of the variables

 This information cannot be found in the values of the 

diagonal containing the variances

 In this case we are interested in Cov(x,y)

 It is equal to Cov(y,x) since the covariance matrix is 

always symmetric

 What kind of value do you think Cov(x,y) will 
assume for the data distribution in the figure?











),(),(

),(),(
),(

yyCovxyCov

yxCovxxCov
yxCovM
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Compute the covariance matrix

Cov(x,y) is positive and comparable to the 
variances of x and y

The two variables are strongly correlated!

We expect them to vary together




















7166.06154.0

6154.061660

),(),(

),(),(
),(

.

yyCovxyCov

yxCovxxCov
yxCovM
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PCA Step by Step

1. Organize the data set

2. Subtract the mean

3. Compute covariance matrix

4. Find eigenvectors and eigenvalues for the covariance matrix

5. Sort the eigenvectors

6. Select a subset of the eigenvectors as basis vectors

7. Project the values unto the new basis
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What are eigenvectors and eigenvalues?

A vector v is an eigenvector for a matrix M if and only if

vMv 

• Where λ is the eigenvalue related to the specific 
eigenvector v and is a scalar

• This means that v does not change if it is multiplied by M

• The multiplication by the scalar λ „stretches“ the vector, but its 
direction is unaffected

• Eigenvectors are also known as characteristic vectors

Don‘t panic!
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vMv 

v

Example: here v is an eigenvector for the matrix M, as the result of 
the multiplication Mv does not change the direction of v. 

What are eigenvectors and eigenvalues?
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









21

12
A













3

3
x 










1

0
y

•Given the matrix

•And the two vectors Which one is an 
eigenvector?

Ay

•HINT!! And what is the 
eigenvalue of x?

It is 1!

The vector remained 
unchanged

x did not change after 
being multiplied by A!

Spot the eigenvector!
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Any n x n covariance matrix A, being symmetric, has n real eigenvectors

 It can be factorized as:

1 QQA

• Q  matrix composed by the eigenvectors of A

• Λ diagonal matrix containing the eigenvalues λ1... λn

• The eigenvectors can be chosen to be orthogonal

• They can form a new orthogonal basis  they can be thought of a new set 
of uncorrelated variables to represent the data!

Eigenvectors and eigenvalues
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Eigenvectors and eigenvalues

Now we can compute the eigenvectors Q and eigenvalues Λ for our 
covariance matrix…











7166.06154.0

6154.061660
),(

.
yxCovM











 0.735-   0.678  

0.677-   0.735-
),( yxQ 










1.284 

0.049
),( yx
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• Eigenvectors are plotted as diagonal 
dotted lines on the plot 

• They are perpendicular to each other

• One of the eigenvectors goes 
through the middle of the points, like 
drawing a line of best fit

• The second eigenvector gives us the 
distance of the points from the first 
eigenvector

• It contains the second, less important 
aspect of the data 

Let‘s project them back...
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PCA Step by Step

1. Organize the data set

2. Subtract the mean

3. Compute covariance matrix

4. Find eigenvectors and eigenvalues for the covariance matrix

5. Sort the eigenvectors

6. Select a subset of the eigenvectors as basis vectors

7. Project the values unto the new basis
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Sort the eigenvectors

The eigenvector with the highest eigenvalue is the 
principal component of the data set

 It contains the highest amount of information on the data

 In our example, it is “in the middle” of the data

 If we sort the eigenvectors from highest to lowest 
eigenvalue we have them in order of significance 

•2

•1









1.284 

0.049
),( yx 










 0.735-   0.678  

0.677-   0.735-
),( yxQ

12
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PCA Step by Step

1. Organize the data set

2. Subtract the mean

3. Compute covariance matrix

4. Find eigenvectors and eigenvalues for the covariance matrix

5. Sort the eigenvectors

6. Select a subset of the eigenvectors as basis vectors

7. Project the values unto the new basis
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You can now decide to ignore less meaningful 
components 

 Eigenvectors with low eigenvalue

Dimensionality reduction is achieved

 Data compression is also achieved

Some information is lost, but as few as possible

•Select a subset of the eigenvectors

•2

•1









1.284 

0.049
),( yx 










 0.735-   0.678  

0.677-   0.735-
),( yxQ

•We can choose only the first component!

12
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PCA Step by Step

1. Organize the data set

2. Subtract the mean

3. Compute covariance matrix

4. Find eigenvectors and eigenvalues for the covariance matrix

5. Sort the eigenvectors

6. Select a subset of the eigenvectors as basis vectors

7. Project the values unto the new basis
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•Deriving the new data

 We can multiply our old data by our chosen set of eigenvectors 

 We obtain a new representation for the data

x y

-.827970186 -.175115307

1.77758033 .142857227

-.992197494 .384374989

-.274210416 .130417207

-1.67580142 -.209498461

-.912949103 .175282444

.0991094375 -.349824698

1.14457216 .0464172582

.438046137 .0177646297

1.22382056 -.162675287
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•New representation of the data using both PCs
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What if we use only the first PC?

x

-.827970186 

1.77758033 

-.992197494 

-.274210416 

-1.67580142 

-.912949103 

.0991094375 

1.14457216 

.438046137 

1.22382056

After adding 
back the mean 
values 
subtracted in 
the first steps


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How much information are we keeping?

•Original 2D Data
•Data reconstructed on the 

basis of only 1 Principal 
Component
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•That‘s how we got here!

•Beach Bar

•Wave Breakers

•Vegetation1

•Vegetation2

•Golf Course

•Urban Area

•Shadows

•Sea

•Mountains (bright slopes)

•....
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AVIRIS sensor RGB, Linden, CA , 20-Aug-1992
(Hsu, et al. in Frontiers of Remote Sensing Information Processing, WSP 2003) 

One Last Example

Smoke 

CloudHot Area

Smoke -

small part.

Fire

Shadow

Grass
Lake

Soil
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The 1st component again resembles a b/w picture of the area

The 2nd highlights an area in which we have a thermal anomaly

The 5th shows the cause of the anomaly (fire), which was hidden in the 
true color composition  

1st PC (Clouds/background) 2nd PC (Hot area) 5th PC (Fire)

Three Principal Components
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All major atmospheric and surface features can be identified

Cloud

Smoke
small particle

Clear

Shadow

Smoke
large particle

Hot

Fire

Cloud

Smoke
small particle

Clear

Shadow

Smoke
large particle

Hot

Fire

Cloud

Smoke
small particle

Clear

Shadow

Smoke
large particle

Hot

Fire

Classification using the 3 PCs
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PCA is NOT Always Optimal!

What happens if x1 and x2 are our first two PCs in 
this example?
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Questions

What is the relation between the eigenvectors of the covariance matrix and 
the principal components?

At what point in the PCA process can we decide to compress the data?

Why are the principal components orthogonal?

How many different covariance values can you calculate for an n-dimensional 
data set?
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Conclusions

PCA can be viewed as a projection of the observations onto orthogonal axes 
contained in the space defined by the original variables

The first new variable (PC1) contains the maximum amount of variation 
max information

The remaining components PC2..PCn are sorted according to their 
informational content, i.e. to their variance (which is not equal to the variance 
of the variables!!)

The rotation is a linear combination of the original bands

 No information loss, original data can be recovered

The last components can be ignored, achieving data reduction
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Introduction to spectral unmixing
• Mixed pixels are frequent in remotely sensed hyperspectral images due to insufficient

spatial resolution of the imaging spectrometer, or due to intimate mixing effects.

• The rich spectral resolution available can be used to unmix hyperspectral pixels.

Tutorial on Spectral Unmixing of Hyperspectral Data
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Soil

Tree

Grass

Macroscopic mixture:

15% soil, 25% tree, 60% grass in a 3x3 meter-pixel

12 meters

1
2
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4 meters

4
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s
Intimate mixture:

Minerals intimately mixed in a 1-meter pixel

Introduction to spectral unmixing
• Mixed pixels can also be obtained with high spatial resolution data due to intimate

mixtures, this means that increasing the spatial resolution does not solve the problem.

