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Abstract: Multisource remote sensing data acquisition has been increased in the last years due to
technological improvements and decreased acquisition cost of remotely sensed data and products.
This study attempts to fuse different types of prospection data acquired from dissimilar remote
sensors and explores new ways of interpreting remote sensing data obtained from archaeological sites.
Combination and fusion of complementary sensory data does not only increase the detection accuracy
but it also increases the overall performance in respect to recall and precision. Moving beyond
the discussion and concerns related to fusion and integration of multisource prospection data,
this study argues their potential (re)use based on Bayesian Neural Network (BNN) fusion models.
The archaeological site of Vésztő-Mágor Tell in the eastern part of Hungary was selected as a case
study, since ground penetrating radar (GPR) and ground spectral signatures have been collected
in the past. GPR 20 cm depth slices results were correlated with spectroradiometric datasets based
on neural network models. The results showed that the BNN models provide a global correlation
coefficient of up to 73%—between the GPR and the spectroradiometric data—for all depth slices.
This could eventually lead to the potential re-use of archived geo-prospection datasets with optical
earth observation datasets. A discussion regarding the potential limitations and challenges of this
approach is also included in the paper.

Keywords: remote sensing archaeology; fusion; neural networks; re-use; GPR; spectral signatures;
Hungary

1. Introduction

The use of remote sensing data and interpretation for archaeological mapping “is not without
risks and challenges. By limiting time spent in the field, and not visiting the majority of identified sites,
the approach requires the development of experience and trust in interpreting remote sensed data” [1]
(emphasis added). Indeed, besides the long-recognized problems and challenges, “archaeological
remote sensing has much to contribute to the future of heritage management and archaeological
research” [2].

Multi-sensor data fusion intended for archaeological research is considered a promising but
ambitious and challenging task [2,3]. While the application of various prospection methods has been
widely adopted by archaeologists [4], the complementary use and fusion of different archaeological
prospection data has been identified by the literature as an active area in the field of archaeological
remote sensing where further research is required [2]. Indeed, each sensor has its own advantages
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and disadvantages providing different outcomes in the archaeological context. For instance, ground
penetrating radar (GPR) is an active ground sensor able to penetrate ground surface and, therefore,
provide 3-D information about sub-surface anomalies. In contrast, passive sensors such as optical
satellite sensors or ground spectroradiometers are able to identify spectral anomalies (e.g., crop marks)
of the ground surface—in different wavelengths—that are used as proxies for the detection of buried
archaeological remains (see more at [5]).

Beyond archaeological applications, the fusion of data obtained from satellite remote sensing
sensors has already been well documented. Since each sensor operates on a specific wavelength range
and is sensitive to specific environmental conditions, the acquisition of all the required information
for detecting an object is not feasible to be acquired by a single sensor. It is, therefore, not surprising
that advanced analytical or numerical image fusion techniques have been developed for improved
exploitation of multisource data [6]. The importance of fusion is also highlighted by [5] where
image fusion provides the capability of combining two or more different images into a single image,
expanding this way the information content. At the same time, the fusion process is applicable on a
number of various scales (e.g., multi-scale transforms). Combination and fusion of complementary
sensors not only increases detection accuracy, but also improves the performance in respect to recall
and precision.

In archaeological research and practice, data fusion can enhance and reveal unknown buried
features (i.e., image anomalies) [4]. Though different data fusion models and strategies that were
reported in the past (see introduction part of [5]), it is shown that their application is limited to
superimposition and GIS-layering of geo-datasets for visual and/or semi-automatic multilayer analysis
(e.g., [7–10]). For instance, Yu et al. [11] investigated new methodologies for detecting archaeological
features in Northern and Southern China based on multi-source remotely sensed data. However, the
overall multi-temporal and multi-scale results were only visually cross-compared with each other.
Moreover, data integration is often restricted to similar nature of data (e.g., data obtained from satellite
sensors such as pan-sharpening techniques [12–15], data enhancement of geophysical prospection
data [16–19], etc.).

Recent studies highlight the fact that for many archaeological sites around the world a wealth of
digital, spatial, and open remotely sensed data already exists [20]. Large scale applications based on
big data engines of earth observation have also been reported in the literature [21–23]. It is, therefore,
more relevant than ever to explore new ways of fusion of multisource remotely sensed data (archived
or not) moving beyond the well-established practices.

The current study is part of an ongoing research; its primary results have been presented
in [5]. In that particular study, a few regression models were analyzed between GPR results and
vegetation spectral indices. The regression models revealed a medium-correlation between these
two different types of data for the superficial layers of an extensive archaeological landscape in
Central Europe. Overall, the study concluded that fusion models between various types of remote
sensing datasets can further expand the current capabilities and applications for the detection of
buried archaeological remains and highlighted the need of more complex fusion models—rather than
simple regression models—to further improve the fitting between the various prospection data and
minimizing potential errors.

This study firstly attempts to fuse different types of prospection data acquired from dissimilar
remote sensors based on a neural network architecture and secondly explores new ways of
manipulating remote sensing data already obtained from an archaeological site. This exploration could
lead to the re-usage of archived geo-prospection datasets.

The paper is organized as follows: at first, a short introduction of the case study area is presented,
followed by a presentation of the available data and the methodology used. Then, the results are
presented and discussed. The paper ends with some major conclusions as well as thoughts for
future investigations.
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2. Methodology and Case Study Area

2.1. Case Study Area

The case study area (Vésztő-Mágor Tell) is located in the southeastern Great Hungarian Plain
(Figure 1). The Tell covers about 4.25 hectares and rises to a height of about 9 m above mean
sea level. This area was intensively investigated in the previous years as part of the Körös
Regional Archaeological Project [24] with various non-invasive techniques, including magnetometry,
ground penetrating radar, electrical resistance tomography, hyperspectral spectroradiometry, and soil
chemistry. The aim of the general project was to reconstruct the organization of the Neolithic tell-based
settlements of Vésztő-Mágor and Szeghalom-Kovácshalom.

