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a b s t r a c t

We present second-order expressions for the free-surface elevation, velocity potential and pressure
resulting from the interaction of surface waves in water of arbitrary depth. When the surface waves have
nearly equal frequencies and nearly opposite directions, a second-order pressure can be felt all the way
to the sea bottom. There are at least two areas of applications: reflective structures and microseisms.
Microseisms generated by water waves in the ocean are small vibrations of the ground resulting from
pressure oscillations associated with the coupling of ocean surface gravity waves and the sea floor. They
are recorded on land-based seismic stations throughout the world and they are divided into primary
and secondary types, as a function of spectral content. Secondary microseisms are generated by the
interaction of surface waves with nearly equal frequencies and nearly opposite directions. The efficiency
of microseism generation thus depends in part on ocean wave frequency and direction. Based on the
second-order expressions for the dynamic pressure, a simple theoretical analysis that quantifies the
degree of nearness in amplitude, frequency, and incidence angle, which must be reached to observe the
phenomenon, is presented.

© 2017 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Microseisms generated by water waves in the ocean occur in
the frequency band of 0.05–1.0 Hz. They have been observed from
shallow water to deep water [1,2]. Studies have been performed
both on the origin of microseisms [3–5] and on their propaga-
tion [3,6,7]. Microseisms are produced by the interaction of ocean
surface gravity waves and are recorded as ‘‘noise’’ on seismic
stations throughout theworld. There are two types ofmicroseisms:
primary and secondary. Primary microseisms are generated by
surface gravity waves incident on a sloping bottom in shallow
water and have the same period as the causative waves. Secondary
microseisms result from the nonlinear interaction of a pair of linear
surface gravity waves of frequencies f and f ′ and wavenumber
vectors k and k′. At second order, in an ocean of depth h, this
interaction leads among other terms to a pressure term with fre-
quency f + f ′ and wavenumber vector k + k′. For nearly opposite
vectors k and k′ with nearly the same magnitude, f + f ′

∼ 2f and
|k+k′

|h ≪ 1. This pressure field thus has a very large phase speed
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2π(f + f ′)/|k + k′
| that can match the horizontal phase speed of

acoustic waves in the ocean [8]. Moreover, unlike the other terms
in the wave-induced pressure field that decay rapidly with depth,
this second-order pressure field is, at a given time, uniform inside
thewater column except near the free surface. It generates second-
order compression waves in the water layer, which in turn play a
role in exciting primarily Rayleigh waves at the Earth’s surface [9].

As indicated by Ardhuin and Herbers [4], the slowest noises
in the ocean are acoustic-gravity waves that dominate pressure
records at depths less than about one-tenth of the acoustic wave-
length. These acoustic-gravity waves cannot exist in the absence
of ocean surface gravity waves and are thus confined to the region
of active wave forcing. Even though the terminology ‘‘acoustic-
gravity wave’’ is used, compressibility is not the main driving
mechanism and acoustic-gravity waves simply relate to gravity
waves that are slightly modified by compressible effects [10]. In
this paper, we concentrate on the conditions needed to generate
secondary microseisms. Even though compressible effects play a
role, we do not take into account these effects. We focus our
attention on the pressure fluctuations at double wind-wave or
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Fig. 1. Mechanisms for the generation of secondary microseisms in the ocean wave
field.
Source:Modified from Ref. [14].

swell frequencies which can sometimes be observed at the sea
floor even in deep water. The attenuation of pressure fluctuations
over the water column can be predicted accurately [11,12], and
thus pressure measurements in the water column may provide a
quantitative verification of numerically modeled directional sur-
face wave properties. In particular, pressure measurements may
provide a precise estimate of coastal reflection or wave scattering
by currents [13]. Herbers and Guza [11,12] were among the first to
provide observations of pressure fluctuations in the water column
all the way down to the sea floor that quantitatively support the
theoretical mechanism of generation of secondary microseisms.
They observed dramatic increases in the spectral levels of seafloor
pressure at double wind-wave frequencies after a sudden veering
in wind direction resulted in waves propagating obliquely to pre-
existing seas. Note that their observations were in intermediate
water depth (13 m).