• The mixture problem can be approached in macroscopic fashion, this means that a few

macroscopic components and their associated abundances should be derived.

• However, intimate mixtures happen at microscopic scales, thus complicating the

analysis with nonlinear mixing effects.
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Linear interaction
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Nonlinear interaction
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Linear mixture Nonlinear mixture

Introduction to spectral unmixing
• In linear spectral unmixing, the macroscopically pure components are assumed to be

homogeneously distributed in separate patches within the field of view.

• In nonlinear spectral unmixing, the microscopically pure components are intimately

mixed inside the pixel. A challenge is how to derive the nonlinear function.

• Nonlinear spectral unmixing requires detailed a priori knowledge about the materials.
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Introduction to spectral unmixing
• In linear spectral unmixing, the macroscopically pure components are assumed to be

homogeneously distributed in separate patches within the field of view.

• In nonlinear spectral unmixing, the microscopically pure components are intimately

mixed inside the pixel. A challenge is how to derive the nonlinear function.

• Nonlinear spectral unmixing requires detailed a priori knowledge about the materials.

Linear interaction Nonlinear interaction
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Multiple scattering
Shadows

Atmospheric

interferers

Introduction to spectral unmixing
• In addition to spectral mixing effects, there are many other interferers that can

significantly affect the process of analyzing the remotely sensed hyperspectral data.

• For instance, atmospheric interferers are a potential source of errors in spectral unmixing.

• On the other hand, multiple scattering effects can also lead to model inaccuracies.

• Finally, shadows and variable illumination conditions should also be considered.
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Introduction to spectral unmixing
• In linear spectral unmixing, the goal is to find a set of macroscopically pure spectral

components (called endmembers) that can be used to unmix all other pixels in the data.

• Unmixing amounts at finding the fractional coverage (abundance) of each endmember

in each pixel of the scene, which can be approached as a geometrical problem:

Linear interaction
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J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader and J. Chanussot, “Hyperspectral unmixing overview: geometrical, statistical and sparse 

regression-based approaches,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 2, pp. 354-379, April 2012.

Introduction to spectral unmixing
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Classic methods for subspace estimation
• Determining the dimensionality of remotely sensed imagery is a challenging problem.

• The intrinsic dimensionality is defined as the minimum number of parameters

needed to account for the observed properties of the data.

• Principal component analysis (PCA) transforms the data in a new coordinate system

so that the number of significant components can be used as an estimate.
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Classic methods for subspace estimation
• The resulting PCA components are ordered in descending order of  data variance: 

Band PCA 1 Band PCA 2 Band PCA 3 Band PCA 4 Band PCA 5

Band PCA 6 Band PCA 7 Band PCA 8 Band PCA 9 Band PCA 10

Band PCA 11 Band PCA 12 Band PCA 13 Band PCA 14 Band PCA 15

Band PCA 16 Band PCA 17 Band PCA 18 Band PCA 19 Band PCA 20

Signal

Noise
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Classic methods for subspace estimation
• Minimum noise fraction (MNF) orders the components in terms of  signal to noise:

Signal

Noise
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3.1. Classic methods for endmember extraction
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Classic methods for endmember extraction
• These methods assume a classic spectral unmixing chain made up of three stages:

dimensional reduction, endmember selection and abundance estimation.

• Here, the endmembers are directly derived from the original hyperspectral scene.
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Classic methods for endmember extraction
• The pixel purity index (PPI) is perhaps the most popular endmember extraction

algorithm due to its availability in commercial software packages such as ENVI.

J. W. Boardman, F. A. Kruse and R. O. Green, “Mapping target signatures via partial unmixing of AVIRIS data,”

Proceedings of the Fifth JPL Airborne Earth Science Workshop, vol. 95, pp. 23-26, 1995.
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Classic methods for endmember extraction
• The N-FINDR algorithm is also a very popular approach for endmember extraction.

• It assumes the presence of pure pixels in the original hyperspectral scene and further

maximizes the volume that can be formed with pixel vectors in the data cube.

M. E. Winter, “N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data,”

Proceedings of SPIE, vol. 3753, pp. 266–270, Oct. 1999.
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The idea of Least Squares

Find a line y=mx+q

in order to minimize the sum
of the square distances of the

data points from the line

Min(sum(dist(line, points)^2))



How do we get m & q in this example (in an intuitive but not 

effective way)?

m

q

We have a surface in this space (think of it in 3d) which is given by the cost function for given

values of m and q:

sum(dist(line, points)^2)

We select a random point to start and compute its first derivative

We move towards the direction of the derivative and compute again the cost function

We go on until we stop in the optimum value!



What if we have 2 endmembers?

Soil

Vegetation

We try to express our spectrum S as a linear combination of two sample spectra V and S, for

example:

S‘ = 0.4 V + 0.5 S.

Our cost function is the difference (S - S‘)^2 between the original spectrum S and the

reconstructed one S‘.

We take another step and compute again the cost function = distortion, until convergence!



Unconstrained least squares (UCLS)
• When all the endmember information (i.e., the number of endmembers and their

spectral signatures) are known, abundances can be estimated by least squares.

• The idea is to find the abundances that minimize the reconstruction error obtained

after approximating the original hyperspectral scene using a linear mixture model:

• Here, the least squares solution is given by the following simple term:

• However, this is an unconstrained solution which does not satisfy the abundance

non-negativity (ANC) and the abundance sum-to-one constraints (ASC).

A. Plaza, G. Martin, J. Plaza, M. Zortea and S. Sanchez,.”Recent developments in spectral unmixing and endmember extraction, in: 

Optical Remote Sensing - Advances in Signal Processing and Exploitation Techniques. Edited by S. Prasad, L. Bruce and J. Chanussot, 

Springer, 2011, ISBN: 978-3-642-1241-6, pp. 235-268.
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Non-negative constrained least squares
• If the ANC constraint needs to be satisfied, the problem of abundance estimation

becomes a constrained optimization problem:

• This optimization problem with inequality constraints can be solved effectively by

means of quadratic programming since the objective function is a quadratic function.

• However, imposing the ANC constraint can significantly increase the computational

complexity of the abundance estimation problem.

• Normally the ASC constraint alone is not imposed, but in conjunction with the

ANC.

• When both ASC and ANC constraints need to be imposed in the abundance

estimation model, we have a fully constrained problem (more difficult to solve).
C.-I Chang and D. Heinz, "Constrained subpixel detection for remotely sensed images,"                                           IEEE 

Transactions on Geoscience and Remote Sensing, vol. 38, no. 3, pp. 1144-1159, May 2000.
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What happens with Non-negative Least Squares?

Soil

Vegetati
on

If we enforce the non-negativity constraint, we search for a solution only in the area where all 

parameters are positive….

In this case we have no problem, but if the optimum combination had a negative value for the

abundance of the soil spectrum, we should have found the best solution (usually with soil = 0).
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Fully constrained least squares unmixing
• If both the ANC and the ASC constraints need to be satisfied, the problem of

abundance estimation becomes an even more complicated one:

• Fortunately, the ASC can be easily included in the ANC-constrained formulation by

simply adding a row vector with all elements set to one to the endmember matrix,

adding an element one to the pixel vector, and solving the resulting least squares

problem as follows:�
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D. Heinz and C.-I Chang, “Fully constrained least squares linear spectral mixture analysis method for material quantification in 

hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 3, pp. 529-545, 2001.
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What happens with Fully Constrained Least Squares?

Soil

Vegetati
on

If we enforce the sum-to-one constraint, we search for a solution only in the area where the sum

of all abundances is one….

It can lead to unrealistic results as it restricts too much the search space



Analysis of Hyperspectral Images

Band Selection
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Problem

 We have a hyperspectral image…

 ..and we want to classify it using a reduced number of dimensions

 We want to avoid overfitting – curse of dimensionality

 We do not have „almighty“ computers
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 Widely used as benchmark
dataset

 512 x 217 pixels

 224 bands

 4 m resolution

 15 classes

 Several crops

 Some classes very similar

 Broccoli 1 & 2

 Grapes & Vineyard

 Lettuces

Sample image: Salinas AVIRIS Dataset
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Salinas Dataset
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Sample Spectra
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Problem

 How to select the “best“ bands?