During the 70s and 80s, excavations were contacted aiming to study the archaeological context of
the Tell. During these studies, it was revealed that the area was initially settled by Szakálhát culture
farmers during the late Middle Neolithic period, while the area was systematically occupied until the
Late Neolithic period (c. 5000–4600 B.C. calibrated). On top of the Late Neolithic levels, a buried humic
layer suggests the abandonment of the site until the formation of an Early Copper Age settlement and
later on by a Middle Copper Age settlement. Later on, in the 11th century AD a church followed by
a monastery were established on top of the Tell. The monastery operated until the end of the 14th
century and the two towers of the church were standing until 1798. After various modifications, and
reconstructions, the monastery was completely destroyed by the operations that were carried out
during the construction of a wine cellar during the early 19th century. The site became one of the
Hungarian National Parks in the 1980s. Currently, in addition to the archaeological museum located
within the historic wine cellar, the 1986 excavation trench can be seen with a number of features from
different periods remain in situ. More information regarding the archaeological context can be found
in [25–30].
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Figure 1. Case study area—Vésztő-Mágor Tell: The red polygon indicates the area covered from the
geophysical survey (GPR measurements) and ground spectroradiometric measurements (Latitude:
46◦56′24.36′ ′; Longitude: 21◦12′32.67′ ′, WGS84) (Figure from [5]).
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2.2. Data Soruces

Two different types of data have been used in this study: (a) ground spectral signatures collected
from the GER-1500 spectroradiometer (Spectra Vista Corporation, New York, NY, USA) and (b) GPR
measurements using a Noggin Plus (Sensors & Software) GPR with a 250 MHz antenna. The field
portable spectroradiometer has a spectral range between 350–1050 nm, covering the visible and very
near infrared part of the spectrum, and providing the capability to read 512 (hyper) spectral bands.
For calibration purposes, during the collection of the spectral signatures, sun irradiance was measured
using a spectralon panel. The Noggin Plus 250 MHz antenna was able to penetrate up to a depth of
2 m below ground surface, and data were interpolated to create 10 depth slices of 20 cm thickness each.
A velocity of about 0.1 m/nsec for the transmission of the electromagnetic waves (250 MHz antennas)
was assumed based on the hyperbola fitting. After the acquisition of the data, various filters (such as
first peak selection, AGC, Dewow, and DC shift filters) have been used to amplify the average signal
amplitude and remove the initial DC bias.

2.3. Methodology

Both in situ measurements were collected moving along parallel transects 0.5 m apart with
5 cm sampling along the lines (see red polygon of Figure 1). The measurements have been collected
concurrently to minimize noise. More details regarding the data collection can be found in [30,31],
while further information for the spectral signature campaigns are available in [32].

Once the data were collected, the MathWorks MATLAB R2016b was used for the neural network
fitting. In our case study the Bayesian Neural Network (BNN) fitting was selected. BNN is a neural
network with a prior distribution on its weights, where the likelihood for each data is given by
the equation

p(yn|w, xn, σ2) = Normal (yn|NN(; w), σ2 (1)

where NN is a neural network whose weights and biases from the latent variable w [33]. From the
whole dataset, an 85% was used for training purposes while the rest 15% was used for testing the
fusion models. Based on previous results obtained from [5], this study was focused only on the upper
layers of ground surface (e.g., GPR depths up to 0.60 m below ground surface with depth slices of
thickness 0.20 m). Depths beyond the 0.60 m below ground surface did not provide any reliable results
as found in [5] and confirmed also here (results are not shown).

The fusion was performed for each depth slice (i.e., 0.00–0.20 m; 0.20–0.40 m; and 0.40–0.60 m)
against four data clusters (sub-groups) generated from the spectral signature dataset. The clusters
were selected based on the spectral characteristics of the optical remote sensed datasets
(i.e., spectroradiometer) as follows: the first cluster refers to multispectral bands, covering from
visible to the very near infrared part of the spectrum (four bands: Blue–Green–Red–Near Infrared); the
second cluster refers to 13 broadband vegetation indices; the third cluster refers to 53 hyperspectral
vegetation indices, while the fourth cluster contains all three clusters mentioned earlier (70 datasets).
Therefore, these clusters represent different products that can be acquired from optical remote sensing
sensors (multispectral and hyperspectral) for the whole area of interest (with and without buried
archaeological features). More details about these clusters are provided below.

First cluster: The ground hyperspectral signatures, obtained from the GER 1500, were initially
resampled to multispectral bands (blue–green–red–near infrared) using the relative spectral response
(RSR) filter as shown in Equation (2). These filters define the instrument’s relative sensitivity to
radiance in various parts of the electromagnetic spectrum. RSR filters have a value range from 0 to 1
and are unit-less, since they are relative to the peak response.

Rband = Σ (Ri * RSRi)/ ΣRSRi (2)
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here:
Rband = reflectance at a range of wavelength (e.g., blue band)
Ri = reflectance at a specific wavelength (e.g., R450 nm)
RSRi = relative response value at the specific wavelength
Second cluster: Based on the above multispectral bands, a variety of vegetation indices can be

calculated, mainly exploiting the red and near infrared bands. In this study, 13 broadband vegetation
indices have been calculated as shown in Table 1. More details about these indices can be found in the
relevant references as indicated in the last column of Table 1.

Table 1. Multispectral vegetation indices used in the study.