Oceanic secondary microseisms can in principle be generated
everywhere. In this paper, we focus on Ireland when it comes to
provide precise examples. The main three possibilities to generate
secondarymicroseisms are summarized in Fig. 1. Class I represents
a large stormsystem (S1)which generateswind andwaves inmany
directions, including opposing traveling waves. The Class I mech-
anism for generating standing waves and secondary microseisms
results in amicroseism source area near to if not beneath the storm
system at point A. Class II describes standing wave generation
through coastal reflection of incident traveling waves, generated
offshore (e.g. S1). These reflected waves interact with subsequent
incident waves to generate standing waves anywhere between
the source of the incident waves and the reflecting boundary,
point B. Class III refers to the generation of standing waves (point
C) through the interaction of local wind sea waves generated at
a system (S2) and distant swell from S1. An example of Class I
secondary microseisms is given in Ref. [15]. Class II examples are
expected to be found on the west coast of Ireland, where cliffs
can provide substantial reflection of waves [16]. Examples of Class
III secondary microseisms will be given in a companion paper
comparing pressuremeasurementswith the analytical expressions
of this paper.

Even though pressures induced by water waves with nearly
equal frequencies and nearly opposite directions have been known

for a long time in the context of microseisms, they have been
largely ignored in the context of reflective structures as insightfully
pointed out by Rodriguez et al. [17], see also in Ref. [18]. Indeed
second-order pressure fluctuations arise due to the interaction of
the first-order incident waves on the structure and the first-order
reflected waves. The unattenuated pressure fluctuations at double
incident-wave frequency may become the dominant term in deep
water.

For all these reasons, it is appropriate to review first the analyt-
ical expressions that are already published in the literature to de-
scribe the interaction of surface gravity waves [3,4,11–13,19–27].
Some of them, as presented, are lengthy and complicated, while
others have some singularities. The main goal of the current study
is to give full expressions, not only for the pressure but also for
the free surface elevation and the velocity potential. This way
we generalize and unify all related expressions in the literature,
without any assumption on thewater depth. Indeed, as indicated in
Fig. 4 of Ardhuin andHerbers [4], using the deep-water expressions
outside of their range can lead to some substantial errors. Besides,
misprints occur all too often in the published expressions. The
second goal of the paper is to quantify the degree of nearness
in amplitude, frequency and incidence angle needed to obtain a
significant second-order pressure field that extends all the way
to the bottom of the ocean. From the records of coastal seismic
stations, one is able to determine wave characteristics (period
and height). Therefore, one needs to know the sea states that
allow large enough pressure fluctuations at the sea floor capable of
generatingmicroseisms.We also need to understand howpressure
variations vary in space and time and how they interact with the
sea floor. We present the results obtained for the oceanic pressure
in different cases, including both two-dimensional (2D) and three-
dimensional (3D) regimes. We show the conditions on the various
parameters that lead to pressure fluctuations able to generate
secondary microseisms.

As stated above, compressible effects play a role in micro-
seisms because of the very long wavelengths involved, but are
not dominant for the aspect we consider in this paper, namely
the conditions to generate a strong second-order pressure field
independent of depth. Therefore, we consider flows in 3D that are
irrotational (velocity u = ∇φ, velocity potential φ(x, y, z; t) with x
and y the horizontal coordinates, z the vertical coordinate, and t the
time) and periodic in the horizontal directions. The fluid is ideal,
incompressible, and homogeneous,with gravity as the only driving
force. The flow is bounded below by a flat bottom at z = −h and
above by a free surface at z = η(x, y; t) (z = 0 at rest). Since effects
are confined to the region of active wave forcing, the assumption
of a flat bottom is not too restrictive.