 For example, we want to select 10 bands

 Let‘s see how…
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How to select these 10 bands?

 Several methods of band selection

 Let‘s do a small „journey“ into statistics up to the concept of mutual information

 What is the relationship between pixel values in a band and the amount of
information they contain?
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Solution 1

 Bands 1-10
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Really?

Noisy bands are not used in the analysis

Why are there noisy bands?

Band 1
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Solution 2

 Bands 41-50

 In the range with the best Signal-to-Noise Ratio (SNR)

•4
1
-5

0
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Correlation between bands

Matriz de correlacion entre bands para la imagen Salinas

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Exercise 11-13
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Mean

X XX X
Score
X

(          )2

1 3
2 5
3 7
4 10
5 10
Totals 35

•The mean is 35/5=7.
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Standard Deviation

X XX X
Score
X

(          )2

1 3 3-7=-4
2 5 5-7=-2
3 7 7-7=0
4 10 10-7=3
5 10 10-7=3
Totals 35 12

•The (population) SD is the square root of the 
squared mean value of the difference from the 
mean:

•Sdev(X) = 
42+22+02+32+32

5
= 2.76
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Variance

X XX X
Score
X

(          )2

1 3 3-7=-4 16
2 5 5-7=-2 4
3 7 7-7=0 0
4 10 10-7=3 9
5 10 10-7=3 9
Totals 35 38
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Variance

X XX X
Score
X

(          )2

1 3 3-7=-4 16
2 5 5-7=-2 4
3 7 7-7=0 0
4 10 10-7=3 9
5 10 10-7=3 9
Totals 35 38

 
2

2 38
7.6

5

x X
s

n

 
  
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Example
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Local Variance in a 7x7 Sliding Window



21

Institut für Methodik der Fernerkundung

What about hyperspectral data?

• Each image has hundreds of bands

• Each band has a histogram

• We can compute the variance of each histogram!

• Higher variance -> higher information
• Neglecting Noise Influences

•Exercise 18
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Really + Variance + information?

V
a
ri
a
n
c
e
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Which image has a higher variance?
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And which image contains more information?
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Entropy in a nut-shell

Low Entropy:

location of soup

High Entropy: location of soup

Exercise 19
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Entropy in a nut-shell

Low Entropy High Entropy
..the values (locations of 
soup) unpredictable... 
almost uniformly sampled 
throughout our dining room

..the values (locations 
of soup) sampled 
entirely from within the 
soup bowl
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•28

 Information content of the output of a random 
variable X

 Example: Entropy of the outcomes of the toss of a 
biased/unbiased coin

 Max H(X) -> Coin not biased

 Every toss carries a full bit of information!

 Note: H(X) can be (much) greater than 1 if the values 
that X can take are more than two!

Shannon Entropy


x

xpxpXH )(log)()(
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•29

Two bits of Entropy (source:wikipedia)


x

xpxpXH )(log)()(
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•30

Two bits of Entropy (source:wikipedia)

 
4:1

2
4

1
)(log)()(

x

xpxpXH
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Bits

You are watching a set of independent random samples of X

You see that X has four possible values

So you might see: BAACBADCDADDDA…

You transmit data over a binary serial link. You can encode each 
reading with two bits (e.g. A = 00, B = 01, C = 10, D = 11)

0100001001001110110011111100…

P(X=A) = 1/4 P(X=B) = 1/4 P(X=C) = 1/4 P(X=D) = 1/4



Folie 32

•Copyright © 2001, 2003, Andrew W. Moore

Fewer Bits
Someone tells you that the probabilities are not equal

It’s possible…

…to invent a coding for your transmission that only 

uses 1.75 bits on average per symbol. How?

(This is just one of several ways)

P(X=A) = 1/2 P(X=B) = 1/4 P(X=C) = 1/8 P(X=D) = 1/8

A 0

B 10

C 110

D 111
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
x

xpxpXH )(log)()(

x

P(x)

Symbol A B C D E

Code 00 01 10 110 111

•Bits per Symbol in average

•

Compression is achieved! 

•X={A,B,C,D,E} •We should use 3 bits per symbol to encode the outcomes of X

A B C D E

2/5 1/5 1/5 1/10 1/10

    2.2
10

1

10

1
3

5

1

5

1

5

2
2 
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Test: Which distribution has higher entropy?
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Entropy in a nut-shell

•Low Entropy •High Entropy
•..the values (locations of 
soup) unpredictable... 
almost uniformly sampled 
throughout our dining room

•..the values (locations 
of soup) sampled 
entirely from within the 
soup bowl
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•41

Entropy: A Binary Image Example

•How many bits of information is 
conveyed by each pixel?
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Entropy in the bands of the Salinas dataset
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Which image has higher entropy?
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..and now?
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Test: Which distribution has higher entropy?



46

Institut für Methodik der Fernerkundung

Remember: Histogram of noise is flat!
Noise has maximum entropy/information!

•To use this concept in the best way, we must relate it to the objective of
our application, Let‘s see what happens when we use it to select the best
parameters for a classification procedure! 
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Grasshoppers

Katydids
The Classification Problem

(informal definition)

Given a collection of annotated data. In 
this case 5 instances Katydids of and five 
of Grasshoppers, decide what type of 
insect the unlabeled example is.

Katydid or Grasshopper?

Keogh

http://buzz.ifas.ufl.edu/258dj.jpg
http://buzz.ifas.ufl.edu/258dj.jpg
http://buzz.ifas.ufl.edu/091dmj.jpg
http://buzz.ifas.ufl.edu/091dmj.jpg
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Thorax 
Length

Abdomen 
Length Antennae 

Length

Mandible
Size

Spiracle
Diameter Leg Length

For any domain of interest, we can measure features

Color {Green, Brown, Gray, Other} Has Wings?

Keogh
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Pixel ID Band 1 Band 2 Pixel Class

1 27 55 Water

2 80 91 Vegetation

3 9 47 Water

4 11 31 Water

5 54 85 Vegetation

6 29 19 Water

7 61 66 Vegetation

8 5 10 Water

9 83 66 Vegetation

10 81 47 Vegetation

11 51 70 ???????

We can store features 
in a database.

My_Collection

The classification 
problem for images can 
now be expressed as:

Given a training database 
(My_Collection), predict 
the class label of a 
previously unseen pixel

previously unseen pixel = 
Keogh
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•B
a
n

d
 2

100

10 20 30 40 50 60 70 80 90 100
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40

50

60
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80

90

•Band 1

Vegetation
Water

We can “project” the 
previously unseen pixel into 
the same space as the 
database.

We have now abstracted 
away the details of our 
particular problem. It will 
be much easier to talk about 
points in space.

11 51 70 ???????previously unseen pixel = 

Keogh
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Simple Linear Classifier

If previously unseen pixel above the line
then

class is Vegetation
else

class is Water

R.A. Fisher
1890-1962

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

Vegetation
Water

Keogh
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Nearest Neighbor Classifier

If the nearest instance to the previously 
unseen pixel is Vegetation

class is Vegetation
else

class is Water

Vegetation
Water

Joe Hodges
1922-2000

Evelyn Fix
1904-1965
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•Band 1



54

Institut für Methodik der Fernerkundung

Decision Tree Classifier

A
n

te
n

n
a
  

L
e
n

g
th

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

Abdomen Length

Abdomen Length > 7.1?

no yes

KatydidAntenna  Length > 6.0?

no yes

KatydidGrasshopper

•Eamonn Keogh
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Grasshopper

Antennae shorter than body?

Cricket

Tibia has ears?

Katydids Camel Cricket

Yes

Yes

Yes

No

No

3 Tarsi?

No
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Information Gain as A Splitting Criteria
Select the attribute with the highest information gain (information gain is the expected reduction 

in entropy).