No Vegetation Index Equation Reference

1 NDVI (Normalized Difference Vegetation Index) (pNIR − pred)/(pNIR + pred) [34]

2 RDVI (Renormalized Difference Vegetation Index) (pNIR − pred)/(pNIR + pred)1/2 [35]

3 IRG (Red Green Ratio Index) pRed − pgreen [36]

4 PVI (Perpendicular Vegetation Index)
(pNIR − α pred − b)/(1 + α2)
pNIR,soil = α pred,soil + b [37]

5 RVI (Ratio Vegetation Index) pred/pNIR [38]

6 TSAVI (Transformed Soil Adjusted Vegetation Index)
[α(pNIR − α pNIR − b)]/[(pred + α pNIR
− αb + 0.08(1 + α2))]
pNIR,soil = α pred,soil + b

[39]

7 MSAVI (Modified Soil Adjusted Vegetation Index) [2 pNIR + 1-[(2 pNIR + 1)2 − 8(pNIR −
pred)]1/2]/2

[40]

8 ARVI (Atmospherically Resistant Vegetation Index) (pNIR − prb)/(pNIR + prb),
prb = pred − γ (pblue − pred) [41]

9 GEMI (Global Environment Monitoring Index)
n(1 − 0.25n)(pred − 0.125)/(1 − pred)
n = [2(pNIR

2 − pred
2) + 1.5 pNIR + 0.5

pred]/(pNIR + pred + 0.5)
[42]

10 SARVI (Soil and Atmospherically Resistant
Vegetation Index)

(1 + 0.5) (pNIR − prb)/(pNIR + prb + 0.5)
prb = pred − γ (pblue − pred) [40]

11 OSAVI (Optimized Soil Adjusted Vegetation Index) (pNIR − pred)/(pNIR + pred + 0.16) [43]

12 DVI (Difference Vegetation Index) pNIR − pred [44]

13 SR × NDVI (Simple Ratio x Normalized Difference
Vegetation Index (pNIR

2 − pred)/(pNIR + pred
2) [45]

Third cluster: Beyond the multispectral indices, 53 hyperspectral indices have been calculated
as shown in Table 2. These vegetation indices were calculated based on the initial ground spectral
signatures (i.e., before the application of the RSR filters). Similarly to the previous cluster, more details
about these indices can be found in the relevant references as indicated in the last column of Table 2.
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Table 2. Hyperspectral vegetation indices used in the study.

No Vegetation Index Equation Reference

1 CARI (Chlorophyll Absorption Ratio Index)
p700|α670 + p670 + b|/[p670(α2 + 1)0.5

α = (p700 − p550)/150
b = p550 − 550 α

[46]

2 GI (Greenness Index) p554/p677 [47]

3 GVI (Greenness Vegetation Index) (p682 − p553)/(p682 + p553) [48]

4 MCARI (Modified Chlorophyll Absorption
Ratio Index)

[(P700 − P670) − 0.2(P700 −
P550)](P700/P670) [49]

5 MCARI2 (Modified Chlorophyll Absorption
Ratio Index) 1.2[2.5(p800 − p670) − 1.3(p800 − p550)] [50]

6 mNDVI (Modified Normalized Difference
Vegetation Index) (p800 − p680)/(p800 + p680 − 2 p445) [51]

7 SR705 (Simple Ratio, Estimation of chlorophyll content) p750/p705 [52]

8 mNDVI2 (Modified Normalized Difference
Vegetation Index) (p750 − p705)/(p750 + p705 − 2 p445) [51]

9 MSAVI (Improved Soil Adjusted Vegetation Index) [2 p800 + 1 − [(2 p800 + 1)2 − 8(p800 −
p670)]1/2]/2

[34]

10 mSR (Modified Simple Ratio) (p800 − p445)/(p680 − p445) [51]

11 mSR2 (Modified Simple Ratio) (p800 − p445)/(p680 − p445) [51]

12 mSR3 (Modified Simple Ratio) (p800/p670 − 1)/(p800/p670 + 1)0.5 [53]

13 MTCI (MERIS Terrestrial Chlorophyll Index) (p754 − p709)/(p709 − p681) [54]

14 mTVI (modified Triangular Vegetation Index) 1.2[1.2(p800 − p550) − 2.5(p670 − p550)] [28]

15 NDVI (Normalized Difference Vegetation Index) (p800 − p670)/(p800 + p670) [34]

16 NDVI2 (Normalized Difference Vegetation Index) (p750 − p705)/(p750 + p705) [55]

17 OSAVI (Optimized Soil Adjusted Vegetation Index) 1.16(p800 − p670)/(p800 + p670 + 0.16) [43]

18 RDVI (Renormalized Difference Vegetation Index) (p800 − p670)/(p800 + p670)0.5 [35]

19 REP(Red-Edge Position) 700 + 40[(p670 + p780)/2 − p700]/(p740 −
p700) [56]

20 SIPI (Structure Insensitive Pigment Index) (p800 − p450)/(p800 − p650) [57]

21 SIPI2 (Structure Insensitive Pigment Index) (p800 − p440)/(p800 − p680) [57]

22 SIPI3(Structure Insensitive Pigment Index) (p800 − p445)/(p800 − p680) [58]

23 SPVI (Spectral polygon vegetation Index) 0.4[3.7(p800 − p670) − 1.2|p530 − p670|] [59]

24 SR (Simple Ratio) p800/p680 [60]

25 SR1 (Simple Ratio) p750/p700 [61]

26 SR2 (Simple Ratio) p752/p690 [61]

27 SR3 (Simple Ratio) p750/p550 [61]

28 SR4 (Simple Ratio) p672/p550 [62]

29 TCARI (Transformed Chlorophyll Absorption
Ratio Index)

3[(p700 − p670) − 0.2(p700 −
p550)(p700/p670)] [63]

30 TSAVI (Transformed Soil Adjusted Vegetation Index)

[α(p875 − α p680 − b)]/[(p680 + α p875 –
αb + 0.08(1 + α2))]
α = 1.062
b = 0.022

[43]

31 TVI (Triangular Vegetation Index) 0.5[120(p750 − p550) − 200(p670 − p550)] [64]

32 VOG (Vogelmann Indices) p740/p720 [65]

33 VOG2 (Vogelmann Indices) (p734 − p747)/(p715 + p726) [66]

34 ARI (Anthocyanin Reflectance Index) (1/p550) − (1/p700) [67]

35 ARI2 (Anthocyanin Reflectance Index 2) p800(1/p550) − (1/p700) [67]
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Table 2. Cont.