The governing equations and boundary conditions for the free-
surface elevation η(x, y; t) and velocity potential φ(x, y, z; t) are

∇
2φ = 0, −h < z < η, (1)

φz = 0, z = −h, (2)

ηt + φxηx + φyηy − φz = 0, z = η, (3)

φt +
1
2
φ2
x +

1
2
φ2
y +

1
2
φ2
z + gη = 0, z = η. (4)

The pressure p(x, y, z; t) is obtained from Bernoulli’s equation

p = pa − ρgz − ρ

(
φt +

1
2
φ2
x +

1
2
φ2
y +

1
2
φ2
z

)
= pa − ρgz + pd, (5)

where pa − ρgz is the hydrostatic pressure and pd the dynamic
pressure. From now on, we will set the atmospheric pressure pa
equal to zero.
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M±

mn =

g2|km|
2

ωm
+

g2|kn|
2

ωn
− ω2

m(ωm + 2ωn) − ω2
n(ωn + 2ωm) ± 2g2km · kn( 1

ωm
+

1
ωn

)

(ωm + ωn)2 − g|km ± kn| tanh(|km ± kn|h)
, (9)

N±

mn =

g2|km|
2

ωm
−

g2|kn|
2

ωn
− ω2

m(ωm − 2ωn) + ω2
n(ωn − 2ωm) ± 2g2km · kn( 1

ωm
−

1
ωn

)

±[(ωm − ωn)2 − g|km ± kn| tanh(|km ± kn|h)]
. (10)

Box I.

We assume that the unknown quantities in the system under
consideration can be decomposed as

η(x, y; t) = εη̃1 + ε2η̃2 + O(ε3) = η1 + η2 + O(ε3),

φ(x, y, z; t) = εφ̃1 + ε2φ̃2 + O(ε3) = φ1 + φ2 + O(ε3), (6)
pd(x, y, z; t) = εp̃1 + ε2p̃2 + O(ε3) = p1 + p2 + O(ε3),

for a small parameter ε (typically the sea-surface slope).We choose
the origin z = 0 so that η has zero mean value. Applying de-
composition Eq. (6) on the governing Eq. (1) (Laplace equation)
and on the boundary conditions Eqs. (2)–(4) (bottom boundary
condition, kinematic and dynamic conditions on the free surface),
we obtain second-order expressions for the free-surface elevation
η, the velocity potential φ, and the dynamic pressure pd. Various
regimes are explored in the sequel. Since we are interested in
applications to real-world measurements, we work with physical
variables that include dimensions.

The superposition of several waves traveling in different direc-
tions has been considered by several authors (see Refs. [24,26]).
Since the primary focus of the present paper is the quantification
of secondarymicroseisms, we choose for the first-order expression
of a train of freely traveling waves (TWs) a form that includes the
possibility for eachwave of complex amplitudeAn to have a ‘‘sister’’
wave of complex amplitude Bn with equal frequency and opposite
direction:

η1 =

N∑
n=1

(Anei(kn·x−ωnt) − Bnei(kn·x+ωnt) + c.c.), (7)

where kn are the wavenumber vectors, ωn the frequencies, x =

(x, y), An and Bn are the complex amplitudes, and c.c . denotes
complex conjugate. It is important to emphasize that even though
η1 in Eq. (7) was originally written for positive values of ωn, it is
equally valid for negative values of ωn. The frequency ωn and the
wavenumber vector kn satisfy the dispersion relationship

ω2
n = g|kn| tanh(|kn|h).

There is some redundancy in Eq. (7) since an exact standing wave
(SW) can be obtained in several different ways, for example with
N = 1, A1 = B1 or N = 2, A1 = B2, ω1 = ω2, k1 = k2,
A2 = 0, B1 = 0. Other combinations are possible with negative
values of ω.