Assume there are two classes, P and N

Let the set of examples S contain p elements of class P and n elements of class N

The amount of information needed to decide if an arbitrary example in S belongs to P or N is 

defined as
























np

n

np

n

np

p

np

p
SE 22 loglog)(

0 log(0) is defined as 0
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Information Gain in Decision Tree Induction

Assume that using attribute A, a current set will be partitioned into some 

number of child sets

The encoding information that would be gained by branching on A

)()()( setschildallHsetCurrentHAGain 

Note: entropy is at its minimum if the collection of objects is completely uniform

Adapted from Eamonn Keogh
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Person Hair 

Length

Weight Age Class

Homer 0” 250 36 M

Marge 10” 150 34 F

Bart 2” 90 10 M

Lisa 6” 78 8 F

Maggie 4” 20 1 F

Abe 1” 170 70 M

Selma 8” 160 41 F

Otto 10” 180 38 M

Krusty 6” 200 45 M

Comic Guy 8” 290 38 ?

Adapted from Eamonn Keogh
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Hair Length <= 5?
yes no

Entropy(4F,5M) = -(4/9)log2(4/9) - (5/9)log2(5/9)

=  0.9911
























np

n

np

n

np

p

np

p
SEntropy 22 loglog)(

Gain(Hair Length <= 5) = 0.9911 – (4/9 * 0.8113 + 5/9 * 0.9710 ) = 0.0911

)()()( setschildallEsetCurrentEAGain 

Let us try 
splitting on Hair 
length

Adapted from Eamonn Keogh
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Weight <= 160?
yes no

Entropy(4F,5M) = -(4/9)log2(4/9) - (5/9)log2(5/9)

=  0.9911
























np

n

np

n

np

p

np

p
SEntropy 22 loglog)(

Gain(Weight <= 160) = 0.9911 – (5/9 * 0.7219 + 4/9 * 0 ) = 0.5900

)()()( setschildallEsetCurrentEAGain 

Let us try 
splitting on 
Weight

Adapted from Eamonn Keogh
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age <= 40?
yes no

Entropy(4F,5M) = -(4/9)log2(4/9) - (5/9)log2(5/9)

=  0.9911
























np

n

np

n

np

p

np

p
SEntropy 22 loglog)(

Gain(Age <= 40) = 0.9911 – (6/9 * 1 + 3/9 * 0.9183 ) = 0.0183

)()()( setschildallEsetCurrentEAGain 

Let us try 
splitting on Age

Adapted from Eamonn Keogh
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Weight <= 160?
yes no

Hair Length <= 2?
yes no

Of the 3 features we had, 
Weight was best. But while 
people who weigh over 160 are 
perfectly classified (as males), 
the under 160 people are not 
perfectly classified… So we 
simply recurse!

This time we find that we 
can split on Hair length,
and we are done!

Eamonn Keogh
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Weight <= 160?

yes no

Hair Length <= 2?

yes no

We need don’t need to keep the 
data around, just the test 
conditions.

Male

Male Female

How would these 
people be classified?

Eamonn Keogh
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Wears green?

Yes No

The worked examples we have 
seen were performed on small 
datasets. However with small 
datasets there is a great 
danger of overfitting the data…

When you have few datapoints, 
there are many possible 
splitting rules that perfectly 
classify the data, but will not 
generalize to future datasets.

For example, the rule “Wears green?” perfectly classifies the data, so 
does “Mothers name is Jacqueline?”, so does “Has blue shoes”…

MaleFemale

Eamonn Keogh
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Mutual Information (in terms of Entropy)

I(M,N) = H(M) + H(N) – H(M,N)

Think of this quantity as
directly related to the
information gain we saw
in the previous example!
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Person Hair 

Length

Weight Age Class

Homer 0” 250 36 M

Marge 10” 150 34 F

Bart 2” 90 10 M

Lisa 6” 78 8 F

Maggie 4” 20 1 F

Abe 1” 170 70 M

Selma 8” 160 41 F

Otto 10” 180 38 M

Krusty 6” 200 45 M

Comic Guy 8” 290 38 ?

•Eamonn Keogh
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Pixel Value in 

band 1

Value in 

band 2

Value in 

band 3

Class

X:100, Y:120 10 30 50 Broccoli

X:50, Y:100 25 130 50 Fallow

X:16, Y:12 13 12 48 Grapes

X:200, Y:420 5 70 49 Corn

Which band is better to separate these classes? Which one will give me the
maximum information gain? And which one would only make things more
difficult?
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Mutual Information 

(can be expressed in terms of probability)

Exercise 20
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 Suppose we have the following random variables

 x = "is the temperature below 0 degrees?"  (0 = no, 1 = yes) 

 y = "do I have ice or water?"  (0 = ice, 1 = water) 

 z = "is it snowing outside?“ (0 = no, 1 = yes) 

 w = „Are the Simpsons today on Pro7?“ (0 = no, 1 = yes)

 How do you expect the mutual information to be between:

 X and Y

 X and Z

 Y and Z

 X and W

Small Test
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 What we REALLY want is how to select bands which are good to classify a 
specific dataset.

 The MI is great at finding correspondences between variables, even if their
values are very different!

 For example it has been used in our department to improve coregistration between
radar and optical data, which are completely different!!

Mutual Information for HS data analysis
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The mutual information between any two bands in the Salinas dataset and
the ground truth are based on these joint distributions…

Mutual info band ? / ground truth

100 200 300 400 500 600 700
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Mutual info band ? / ground truth
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Banda 1 Banda 42 Ground 
Truth

Mutual info band 42 / ground truth

Mutual info band 1 / ground truth
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Mutual information Salinas / ground truth

Before (blue) and after (red) noise removal
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Reminder: Correlation between bands

Intraband correlation matrix for the Salinas dataset

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Exercise 11-13
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Summary

 How to select our 10 bands
now?

 Usye the information
derived so far and the
intraband correlation to
select them

 For example:

 Cluster bands

 Select the best band in 
each cluster

Variance

Entropy

Mutual 
Information
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K-means Clustering (k = 7)
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With pixels it is clear..

 How to do it with spectral bands?

1. We convert the bands (each originally in 2D) in pixel vectors (1D)

2. Our space in kmeans now has the same dimensionality as number of pixels in the
image

3. EXAMPLE:

1. In which space are we doing the clustering with an image of 100 x 100 pixels and 200 
bands?
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An interesting application

Michael Doneus et al., „New ways to extract archaeological information from hyperspectral pixels“, Journal of Archaeological

Science, Volume 52, December 2014

 Dataset: Carnuntum

 Capital of the former
Roman province
Pannonia superior

 Centuries IV BC – I AD

 Airborne HS campaign

 AisaEAGLE

 65 bands

 400-1000 nm

 0.4 m GSD

 Courtesy of prof. 
Michael Donus
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How to highlight crop marks?

Evident crop marks in Grezac, France
RGB True Color Composite

(source: wikipedia)
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Not always that easy…
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Not always that easy…

RGB True Color Composite
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Which band is better?

 Let‘s have a look at all available bands…
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Which band is better?

 The transition between red and NIR and the whole NIR spectral range looks good..

 If we find which band is best, we can apply it to other images to look for crop marks

 How to quantify the performance of each band?
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First Step: Entropy

 We can compute it directly for each band

 We get a score for each band

 How much „information“ do we have in each portion of the spectrum?

 It works better if we select only the area of interest

 We are not interested in variations throughout the whole image
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First Step: Entropy

RGB True Color Composite
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Entropies for each band

VIS NIR
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Let‘s take a step forward and compute Mutual Information

 Let‘s derive a reference image (manually)
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Mutual Information

 Between each band and the reference data in the area of interest
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What does the mutual information tell us respect to entropy? 