No Vegetation Index Equation Reference

36 BGI (Blue Green Pigment Index) p450/p550 [47]

37 BRI (Blue Red Pigment Index) p450/p690 [47]

38 CRI (Carotenoid Reflectance Index) (1/p510) − (1/p550) [68]

39 RGI (Red/Green Index) p690/p550 [47]

40 CI (Curvature Index) p675. p690/p2
683 [47]

41 LIC (Curvature Index) p440/p690 [69]

42 NPCI (Normalized Pigment Chlorophyll Index) (p680 − p430)/(p680 + p430) [70]

43 NPQI (Normalized Phaeophytinization Index) (p415 − p435)/(p415 + p435) [71]

44 PRI (Photochemical Reflectance Index) (p531 − p570)/(p531 + p570) [72]

45 PRI2 (Photochemical Reflectance Index) (p570 − p539)/(p570 + p539) [73]

46 PSRI (Plant Senescence Reflectance Index) (p680 − p500)/p750 [74]

47 SR5 (Simple Ratio) p690/p655 [47]

48 SR6(Simple Ratio) P685/p655 [47]

49 VS (Vegetation Stress ratio) P725/p702 [75]

50 MVSR (Modified Vegetation Stress ratio) P723/p700 [75]

51 fWBI (floating Water Band Index) p900/min p920−980 [76]

52 WI (Water Index) p900/p970 [76]

53 SG (Sum Green Index) mean of reflectance across the 500 nm to
600 nm [36]

pNIR is the near infrared reflectance; pred is the red reflectance; pgreen is the green reflectance; pblue is the blue
reflectance; px is the reflectance at a specific wavelength.

Fourth cluster: The fourth cluster contains the whole sample from the ground spectroscopy
campaign: the 4 multispectral bands, the 13 multispectral vegetation indices, and the 53 hyperspectral
vegetation indices.

The aforementioned datasets were imported into the MATLAB Neural Network Fitting application.
The four clusters—as previously described—have been imported separately as input parameters, while
the first three GPR depth slices (i.e., 0.00−0.20 m; 0.20−0.40 m; and 0.40−0.60 m) have been used as
targets. A cross validation procedure based on the assessment of numerical indices of performance,
such as the mean absolute error (MAE) and regression value (R), was followed (see Equations (3)
and (4), respectively) for estimating the number of hidden neurons needed in the neural network. In
this study, two results using two and ten hidden neurons are demonstrated, as shown in the neural
network diagram at Figure 2. For more research related to the numbers of hidden layers in a neural
network see [77].

MAE =
∑n

i=1|yi − xi|
n

(3)

R =
n ∑ xy−∑ x ∑ y√

[n ∑ x2 − (∑ x)2][n ∑ y2 − (∑ y)2]
(4)

where x is the observed GPR-measurement, y is the BNN modelled GPR result, and n is the total
number of measurements.



Remote Sens. 2018, 10, 1762 8 of 22

Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 22 

 

49 VS (Vegetation Stress ratio) P725/p702 [75] 

50 MVSR (Modified Vegetation Stress ratio) P723/p700 [75] 

51 fWBI (floating Water Band Index) p900/min p920−980 [76] 
52 WI (Water Index) p900/p970 [76] 

53 SG (Sum Green Index) 
mean of reflectance across the 500 nm 
to 600 nm 

[36] 

pNIR is the near infrared reflectance; pred is the red reflectance; pgreen is the green reflectance; pblue is the 
blue reflectance; px is the reflectance at a specific wavelength. 

Fourth cluster: The fourth cluster contains the whole sample from the ground spectroscopy 
campaign: the 4 multispectral bands, the 13 multispectral vegetation indices, and the 53 hyperspectral 
vegetation indices. 

The aforementioned datasets were imported into the MATLAB Neural Network Fitting 
application. The four clusters—as previously described—have been imported separately as input 
parameters, while the first three GPR depth slices (i.e., 0.00−0.20 m; 0.20−0.40 m; and 0.40−0.60 m) 
have been used as targets. A cross validation procedure based on the assessment of numerical indices 
of performance, such as the mean absolute error (MAE) and regression value (R), was followed (see 
Equations (3) and (4), respectively) for estimating the number of hidden neurons needed in the neural 
network. In this study, two results using two and ten hidden neurons are demonstrated, as shown in 
the neural network diagram at Figure 2. For more research related to the numbers of hidden layers 
in a neural network see [77]. 𝑀𝐴𝐸 = ∑ |𝑦 𝑥 |𝑛  (3) 

𝑅 = 𝑛 ∑ 𝑥𝑦 ∑ 𝑥 ∑ 𝑦𝑛 ∑ 𝑥 ∑ 𝑥) 𝑛 ∑ 𝑦 ∑ 𝑦)  (4) 

where x is the observed GPR-measurement, y is the BNN modelled GPR result, and n is the total 
number of measurements. 

 
(a) 

 
(b) 

Figure 2. Neural network diagrams used in this study: (a) using two hidden layers and (b) using 10 
hidden layers. As input parameters, the four aforementioned clusters have been used. 

Artificial neural networks have received considerable attention due to its powerful ability in 
image processing, natural language processing, etc. [78]. In this study, the Bayesian regularatzaion 
was used as a training algorithm of the neural network. The Bayesian framework allows the 
combination of uncertain and incomplete information with multi-source datasets, while it can 
provide a probabilistic information on the accuracy of the updated model [79]. The estimated 

Figure 2. Neural network diagrams used in this study: (a) using two hidden layers and (b) using
10 hidden layers. As input parameters, the four aforementioned clusters have been used.

Artificial neural networks have received considerable attention due to its powerful ability in
image processing, natural language processing, etc. [78]. In this study, the Bayesian regularatzaion was
used as a training algorithm of the neural network. The Bayesian framework allows the combination of
uncertain and incomplete information with multi-source datasets, while it can provide a probabilistic
information on the accuracy of the updated model [79]. The estimated parameters are modeled with
random variables while their prior distribution is updated with data and observations to a posterior
distribution through application of Bayes’ rule [79].