Note that the free-surface elevation Eq. (7) can be used to study
a single TW. Simply take N = 1 with A1 ̸= 0, B1 = 0 or B1 ̸=

0, A1 = 0. For example the case of two TWs of different wave
numbers and amplitudes traveling in the same direction can be
obtained by taking B1 = 0, A2 = 0 and replacing ω2 by −ω2 and B2
by −B2.

The waves in Eq. (7) will interact to give a second-order free-
surface elevation given by η = η1 + η2, where

η2 =
1
2

N∑
m=1

N∑
n=1

[(
M+

mn
ωm + ωn

g
+

ω2
m + ω2

n

g

+
ωmωn

g
−

gkm · kn

ωmωn

)

× (AmAnei[(km+kn)·x−(ωm+ωn)t]

+ BmBnei[(km+kn)·x+(ωm+ωn)t] + c.c.)

−

(
N+

mn
ωm − ωn

g
+

ω2
m + ω2

n

g
−

ωmωn

g
+

gkm · kn

ωmωn

)
× (AmBnei[(km+kn)·x−(ωm−ωn)t]

+ BmAnei[(km+kn)·x+(ωm−ωn)t] + c.c.)

−

(
M−

mn
ωm + ωn

g
+

ω2
m + ω2

n

g
+

ωmωn

g
+

gkm · kn

ωmωn

)
× (AmBnei[(km−kn)·x−(ωm+ωn)t]

+ BmAnei[(km−kn)·x+(ωm+ωn)t] + c.c.)
]

−
1
2

N∑
m=1

N∑
n=1,n̸=m

(
N−

mn
ωm − ωn

g
−

ω2
m + ω2

n

g

+
ωmωn

g
+

gkm · kn

ωmωn

)
× (AmAnei[(km−kn)·x−(ωm−ωn)t]

+ BmBnei[(km−kn)·x+(ωm−ωn)t] + c.c.), (8)

with M±
mn and N±

mn given by Eqs. (9) and (10) in Box I.
The kernelsM±

mn and N±
mn have the following properties:

N+

mm = 0, M±

mn = M±

nm, N±

mn = −N±

nm.

The kernelN−
mm is of the form 0/0. This is not an issue, since allN−

mm
kernels are excluded in the summations above and below.

The expressions for the first-order and second-order velocity
potentials are given as

φ1 = −i
N∑

n=1

g cosh[|kn|(h + z)]
ωn cosh(|kn|h)

(Anei(kn·x−ωnt)

+ Bnei(kn·x+ωnt) − c.c.), (11)

φ2 =
i
2

N∑
m=1

N∑
n=1

[
−M+

mn
cosh[|km + kn|(h + z)]

cosh(|km + kn|h)

× (AmAnei[(km+kn)·x−(ωm+ωn)t]

− BmBnei[(km+kn)·x+(ωm+ωn)t] − c.c.)

+N+

mn
cosh[|km + kn|(h + z)]

cosh(|km + kn|h)
× (AmBnei[(km+kn)·x−(ωm−ωn)t]

− BmAnei[(km+kn)·x+(ωm−ωn)t] − c.c.)

+M−

mn
cosh[|km − kn|(h + z)]

cosh(|km − kn|h)
× (AmBnei[(km−kn).x−(ωm+ωn)t]

− BmAnei[(km−kn).x+(ωm+ωn)t] − c.c.)
]

+
i
2

N∑
m=1

N∑
n=1,n̸=m

N−

mn
cosh[|km − kn|(h + z)]

cosh(|km − kn|h)
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× (AmAnei[(km−kn)·x−(ωm−ωn)t]

− BmBnei[(km−kn)·x+(ωm−ωn)t] − c.c.)