VIS

NIR
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Next step: let‘s analyse the Principal Components

PC 1 PC 2

PC 3 PC 4
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Principal Components: Mutual Information
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Principal Components: Mutual Information

Peak (PC 1)

Peak (PC 4)

PC
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Hyper- vs. Multispectral: Vegetation Analysis
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60

40

20

0

0.4 0.5 0.6 0.7 0.8

healthy

Not healthy

1 2

frecuency (µm)

reflectivity (%)

red edge

Near Infrared: the Red Edge

 Transition between absorption into red and high reflectance in the near infrared portions of 
the spectrum

 The red edge is the spectral range in which this change is observable (flexion point in the
curve)

 It depends on the amount on clorophyll in the plant and nitrogen in the soil

 A displacemente to the left of the red edge characterizes ill vegetation

 Scarce clorophyll in leaves

 “Breathing” problems of the plant
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Back to our example: Red Edge image
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Summary (Mutual Information)
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Mutual Info with what..?
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PC 1

Band 43, NIR 
(787 nm)

Red Edge Position

Bands
28/15/5 (RGB)

MI 0.01
MI 0.11

MI 0.12 MI 0.42
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Welcome to these Matlab exercises. At the end of this course we will have an idea of the
different tools, data types and algorithms that we can use in the processing of digital satellite
images. To do this we will make good use of the simplicity of programming with Matlab which
is a high level programming language. Nevertheless, we will give during our lectures a deeper
insight into mathematical models used in our analysis.
After an introduction to the program, we will learn how to load data and carry out simple op-
erations on them, we will apply different filters on digital images both in time and frequency
domain, we will extract edges and ’play’ with histogram and spatial, spectral and radiometric
resolutions.
In the second part of this course we will focus on specific algorithm for feature extraction,
noise reduction and unmixing specific to hyperspectral data processing.
Have fun!

1 INTRODUCTION TO MATLAB

In this course we will use a toolbox developed independently from Matlab (the Hyperspectral
Toolbox), plus the image processing toolbox which is built-in in Matlab.

1.1 FIRST STEPS

Matlab’s interface is represented in Fig. 1.1.
Download the Hyperspectral toolbox from:
http://sourceforge.net/projects/matlabhyperspec/

Add the toolbox to the path from File > Set Path. Then copy all the provided files (with
code/images) and copy them into a directory of your choice. Now you are set up for the
course.
Let’s try executing some operations directly from the command line, as a reminder of how
Matlab works. Execute and understand the following commands:

• 3 * 4

• 7 - 3

• 11 / 7

• floor(11 / 7)

• mod(11, 7)

• sin(pi / 3)

• a = 5∧ (7/2)

2

http://sourceforge.net/projects/matlabhyperspec/


Figure 1.1: Matlab interface. The commands are executed from the command window (con-
sole). On the left the structure of the active directories. On the upper right the
active variables, that can be analysed by clicking on them. On the lower right a
window allows a quick reuse of the last commands given.
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1.2 OPERATIONS WITH MATRICES

We will treat our images as 2- or 3-dimensional matrices, therefore before we start to use real
data we need to know how to play around with matrix calculus in Matlab.
DO NOT rush through the experiments: take your time and be sure you understood what a
command does before you go to the next. If you have problems just ask me.
Execute and understand the following commands (the symbol % at the end of a command
denotes a comment):

• a = [ 4 -2 -4 7; 1 5 -3 2; 6 -8 -5 -6; 7 3 0 1]

• a(2,3)

• a(2:3,3:4)

• a(2:3,:)

• max(a)

• max(a(:)) % What is the difference with the previous command?

• inv(a) % Invert the matrix

• a * inv(a) % Is it the result you expected?

• a’ % Transpose the matrix a

• size(a)

• test = reshape(a,8,2) % This command to change the dimensionality of the data is very
important, and we are going to use it often in hyperspectral data processing to switch
between 3D and 2D representations of the data.

• test = a + 3

• b = [2 4 -7 4; 5 6 3 -2; 1 -8 -5 -3; 0 -6 7 -1]

• c = 2*a - 3*b

• c = a * b

• c = a .* b % What is the difference with the previous command?

• test = a + b

• test = a ∧2

• a > 0 % conditional test

4



Figure 1.2: Cameraman - sample image.

1.3 LOAD AND DISPLAY DATA AND IMAGES

1.3.1 1-DIMENSIONAL DATA

Execute and understand the following commands.

• x = [0:0.1:2*pi]

• plot(x,sin(x))

• plot(x,sin(x),’.’,x,cos(x),’o’)

1.3.2 2D DATA (IMAGES)

• cameramanData=load(’cameraman’)

• c = cameramanData.cameraman;

• imshow(c)

• imhist(c), axis tight

The parameter "axis tight" is given into the histogram plot. Try to visualize the histogram
without this additional parameter: what’s the difference?

1.3.3 RGB IMAGES

An RGB image has 3 bands: understand how to perform basic manipulation of pixels and
bands in this section.

• rgbImg = imread(’sat.jpg’); % ; suppresses the output

• size(rgbImg)

5



Figure 1.3: Sample RGB image.

• rgbImg(100,200,1:3)

• imfinfo(’sat.jpg’)

Exercise 1

Display each band from the RGB image as a grayscale image.

2 BASIC OPERATIONS WITH IMAGES IN GRAYSCALE VALUES

2.1 MASKING / THRESHOLDS

Exercise 2

Use the conditional test seen before, and create a binary image ’mask’ containing the pho-
tographer silhouette, using as input the image ’cameraman’, in which therefore all pixels with
value larger than a given threshold have value 1, and all the others value 0.
You can create the mask with the command

mask = variableImage > selectedThreshold

Visualize it with imshow(mask), are you satisfied? If not, change the threshold.

You can use this mask to create a thresholded version of the image by copying the original
image in a new variable ’imCopy’ and then using the command
imCopy(mask) = 0;

Visualize the image with and without mask: what’s the difference?
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Figure 2.1: Image with low contrast.

2.2 MODIFY THE SPATIAL RESOLUTION (DOWNSAMPLING/UPSAMPLING)

The function imresize(image, newSize) or imresize(image, newSize, parameter) modifies the
resolution of the image to the size

size = originalSize * newSize

with nearest neighbour interpolation. To change the resolution of an image keeping its size
unaltered, you have first to downsample it and then upsample it back to its original size.

Exercise 3

Change the resolution of the image to 1/4 of the original. The new image must have the
same size as the original image. To use nearest neighbour interpolation in the upsampling
you must use the command imresize with three input parameters, and use ’nearest’ as third
parameter.
To find more information about any matlab command, type it in the command line and hover
your mouse above it to visualize a short description in a pop-up window. You can also select
the text of the name of the routine and press F1 to open a help file on that routine.

2.3 OPERATIONS WITH HISTOGRAMS

Let’s load an image with low contrast.

• p = imread(’pout.jpg’);

• imshow(p)

• imhist(p), axis tight
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Figure 2.2: The stretch function used by imadjust.

Figure 2.3: Histogram stretch.

Now let’s use the function ’imadjust’ to improve the image with a histogram stretch. Ref. to
the graphical description of how imadjust works in Fig. 2.3.

Exercise 4

Execute the command:
pstretch = imadjust(p,[a,b],[c,d]);
Which values would you choose for a, b, c and d? The values (a, b, c & d) must be between 0
and 1.
Suggestion: check the histogram!

Exercise 5
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Figure 2.4: Stretch and equalization of the histogram.

Carry out a histogram equalization using the built-in Matlab function histeq: for differences
between histogram stretch and equalization ref. fig. 2.3.

peq = histeq(p);

Compare the results!

3 FILTERING OF DIGITAL IMAGES

Now we will apply some basic filters to a single-band image. Filtering can be done in time
domain (by direct manuipulation of the pixels) or in frequency domain (by manipulation of
the different sinusoidal functions which constitute the image). Let’s refresh some ideas before
we move forward and then let’s start with filtering in time domain.

3.1 FILTERING IN TIME DOMAIN

Exercise 6

Let’s create an analysing window that we are going to use to carry out some basic filtering
operations on the image ’cameraman’, after checking some slides on low-pass and high-pass
filters..
Let’s start with a low-pass filter:
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Figure 3.1: Original.