Once the BNN fusion models are estimated, their accuracy and performance is evalauted based on
the MAE and R parameters (see Equations (3) and (4)) as well as the error historgams. Selected fused
models, based on their performance, are then compared with the original GPR depth slices using
several image quality indicators.

3. Results

3.1. Neural Netowork Regression Values

The results from the BNN using as inputs the first cluster—four multispectral bands—are depicted
in Figure 3. The BNN model for the first depth slice (0.00–0.20 m below ground surface) has given
a 0.50 regression value (R) as shown in Figure 3a. Similar regression values have also been reported
in the rest depth slices (0.20–0.40 m and 0.40–0.60 m below ground surface) as shown in Figure 3b,c,
respectively. R values are even lower when we fuse the GPR depth slices with individual vegetation
indices from the second and third cluster. As shown in Figure 4, for the NDVI index (Table 1, no 1),
R value is less than 0.40 (see Figure 4a,c) while for the depth slice between 0.20–0.40 m (Figure 4b) the
R value is even less than 0.20. For the hyperspectral REP index (Table 2, no. 19) the R value results
(Figure 5) are similar to the multispectral bands (Figure 3). It should be stated that these results are
also in agreement to the linear regerssion models obtained from [5].
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against GPR slice depth between 0.40–0.60 m.

In our experiments, it was evident that no single vegetation index could sufficiently explain the
GPR anomalies found in the various depth slices. This was also demonstrated in other studies focusing
on the detection of buried features in optical remote sensing datasets based on crop marks [80,81].



Remote Sens. 2018, 10, 1762 10 of 22

To this end, the second, third and fourth clusters (i.e., multispectral vegetation indices, hyperspectral
vegetation indices, and whole dataset respectivelly) was used.

The results obtained from the second cluster using the multispectral vegetation indices were
similar with the first cluster (results in Figure 6). More specifically, the regression value was found
to be 0.50, 0.41, and 0.41 for the depth slices 0.00–0.20 m, 0.20–0.40 m, and 0.40–0.60 m respectively.
Even if these values are much more improved compared to the NDVI index (Figure 4), the results are
not sufficient as the R value is still lower of 0.50.
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In contrast, when the third cluster was used as input in the fusion model (i.e., hyperspectral
vegetation indices), it was observed a major increased of the regression value; 0.67, 0.64, and 0.64 for
the depth slices 0.00–0.20 m, 0.20–0.40 m, and 0.40–0.60 m below ground surface respectively (see
Figure 7). Thus, hyperspectral indices provided more accurate fusion models between the ground
spectral signatures and the GPR results. On the other hand, analysis based on the use of the whole
dataset did not significantly improve these results as shown in Figure 8.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 22 
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hyperspectral vegetation indices against GPR slice depth between 0.40–0.60 m.
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In an effort to further investigate and improve the fusion model, the number of the hidden layers
was increased from 2 to 10. The results using the whole dataset are shown in Figure 9. It is apparent
that the overall regression values are quite high for the depth slices 0.00–0.20 m and 0.40–0.60 m
(Figure 9a,c respectively) recording an R value higher than 0.80. However the results for the second
depth slice 0.20–0.40 m are still poor with an R value of approximately 0.55. It is interesting and worth
hightlighting that results with high regression values (more than 0.73) were found using 10 hidden
layers and the hyperspectral vegetation indices (third cluster). These results are considered fairly
sufficient for the fusion models between the spectral signatures and the GPR results for all the depth
slices. The increased number of the hidden layers has increased the R value up to 0.20 in comparon to
the results of Figures 7 and 10 (10 and 2 hidden layers respectively). The regression values obtained
in this study were also improved compared to the linear regression models tested in [5]. The higher
regression values of [5] were 0.49, 0.38 and 0.47 using the REP index for the depth slices 0.00–0.20 m,
0.20–0.40 m, and 0.40–0.60 m below ground surface respectively. In this study, the results are 0.77, 0.73,
and 0.80 (see Figure 10).Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 22 
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interpretation of the MAE index can be problematic in cases like ours, where the global absolute error 
of the GPR signal is not so significant, since the signal value varies upon the case study area and the 
anomalies of the ground surface. Therefore, MAE index can be used during the training purposes 
along with the regression values as a proxy of good performance of the fusion model but not as an 
indicator of the quality of the specific fusion model trained for a specific archaeological site. In 
contrast, the distribution of the error (rather than the global error MAE) in the form of a histogram 
error (Figure 11), may be used not only for validation purposes, but also as a tool when interpreting 
the data after the application of the fusion model with other datasets. 

Figure 9. BNN 10 hidden layers fitting results based on the 85% of the samples: (a) Group of
multispectral bands, multispectral and hyperspectral vegetation indices against GPR slice depth
between 0.00–0.20 m; (b) Group of multispectral bands, multispectral and hyperspectral vegetation
indices against GPR slice depth between 0.20–0.40 m; and (c) Group of multispectral bands,
multispectral and hyperspectral vegetation indices against GPR slice depth between 0.40–0.60 m.



Remote Sens. 2018, 10, 1762 12 of 22

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 22 

 

   
(a) (b) (c) 

Figure 9. BNN 10 hidden layers fitting results based on the 85% of the samples: (a) Group of 
multispectral bands, multispectral and hyperspectral vegetation indices against GPR slice depth 
between 0.00–0.20 m; (b) Group of multispectral bands, multispectral and hyperspectral vegetation 
indices against GPR slice depth between 0.20–0.40 m; and (c) Group of multispectral bands, 
multispectral and hyperspectral vegetation indices against GPR slice depth between 0.40–0.60 m. 