Figure 3.2: Blur / lowpass.
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Figure 3.3: Highpass.

• Use the command "ones(n,n)" to create a square matrix of size n×n filled with 1. Con-
sider n = 3 or n = 5, or n = 7 for a more extreme result.

• Divide the matrix by a constant, so that the sum of all its elements is equal to 1. Check
that it is correct with the command sum(your_matrix(:)).

• Use the function filter2(f, image) to apply the filter to the image.

• Use the command result=uint8(result) to convert the image, that now has decimal val-
ues, again in byte format.

• Visualize the results: imshow(result,[])

• The brackets [ ] stretch the image between its minimum and maximum values (as we
did manually until now by manipulating the histograms)

Exercise 7

Repeat the previous experiment using the built-in matlab function med2filt which applies a
3x3 filter:
medFiltered = medfilt2(image);

Now visualize the original image, the low-pass filtered one and the median-filtered one. Which
differences can you see?

Now apply the low-pass and the median filters 10 times to its own output using a loop.
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Figure 3.4: Original image and Fourier spectrum (the components in Fourier are computed
separately for each of the three canals RGB).

For example in the case of the low-pass filter you can write:

im2 = filterf(f,image);
for i=1:9
im2 = filterf(f,im2);
end

Which one is more "stable"? Why?

Exercise 8

Repeat the previous experiment, this time use the filter:

f = fspecial(’laplacian’)

Which filter is this? What do you expect to happen when you apply it to a pixel in a homo-
geneous area and when you apply it on a pixel which stands on the edge of a building? And
what can you see in the filtered image?

3.2 FILTERING IN FREQUENCY DOMAIN

Now let’s switch to the frequency (or Fourier) domain to perform similar operation in this
very different representation of the data.

Exercise 9
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Ideal filtering in Fourier. The Fast Fourier Transform (FFT) is an algorithm which converts
an image from time domain (the one we are used to) to Fourier domain, where an image is
represented as a sum of 2-D sinusoids.

• Use the FFT to convert the image ’cameraman’ to the frequency domain:
ftp = fft2(image);

• For a better visualization, let’s put the low frequencies, which are now in the four cor-
ners of the power spectrum, in the center of the Fourier image:
af = fftshift(ftp);

• Visualize the Fourier spectrum. For this purpose it is better to compute the logarithm
of the spectrum. We must add 1 to obtain ’safe’ values (as the logarithm of 0 is −∞, this
could introduce some ’small’ numerical problems in our computations :) ).

imshow(log(1+abs(af)),[])

The parentheses [] are needed to perform an image stretch (as we did before manu-
ally by manipulating the histograms), and the function abs(n) computes the absolute
value of n (in this case we need it to obtain real values, as in origin the points in Fourier
also have an imaginary part).

• Let’s create an ideal circular filter, that is 1 in the center of the image and 0 in the rest of
it:

[x,y]= meshgrid(-128:127,-128:127);
z = sqrt(x.∧2 + y .∧ 2);
c = (z < 15)

• Visualize z to understand what you’re doing

• Visualize the ideal filter c (now you should already know which command to use...)

• Apply the filter to the spectrum. In Fourier the filtering is obtained with a simple mul-
tiplication:

afilt = af.*c;

• Visualize the resulting spectrum (remember to compute the logarithm and add 1 to its
argument)

• Let’s shift the spectrum in order to have again the low frequencies in the corners: afilt
= fftshift(afilt);
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Figure 3.5: Difference between ideal filter and Butterworth filter (in one dimension).

• Let’s switch back to time domain: afiltinv = ifft2(afilt);

• Visualize the results

• Can you see the ringing artefacts?

• What happens if we do the Fourier transform of the ideal filter c? Try to visualize its
Fourier spectrum...

Exercise 10

Now let’s filter the image with a Butterworth filter. The differences with the ideal filter can
be seen in fig. 3.5, and the difference in the filtering effects will be clear at the end of this
exercise.

• Let’s create a Butterworth filter, which has a constant value in the center and gradually
decreases to 0 on the edges of the circle:

• b f = 1./(1+ ((x.∧2+ y.∧2)/60).∧2);

• Filter the image as in the previous example.

• Compare the results (to open a new image write ’figure, ’ before the command imshow).

• What happens if you change the size of the Butterworth filter (the value 60 in the equa-
tion)? Try to use a larger or smaller filter.
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Figure 4.1: Example of edge extraction.

4 EDGE EXTRACTION

Slides - Canny

Exercise 11

Canny algorithm, defined in the 80’s, keeps on being one of the favourite ways of extracting
edges from an image (fig. 4). Let’s apply it, and let’s see what happens if we want to extract
edges from a noisy image, and what we can do to solve the problem.

• Load the image "cameraman" (from the matlab file with the same name, not the jpg
image)

• Extract the edge using the function edge(image, ’canny’)

• Visualize the results

• Now let’s add some gaussian noise to the image: imgNoise = imnoise(image,’gaussian’,0,0.01);
in which we are setting the mean and the variance of the noise to 0 and 0.01, respec-
tively.

• Visualize the noisy image

• Extract the edges from the noisy image and visualize them: what happened?

• Use the window described in Exercise 6 to filter the noisy image

• Extract the edges again: could you solve the problems?
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Figure 4.2: Canny’s algorithm for edge extraction. After a lowpass filtering, a high-pass filter
is applied to compute the gradients. A threshold selects only strong gradients.
Afterwards, the thickness of each border is reduced to the size of a pixel. Finally,
weak edges which are above a second lower threshold and were discarded in the
first step are added to the final results, if they are connected to ’strong’ edges.
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5 HYPERSPECTRAL IMAGE PROCESSING

Slides on Introduction to Hyperspectral images

Examine a hyperspectral image.

• Open the hyperspectral data set with the command load(’test_image_new.mat’);

• Two variables are loaded:

– ImgData contains a 533× 763 image with 65 bands acquired by the sensor AISA
Eagle on the place in which the Roman city of Carnuntum once stood, somewhere
in Western Austria.

– ImgInfo contains ancillary information on the image.

– You can retrieve the wavelength associated to each spectral band by accessing the
variable ImgInfo.wavelenght

To visualize a single band and a single spectrum in the image: imshow(ImgData(:,:,18),[]);

This for example visualizes band 18.

Then let’s select a single pixel and analyse its spectrum:
pixel = ImgData(100,100,:);
plot(pixel(:))

What does ’100,100’ mean?

Exercise 12

Visualize an RGB combination of the image, in which a band related to red frequencies will
be loaded in the red (R) channel, a band related to green in G and a band related to blue in B.

• Let’s select a band in the middle of the red frequency range (0,6-0,7 µm), a second one
in the middle of the green range (0,5-0,6 µm), and a third one in the middle of the blue
portion of the spectrum, (0,4-0,5 µm), and let’s substitute the corresponding numbers
of the bands in the following command to save them into a data structure which we
name ’rgbsel’:
- rgbsel = [numbandRed numbandGreen numbandBlue]

• To visualize the image RGB use the command imshow(uint8 ( (ImgData(:,:,rgbsel) -
min(ImgData(:)) )/10) ,[])

• in the above command, we create a byte image by converting to byte format (uint8 in
Matlab) the 3 bands of the image stretched between 0 and 255 (we subtract the mini-
mum and divide by an empirical number to rescale quickly the values).
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6 SPECTRAL INDICES

Slides on NDVI

The Normalized Differential Vegetation Index (NDVI) is probably the most important spec-
tral index, as it is can be computed also on multispectral images. It gives us an indicative
quantification on the percentage of a pixel which is covered by green (alive) vegetation.
The NDVI is computed as:

N DV I = N I R −R

N I R +R
(6.1)

6.1 APPLICATIONS: ARCHEOLOGY

Would you like to investigate if the image you visualized before contains some secret? Let’s
look out for crop marks, which show local anomalies in the vegetation health status due to
underground structures not directly observable from the surface.

Exercise 13

• Create a new version of the image in double format, because if we divide two images in
integer format the result will also be integer! Use the command imageDouble = dou-
ble(ImgData)

• Take as reference again the frequencies corresponding to each band in the image.

• Select a band number in the middle of the red portion of the frequency spectrum and
another one in the NIR (Near InfraRed), around 800 nm.

• Assign to the variable NDVI_index the result of the Matlab function imdivide(numerator,denominator)
to compute the NDVI. Refer to the equation above to correctly express numerator and
denominator!

• Visualize the NDVI with imshow(NDVI_index,[0 0.2]),colormap(jet)

• compare with the RGB image you created previously. In which image can you spot the
profile of buried underground structures?

7 DIMENSIONALITY REDUCTION

Slides: reminder on PCA

Exercise 14

Explore a hyperspectral dataset by applying a Principal Components Analysis (PCA) rotation.

• Open the hyperspectral data set with the command load(’Salinas_Lib’);
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• Two variables are loaded:

– Salinas_corrected contains a 512×217 image with 204 bands acquired by the AVIRIS
sensor over the Salinas valley, California.

– Lib contains 16 spectra selected from the image.

• Convert the image to 2D using the command ’reshape’, where the first dimension is the
number of bands and the second the total number of pixels. Therefore a hyperspec-
tral image of size 10×10 and 20 bands should have two dimensions sized 20 and 100
respectively.

• Use the function hyperPCT to perform a PCA rotation. Set the maximum number of
components to 50 and assign the output value to three variables. Check the help for
the function hyperPCT for more information.

• Let’s prepare some Principal Components in the new matrix M_pct to visualize them
correctly.

– First of all you must convert in 3D the results with the command reshape

– Subtract the minimum value in order not to have negative values: image = image
- min(image(:))

– Divide by the maximum number in order to have all the values between 0 and 1:
image = image / max (image(:))

• Now let’s check the eigenvalues (lambda) of the rotated features (in the third output
variable): how many components contain relevant information? What are the charac-
teristics of the last Principal Components?

• Compare the information in the first PCs with the different classes in the image.

– Load the ground truth for the Salinas dataset with the command the command
load(’Salinas_gt’)

– Visualize the ground truth (see legend in fig. 7), which identifies several crops in
the image (broccoli, lettuce, celery, grapes...) with the command imshow(salinas_gt,
[])

– Let’s change the color map to separate visually the different classes: colormap(jet)

– Now visualize an RGB combination of the 3 first PCs using the command figure,
hyperImagesc(computedPCs,[band1 band2 band3]); where in band1 band2 and
band3 you can try and use several PCs among the first 10.

– Can you more or less separate the different classes?

• Can you ’see’ more information in the first 3 PCs with respect to the RGB combination
of the original HS image that you created in the previous exercise? Use the command
figure, hyperImagesc(salinas_corrected,[10 20 30])
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Figure 7.1: Band 42 and ground truth for the Salinas dataset.

• hyperImagesc is a much better way of visualizing a 3 band combination of a hyperspec-
tral image: why we did not use it for the Carnuntum dataset? Try it out! What happens?
Where is the problem?

8 SPECTRAL UNMIXING: WHAT IT IS?

Slides: reminder on spectral unmixing & introduction to Least Squares

Unmixing generally refers to a process which includes two steps:

• 1 - The identification of a set of pure (or purest) pixels in the scene known as endmem-
bers, which are related to the spectra of macroscopically homogeneous materials.

• 2 - An endmember abundance quantification algorithm (inversion step) to define the
percentage of different endmembers in each pixel.

• In our case step 1 has already been taken care of (results are collected in the spectral
library ’lib’)
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Figure 7.2: Information on the hyperPCT function.

Figure 8.1: Results of Spectral Unmxing
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Figure 8.2: Further results of Spectral Unmxing
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Figure 8.3: The idea behind the minimization of a cost function. The circles represent the
cost function, which is to be imagined in 3rd dimensions as an upside-down cone
pointing inside the page. Its center has then the lowest value.
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Figure 8.4: The case of linear spectral unmixing. In practice a direct solution is used, but it is
easier to understand the concept through this diagram.
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8.1 UNCONSTRAINED LEAST SQUARES

We will now perform a simple unmixing through Least Squares, which is a general method for
the approximate solution of overdetermined systems (systems of equations which have more
equations than unknown variables). We have an error function that we want to minimize,
and to do it we could use the intuitive but time-consuming method presented in the images.
Instead, we can solve this problem directly by multiplying each pixel by the pseudoinverse
matrix of the endmembers: the pseudoinverse computation is a kind of relaxation of the in-
verse matrix one, and it can be applied to non-square matrices. This makes sure that we
project each pixel orthogonally to the space spanned by the spectra related to the endmem-
bers, minimizing the error: a mathematical explanation is not given here, try just to keep in
mind the general idea which offers a direct (instead of iterative) solution to this problem.

Exercise 15

• Convert the HS image to 2D (you can reuse the variable you created in previous exer-
cises), where the first dimension is equal to the number of bands and the second to the
total number of pixels (use the command reshape). If the dimensions are in reverse
order (first pixels and then bands), you have to transpose the 2D image as we have seen
in the first pages of this exercise.

• Perform Unmixing through UCLS using the function hyperUcls(2dimage, spectralLi-
brary)

• Convert again the results to 3D. How many bands do you have now? What is each band
representing?

• Check the abundance map for each material (or endmember). Use the jet colormap for
a better visualization. Use the command ’colorbar()’ to understand each abundancy
map.

8.2 NON-NEGATIVE LEAST SQUARES

Exercise 16

Follow the same steps as in the previous exercise, but this time use non-negative Least Squares,
which forces all spectral abundances to be positive. This makes sense if we think about it, as a
pixel can be composed 50% by water and 50% by vegetation, but -10% of any material would
make no sense.
Use the function hyperNnls(2dImage, spectralLibrary). Is it faster or slower than its uncon-
strained version used in the previous exercise?
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8.3 ANALYSIS AND COMPARISON OF THE RESULTS

Exercise 17

Visualize all the results in two images. For each set of results, use the command subplot using
a loop:

A sample loop in Matlab:

for i=1:10

i*2 % Prints i*2

end

Which result looks better? Could you separate the different classes on the basis of these re-
sults?

8.4 CLASSIFICATION AND VALIDATION

We will now perform a classification of the image, in which we will label each pixel with the
class having the highest abundancy in the unmixing results.

Exercise 18

Classify the image using your unmixing results.

• Check the help for the function max by typing ’help max’. You will need to use the ver-
sion with two outputs, one of which is the maximum abundance among all bands while
the other shows which band has this maximum value: [output1, output2] = max(UnmixingResults)

• Try to build a single band image (in grayscale) which has as a value for each pixel the
number of the material with highest abundancy in it (which is the number of the band
with highest abundancy in the unmixing results).

• Take care: you don’t want the abundancy value in the image you are creating, but only
the number identifying the material (the results should range from 1 to 16).

• Now merge classes 10 and 16: assign to all pixels with class 16 the value 10, using some-
thing like: image(image_condition) = value;
in which your condition is that the image is equal to 16.

• Mask your classification results using the ground truth: set to 0 all values for which
salinas_gt is 0 (these are unclassified pixels, they are not part of the ground truth and
we don’t know which class they have).

• Visualize the results with the jet color map.
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• Compare with the ground truth image. Does the classification results look good? Which
ones look better between the results of unconstrained least squares and non-negative
least squares?

Exercise 19

Validate the accuracy of your classifier. To do this, you can simply count the percentage of
relevant pixels which are assigned to their correct class.

• You should have your classification results ranging from 1 to 15.

• Class 16 in salinas_gt was not included in the spectral library, therefore we have to ig-
nore it. Create a new ground truth image containing the values of salinas_gt up to 15
(set to 0 all values equal to 16).

• Now count the total number of ’valid’ pixels in the ground truth using the command
sum. Inside you must write the condition salinas_gt > 0. Save this number in the vari-
able ’TotValid’.