   
(a) (b) (c) 

Figure 10. BNN 10 hidden layers fitting results based on the 85% of the samples: (a) Group of 
hyperspectral vegetation indices against GPR slice depth between 0.00–0.20 m; (b) Group of 
hyperspectral vegetation indices against GPR slice depth between 0.20–0.40 m; and (c) Group of 
hyperspectral vegetation indices against GPR slice depth between 0.40–0.60 m. 

3.2. Errors in Neural Netoworks 

Various errors might occur in the fusing process of two different multi-instrument remotely 
sensed data. To avoid overfitted statistical models, the data were retrained several times using a 
random data division approach. As mentioned earlier, in our fusion models 85% of the data was used 
for training, while the rest 15% of the data was used for validation. 

Beyond the regression value R, which is a numerical index of overall performance, the overall 
performance can be further monitored by the MAE and the training error diagrams. However, the 
interpretation of the MAE index can be problematic in cases like ours, where the global absolute error 
of the GPR signal is not so significant, since the signal value varies upon the case study area and the 
anomalies of the ground surface. Therefore, MAE index can be used during the training purposes 
along with the regression values as a proxy of good performance of the fusion model but not as an 
indicator of the quality of the specific fusion model trained for a specific archaeological site. In 
contrast, the distribution of the error (rather than the global error MAE) in the form of a histogram 
error (Figure 11), may be used not only for validation purposes, but also as a tool when interpreting 
the data after the application of the fusion model with other datasets. 

Figure 10. BNN 10 hidden layers fitting results based on the 85% of the samples: (a) Group
of hyperspectral vegetation indices against GPR slice depth between 0.00–0.20 m; (b) Group of
hyperspectral vegetation indices against GPR slice depth between 0.20–0.40 m; and (c) Group of
hyperspectral vegetation indices against GPR slice depth between 0.40–0.60 m.

3.2. Errors in Neural Netoworks

Various errors might occur in the fusing process of two different multi-instrument remotely sensed
data. To avoid overfitted statistical models, the data were retrained several times using a random data
division approach. As mentioned earlier, in our fusion models 85% of the data was used for training,
while the rest 15% of the data was used for validation.

Beyond the regression value R, which is a numerical index of overall performance, the overall
performance can be further monitored by the MAE and the training error diagrams. However, the
interpretation of the MAE index can be problematic in cases like ours, where the global absolute
error of the GPR signal is not so significant, since the signal value varies upon the case study area
and the anomalies of the ground surface. Therefore, MAE index can be used during the training
purposes along with the regression values as a proxy of good performance of the fusion model but
not as an indicator of the quality of the specific fusion model trained for a specific archaeological site.
In contrast, the distribution of the error (rather than the global error MAE) in the form of a histogram
error (Figure 11), may be used not only for validation purposes, but also as a tool when interpreting
the data after the application of the fusion model with other datasets.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 22 
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3.3. Comparison with Real GPR Slices

The overall performance of the fusion models was directly compared with the real GPR depth
slices. For this task, the BNN fusion model generated using the hypespectral indices cluster, which
provided high regression values for all three depth slices has been used. The application of the BNN
fusion model was once again performed in the MATLAB environment. The GPR results acquired at
the archaeological site of Vésztő-Mágor Tell—over the area shown in red polygon at Figure 1—are
demonstrated in Figure 12a–c. The fused BNN results are shown in Figure 12d–f for the depth slices
0.00 up to 0.60 m. A linear horizontal feature exists at around 75–80 m north at all GPR depth slices
(indicated with red arrow) up to a depth to 0.60 m. The same anomaly can be also observed in the BNN
fused model (Figure 12d–f). Absolute differences (i.e., GPR results—BNN results) can be obviously
reported between the real and the fused models (see results in Figure 13). These absolute differences
are scattered accross the whole area of investigation, whereas no any specific pattern distribution can
be seen for the three depth slices (Figure 13a–c).Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 22 
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Figure 12. GPR depth slices results for 0.00–0.20 m (a), 0.20–0.40 m (b), and 0.40–0.60 m (c) below
ground surface and BNN fused results for 0.00–0.20 m (d), 0.20–0.40 m (e), and 0.40–0.60 m (f) below
ground surface using the hyperspectral vegetation cluster. All depth slices have been rescaled to the
same GPR amplitude range for consistency in the interpretation of the figure. High amplitude values
are shown with blue color, while low amplitude values are shown with brown.



Remote Sens. 2018, 10, 1762 14 of 22

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 22 

 

 

Figure 13. Errors observed between the GPR in measurements (see Figure 12a–c) and the BNN fusion 
model (see Figure 12d–f) for the depth slices between 0.00–0.20 m (a), 0.20–0.40 m (b), and 0.40–0.60 
m (c). Higher amplitude error values are shown with red colour while lower amplitude error values 
with blue. 

The images generated from the GPR measurements and the BNN fused models (see Figure 12) 
were further analyzed using five different quality image methods: (a) bias, (b) image entropy, (c) 
ERGAS (erreur relative globale adimensionnelle de synthèse), (d) RASE (relative average spectral 
error), and (e) RMSE (root mean squared error). The equations for these image quality methods are 
given below (Equations. 5–9). More details regarding the details of the aforementioned quality image 
methods can be found in [82,83]. 𝐵𝑖𝑎𝑠 = 1 𝑦𝑥 (5) 

𝐼𝑚𝑎𝑔𝑒 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐸) = 𝑝 ∗ 𝑙𝑜𝑔 𝑝) (6) 

𝐸𝑅𝐺𝐴𝑆 = 100 ℎ𝑙 1𝑁 𝑅𝑀𝑆𝐸 𝐵 )�̅�  (7) 

𝑅𝐴𝑆𝐸 = 100𝑥 1𝑁 𝑅𝑀𝑆𝐸 𝐵 )  (8) 

𝑅𝑀𝑆𝐸 = ∑ 𝑥 𝑦 )𝑛  (9) 

The results of the quality image methods are demonstrated in Figure 14. Each row of the figure 
represents a different depth slice: the first row refers to the depth slice 0.00–0.20 m, the second row 
refers to the depth slice 0.20–0.40 m, while the third row refers to the depth slice 0.40–0.60 m. Images 
are labelled as follow: (a) refers to the result after the bias, (b) to image entropy, (c) to ERGAS, (d) to 
RASE, and (e) to RMSE quality indices. The different quality indices indicate similar results for each 
depth, while the same observation can be made for the same index across the three depth slices. The 
main differences between the ‘real’ and the ‘modeled’ data are visible at the location of the linear 
feature. 