• Count the number of pixels in salinas_gt which are both greater than 0 and equal to the
value in your classification images. You can do a test on two conditions at the same
time in Matlab like this (try to execute this commands first to have an idea):

2 > 0 & mod(4,2) == 0

1 < 3 & 2 + 2 > 7

Save this quantity in the variable totCorrect

• Compute the accuracy as totCorrect * 100 / totValid.

• How much is the accuracy for the two classifiers?

9 NOISE REDUCTION THROUGH SPECTRAL UNMIXING

Until now we saw how to represent a pixel as a linear combination of ’pure’ spectra (end-
members) through spectral unmixing. You probably noticed that unmixing results have a
dimensionality much lower than the original dimensionality of the data (we went from over
200 to only 16 dimensions).
What happened then with all the rest of our data? A part of them was redundant, therefore
this synthetic way of representing it did not imply a loss of information. On the other hand,
we have a part of the informational content of each pixel that of course couldn’t be repre-
sented just as a linear combination of a restricted number of spectra in our spectral library.
Now we will see how this information we lost is mostly composed by noise. This is due to
several sources: atmospheric absorption effects which decrease the signal-to-noise ratio in
some bands, electronic interferences, variability in the path that a ray of light takes in coming
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Figure 9.1: Summary of the simple algorithm for noise reduction based on spectral unmixing
(UBD).

from the atmosphere, getting reflected on the ground and reaching the hyperspectral sensor.
To do this, we are going to reconstruct the original data starting from our unmixing results
and our spectral library.

Exercise 20

Unmixing-based Denoising (UBD).

This methodology, developed in our research group at DLR, takes as input a hyperspectral im-
age and a spectral library (this must have some characteristics which we will describe later).
The same image is given as output in which the noise is strongly reduced in the most prob-
lematic bands.

• Visualize band 1 and band 42 of the Salinas dataset. What can you say about the differ-
ent level of noise affecting the two bands?

• Use the code ’UBD.m’ using as input the image and the spectral library lib:

• Execute the command [reconstructed errors] = UBD (salinas_corrected, lib);

• UBD carries out a spectral unmixing step based on non-negative least squares, and
reconstructs the original image ignoring any component of the signal which cannot be
represented as a combination of the spectra contained in the spectral library lib.

• Visualize band 1 in the original and in the new dataset. Try improving visualization re-
sults using the command: imshow(image(:,:,1),[200 800]), which performs a histogram
stretch between the values 200 and 800.

10 BAND SELECTION

We saw how hyperspectral datasets contain redundant information as neighbouring bands
are highly correlated. How can we select bands which contain the highest amounts of infor-
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Figure 9.2: Example of noise reduction through UBD: band 224 for the AVIRIS image acquired
over Cuprite, Nevada.

mation?

10.1 INSPECT THE DATA

Open band 1 and band 42 of the Salinas dataset. Which band you expect to have more infor-
mation?

10.2 VARIANCE

Slides about variance

Exercise 21

• Convert the Salinas image to 2 dimensions (pixels x bands).

• Create an array with the same number of elements as bands in the image: variances =
zeros(numberOfBands, 1);

• For each value compute the variance of a band with the command var(mySingleBand)

• Plot the variances: plot(variances)

What can you see? Do you see any correlation between the variances and something else you
have been creating lately?

10.3 ENTROPY

The variance only tells us the absolute variation in each band. Bands reflecting more energy
will of course have higher variance, while "dark" bands will naturally have a low one. That’s
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because there is no direct relation between variance and information! To have that, let’s look
at the concept of entropy...

Slides about entropy

Exercise 22

Compute the entropy for each band, in a similar way to what you have done before.

1. Create an array with the same number of elements as bands in the image (as you did
before with the variances)

2. For each value compute the entropy of a band with the function entropy(image2D,
bandNumber)

3. The entropies are computed as H(X ) = −∑
x p(x) log2 p(x) and the histogram of each

band is considered as the probability density function p(x)

4. Plot the entropies

Check the single bands in ENVI. How does it look like: is it getting better with respect to
results from simple variance analysis? What do you have in correspondence of bands with
low entropy?

10.4 MUTUAL INFORMATION

The point is, it is difficult to know which band is better a priori with measures which are
computed for each band such as the entropy: a band with high entropy could be better for
a given task and worse for another, or the entropy could be high just because the band is
specially noisy. What you need is some kind of joint information measure, and what you
need is to know if a band is better or worse for a given task at hand.
Let’s look at the concept of mutual information, which is the base of many band selection
algorithms.

Slides about mutual information

Mutual information allows us to quantify the information shared from two datasets, even if
the values are completely different.

Exercise 23

First of all let’s see what the differences in the joint probability function between the ground
truth and different bands in the Salinas dataset represent (slide).

1. Save in a variable n the total number of pixels in Salinas, nRows × nColumns

2. Save in the variable test1 the Salinas ground truth, converted to one dimension with
the command reshape: test1 = reshape(salinas,n,1);
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3. Now create a new array that will contain the mutual information between each band
and the ground truth: each value must be the result of applying the routine mutual-
info(test1, image2D(:,bandNumber));

4. Now you can plot the mutual information. This is a very good indicator on which bands
are the best to be used in our classifier.

Exercise 24

Now let’s verify what is an usual effect of denoising the dataset. Do you think the mutual
information will increase or decrease?

1. create a denoised version of band 1 of the salinas dataset using the Unmixing-based
Denoising (UBD) you applied last time: [reconstructed errors] = UBD(salinas_corrected,lib);

2. Compute again the mutual information between band 1 of the denoised dataset and
the ground truth image.

3. did the mutual information go up? This hints that this band is now much better (if
taken singularly) to classify the areas of interest.

11 CLUSTERING

Slides on Clustering

Exercise 25

1. Let’s open the Landsat image "subset" with the routine var = enviread(’imageName’,’headerName’)

2. Let’s visualize an RGB combination with the command imshow(uint8(x(:,:,[3 2 1])),[])
or better open the image with ENVI and visualize an RGB combination (Yes, Matlab is
not the best to visualize color images in a simple way).

3. Use the Matlab function var = kmeans(2D_image,nClusters) where 2D_image is the im-
age reshaped to 2 dimensions (pixels, bands). Choose a number between 6 and 9 for
the number of clusters.

4. Reshape the results in var to 2 dimensions and visualize the results. Apply the jet color
map: colormap(jet)

5. Do the different clusters represent different targets in the scene?
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12 MORPHOLOGICAL PROCESSING

Slides on Morphological Processing
We will now perform some basic morphological processing operations. We know already the
median filter which will be not taken into account.

Exercise 26

1. Create your own structuring element: it can be a 3x3 matrix filled with ones using the
command: w = ones(3,3) or a cross with the command: w = [0 1 0; 1 1 1; 0 1 0]

2. Get your own binary image by creating a mask! Select all pixels in band 7 (Short Wave
Infrared) with a value smaller than 10. Visualize the mask.

3. Let’s see and understand what happens when we apply the following morphological
functions:

a) Dilation -> imMorph = imdilate(image,w);

b) Erosion -> imerode(image,w)

c) Opening -> imopen(image,w)

d) Verify that the result of imopen is the same as applying a dilation to an eroded
image.

e) Closing -> imclose(image,w)

f) Verify that the result of imclose is the same as applying an erosion to a dilated
image.

g) What operator would be the best to extract this particular sea area you are inter-
ested in?

h) Now fill the holes in the processed sea mask with the command newMask = im-
fill(seaMask);

i) Click on the areas with value 0 you want to be filled with value 1. Take care not to
click on anything which is connected to the large black area, if not everything will
be filled by 1! When you are done, right click on the image to close the tool.

j) Does it look nice?

4. Let’s see how to use morphology to improve some bad classification results..

a) Open one of your previous classification results, better if it is a bad one such as the
one computed on the basis of the unconstrained least squares unmixing results.

b) "open" and "close" the image a couple of times: does it improve the results?

c) What happens if you use a very large structuring element such as w=ones(9,9)? Is
it improving results more than a small one?
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