Figure 13. Errors observed between the GPR in measurements (see Figure 12a–c) and the BNN
fusion model (see Figure 12d–f) for the depth slices between 0.00–0.20 m (a), 0.20–0.40 m (b),
and 0.40–0.60 m (c). Higher amplitude error values are shown with red colour while lower amplitude
error values with blue.

The images generated from the GPR measurements and the BNN fused models (see Figure 12)
were further analyzed using five different quality image methods: (a) bias, (b) image entropy, (c) ERGAS
(erreur relative globale adimensionnelle de synthèse), (d) RASE (relative average spectral error), and
(e) RMSE (root mean squared error). The equations for these image quality methods are given below
(Equations. 5–9). More details regarding the details of the aforementioned quality image methods can
be found in [82,83].

Bias = 1− y
x

(5)

Image Entropy (E) = −
bc

∑
i=1

p ∗ log2(p) (6)

ERGAS = 100
h
l

√
1
N

N

∑
k=1

RMSE(Bk)
2

x2
k

(7)

RASE =
100

x

√
1
N

N

∑
k=1

RMSE(Bk)
2 (8)

RMSE =

√
∑n

i=1(xi − yi)
2

n
(9)

The results of the quality image methods are demonstrated in Figure 14. Each row of the figure
represents a different depth slice: the first row refers to the depth slice 0.00–0.20 m, the second row
refers to the depth slice 0.20–0.40 m, while the third row refers to the depth slice 0.40–0.60 m. Images are
labelled as follow: (a) refers to the result after the bias, (b) to image entropy, (c) to ERGAS, (d) to RASE,
and (e) to RMSE quality indices. The different quality indices indicate similar results for each depth,
while the same observation can be made for the same index across the three depth slices. The main
differences between the ‘real’ and the ‘modeled’ data are visible at the location of the linear feature.
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Figure 14. Results from the (a) bias, (b) image entropy, (c) ERGAS (erreur relative globale
adimensionnelle de synthèse), (d) RASE (relative average spectral error), and (e) RMSE (root mean
squared error) quality image methods. The first row refers to the first depth slice (0.00–0.20 m), the
second row to the 0.20–0.40 m depth slice and the third row to the 0.40–0.60 m depth slice. Red values
represent higher mismatch between the ‘real’ image (GPR) and the ‘modeled’ image (BNN model)
while blue color lower values. The radiometric scale of the images was set to 8 bit (0–255).
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A quantitative analysis of the comparison between the real GPR measurements and the BNN fused
datasets, are indicated in Table 3. Table 3 shows the results for the different quality image method used
before (i.e., bias, entropy, ERGAS, RASE, and RMSE) for different depths (i.e., 0.00–0.20 m, 0.20–0.40 m,
and 0.40–0.60 m below surface). Values close to zero (0) are considered ideal, since the fused images
results are matched with the real GPR datasets. Based on these results, it is important to highlight the
fact that layers 0.20–0.40 m and 0.40–0.60 m below surface seem to provide slightly more ‘realistic’
results compared to the upper layer, as indicated for instance for the bias method (0.11 for layer
0.00–0.20 m, 0.06 for layer 0.20–0.40 m, and 0.08 for layer 0.40–0.60 m below surface). The layer
0.20–0.40 m provide the best results for all quality image methods examined providing average results
of 0.06, 0.59, 1.80, 7.43, and 13.75 for bias, entropy, ERGAS, RASE, and RMSE methods respectively.

Table 3. Quantitative Analysis of original GPR results with the fused image results through BNN
application in different levels.

Method Layer 0.00–0.20 m Layer 0.20–0.40 m Layer 0.40–0.60 m

Bias 0.11 0.06 0.08
Entropy 0.70 0.59 0.59
ERGAS 2.74 1.80 2.10
RASE 11.84 7.43 8.88
RMSE 23.30 13.75 16.22

4. Discussion

In the recent years, advances in remote sensing have shown its potential strengths in archaeological
research [84–86]. Despite these new technological improvements in terms of spatial, spectral and
temporal resolution, the combination and fusion of different types of remotely sensed data is still open
for research. Fusion of different datasets can further explore the way we interpret remotely sensed
data for archaeological research. In this study, ground sensors (i.e., GPR and spectroradiometer) were
used to examine potential correlation between the two datasets. Based on the results demonstrated
in the previous section, recent advancements in machine learning for image analysis, such as neural
networks, can establish high correlation coefficient (>0.70) between the datasets. This correlation
has been relative increased by 40% compared to the findings of previous studies [5]. In study [5],
the best results were reported using the REP index with a correlation coefficient value ranging from
0.38–0.49. One important aspect found in this study is the ability of the neural networks to produce
high correlation coefficient regression models for all the upper layers of soil (i.e., for layer 0.00–0.20 m,
0.20–0.40 m, and 0.40–0.60 m below surface).

Once a high correlation between the two different datasets is achieved then the established BNN
model, i.e., from GPR to optical remote sensed datasets, enables us to ‘transfer’ the model to optical
remotely sensed data in various depth slices. The results also indicated that aerial and low altitude
hyperspectral datasets can be considered as ideal for similar investigations as proposed in this study
due to their ability to provide not only high spatial resolution images but also due to the higher
correlation coefficient of the regression models in contrast to multispectral sensors.

In this way, hyperspectral datasets can be trained to ‘predict’ GPR depth slices up to a depth
of 0.60 m below ground surface and therefore identify hot-spot areas. The model does not follow a
supervised approach, i.e., firstly to identify and extract archaeological features from the GPR dataset
and then to apply the model, but rather to model the entire area of investigation between the two
different datasets. Significant variability in the R values obtained in different depth slices can also lead
to errors and misleading. Of course, this is impossible to predict since it needs to be assumed that
soil and vegetation characteristics along with archeological features’ properties are uniform across the
study area (but not necessarily spatially uniform).

Of course, this predictive model should be further investigated, improved, and incorporate
new insights from on-going archaeological excavations, other geophysical prospection datasets, etc.
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However, the propose method enable us to re-use the numerous archived hyperspectral datasets
from airborne campaigns blended with ground geophysical prospection data. The results from this
experiment demonstrated that this fusion model is feasible, with unavoidable differences between the
‘real’ and the ‘modeled’ data. It should be also stressed that the fused model is reliable in areas with
similar context (i.e., archaeological and environmental context), therefore a prior knowledge of the
area of interest in essential.

An overall methodology of the proposed work is demonstrated in following Figure 15. The various
steps include the collection of the ground datasets (GPR and ground spectroradiometric measurements)
over the same area and their pre-processing steps for noise removal and co-registration of the data.
It should be mentioned that the collection of the ground datasets should be carried out almost
simultaneously so as to minimize any phenological changes of the crops and soil moisture levels. Then
various multispectral and hyperspectral indices can estimate using the ground spectral signatures
as these are described in Tables 1 and 2. The next step includes the fusion modeling between the
vegetation indices and the different depth slices based on BNN. The results are then evaluated and
compared with the in-situ GPR measurements. This step is of high importance since it will assess
the overall performance of the fused model with the different GPR slices. Once the fused model is
acceptable, then this can be applied to satellite image.
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5. Conclusions

This paper presents the results from an ongoing research oriented towards the fusion of
multi-source and multi-instrument remote sensing datasets acquired for archaeological applications.
This study aims to push research towards new ways of exploiting different remote sensing data,
through the integration and fusion of them. For this purpose, archive GPR and ground spectral
signature data have been acquired and processed using Bayesian neural network models.

The results have shown that hyperspectral vegetation indices can be strongly correlated with
the GPR results for the upper layers of ground surface (i.e., up to a depth of 0.60 m) providing a
statistical correlation coefficient of more than 0.73 for all depth slices. Even though defining a threshold
to R value for providing a strong correlation between the different datasets is difficult—since each
case study has its own characteristics—an R value of more than 0.70 is considered a good starting
point. The BNN fusion results have also been compared, using various ways, with the initial GPR
measurements. The fused models were able to detect the linear feature originally detected by the GPR,
at all the shallow depth slices.
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Potential errors and overfitting models have also been discussed in this paper. Of course, as
already mentioned earlier, the use of remote sensing data and their interpretation for archaeological
mapping “is not without risks and challenges” [1]. Further investigation is needed since the fused
models are sensitive to the study area and need to be adjusted for each site in order to preserve as
much information as possible.

Our approach can be potentially used in two ways: (a) firstly, someone may re-use archived
geophysical prospection data and blend them with optical remote sensing datasets (either aerial or
space, including drone sensors) and (b) secondly, somebody may ‘predict’ (model) priority areas
based on geophysical or other remotely sensed data for further non-contact remote sensing techniques.
Of course, high correlation achieved between the different datasets is reliable only for similar soil
characteristics and targets (i.e., archaeological features). Future work may be focused on other areas
with different soil conditions and underneath targets in order to further explore the feasibility of
this methodology.
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radar and electrical resistivity tomography studies in the biblical Pisidian Antioch city, southwest Anatolia.
Archaeol. Prospect. 2018, 1–16. [CrossRef]

18. Küçükdemirci, M.; Özer, E.; Piro, S.; Baydemir, N.; Zamuner, D. An application of integration approaches for
archaeo-geophysical data: Case study from Aizanoi. Archaeol. Prospect. 2018, 25, 33–44. [CrossRef]

19. Gustavsen, L.; Cannell, R.J.S.; Nau, E.; Tonning, C.; Trinks, I.; Kristiansen, M.; Gabler, M.; Paasche, K.;
Gansum, T.; Hinterleitner, A.; et al. Archaeological prospection of a specialized cooking-pit site at Lunde in
Vestfold, Norway. Archaeol. Prospect. 2018, 25, 17–31. [CrossRef]

20. Bevan, A. The data deluge. Antiquity 2015, 89, 1473–1484. [CrossRef]
21. Orengo, H.; Petrie, C. Large-Scale, Multi-Temporal Remote Sensing of Palaeo-River Networks: A Case Study

from Northwest India and its Implications for the Indus Civilisation. Remote Sens. 2017, 9, 735. [CrossRef]
22. Agapiou, A. Remote sensing heritage in a petabyte-scale: Satellite data and heritage Earth Engine©

applications. Int. J. Digit. Earth 2017, 10, 85–102. [CrossRef]
23. Liss, B.; Howland, D.M.; Levy, E.T. Testing Google Earth Engine for the automatic identification and

vectorization of archaeological features: A case study from Faynan, Jordan. J. Archaeol. Sci. Rep. 2017,
15, 299–304. [CrossRef]

24. Gyucha, A.; Yerkes, W.R.; Parkinson, A.W.; Sarris, A.; Papadopoulos, N.; Duffy, R.P.; Salisbury, B.R.
Settlement Nucleation in the Neolithic: A Preliminary Report of the Körös Regional Archaeological Project’s
Investigations at Szeghalom-Kovácshalom and Vésztő-Mágor. In Neolithic and Copper Age between the
Carpathians and the Aegean Sea: Chronologies and Technologies from the 6th to the 4th Millennium BCE; Hansen, S.,
Raczky, P., Anders, A., Reingruber, A., Eds.; International Workshop Budapest 2012; Dr. Rudolf Habelt:
Bonn, Germany, 2012; pp. 129–142.
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