−

N∑
n=1

g2
|kn|

2

ω2
ncosh

2(|kn|h)
(|An|

2
+ |Bn|

2)t. (12)

The expressions for the first-order and second-order dynamic
pressures are given as

p1 = ρ

N∑
n=1

g cosh[|kn|(h + z)]
cosh(|kn|h)

(Anei(kn·x−ωnt)

− Bnei(kn·x+ωnt) + c.c.), (13)

p2 = ρ

N∑
m=1

N∑
n=1

{[
1
2
M+

mn(ωm + ωn)

×
cosh[|km + kn|(h + z)]

cosh(|km + kn|h)
− P−

mn

]
× (AmAnei[(km+kn)·x−(ωm+ωn)t]

+ BmBnei[(km+kn)·x+(ωm+ωn)t] + c.c.)

−

[
1
2
N+

mn(ωm − ωn)
cosh[|km + kn|(h + z)]

cosh(|km + kn|h)
+ P−

mn

]
× (AmBnei[(km+kn)·x−(ωm−ωn)t]

+ BmAnei((km+kn)·x+(ωm−ωn)t) + c.c.)

−

[
1
2
M−

mn(ωm + ωn)
cosh[|km − kn|(h + z)]

cosh(|km − kn|h)
+ P+

mn

]
× (AmBnei[(km−kn)·x−(ωm+ωn)t]

+ BmAnei[(km−kn)·x+(ωm+ωn)t] + c.c.)
}

− ρ

N∑
m=1

N∑
n=1,n̸=m

[
1
2
N−

mn(ωm − ωn)

×
cosh[|km − kn|(h + z)]

cosh(|km − kn|h)
+ P+

mn

]
× (AmAnei[(km−kn)·x−(ωm−ωn)t]

+ BmBnei[(km−kn)·x+(ωm−ωn)t] + c.c.)

+ ρ

N∑
n=1

g2
|kn|

2(1 − cosh[2|kn|(h + z)])
ω2

ncosh
2(|kn|h)

(|An|
2
+ |Bn|

2), (14)

where

P±

mn =
g2 cosh[|km|(h + z)] cosh[|kn|(h + z)]km · kn

2ωmωn cosh(|km|h) cosh(|kn|h)

±
g2 sinh[|km|(h + z)] sinh[|kn|(h + z)]|km||kn|

2ωmωn cosh(|km|h) cosh(|kn|h)
. (15)

The kernels P±
mn have the following property:

P±

mn = P±

nm.

The dynamic pressure at the sea bottom is obtained by replacing z
by −h in Eqs. (13)-(15).

As indicated by Whitham [28], with the choice of mean value
η = 0, it is clear from the dynamic condition Eq. (4) on z = η that
the mean value φt cannot be zero and φ must at least have a term
t in its expansion (the last term in Eq. (12) for φ2).

All expressions have been checked with Mathematica. The
Mathematica files are available upon request. Therefore we are
confident that the above expressions are free from typographical
errors. As indicated in the introduction, simplifications of these
expressions have already been published in the literature by var-
ious authors. Some authors give expressions only in deep water,
some other authors give expressions for η only. Very few give

expressions for the pressure. Herbers and Guza [11,12] give the
expression in integral form. Our original goal was to compare our
expressions with all existing ones. The comparison turned out to
be too tricky. The recurrent issue seems to be a factor of 2 missing
in some expressions. For example, we believe that expression
Eq. (3.4) for η2 in Ref. [19] should be divided by a factor of 2. For-
ristall [22], who reproduced the results of Sharma and Dean [21],
writes that his expression Eq. (11) for η2 reduces to Eq. (3.7) of
Longuet–Higgins [24], except that the latter equation is missing
a factor of 1/2. Dalzell [20] used symbolic computations to derive
the expressions for η2 and φ2 in finite depth. Dalzell also discussed
the limiting cases of progressive waves and standing waves and
the issue with the 0/0 limit for N−

mn when n = m. Note that
we avoid this singular limit in our derivations. Toffoli et al. [27]
use again the expressions derived by Sharma and Dean [21]. The
first pressure results are those of Longuet–Higgins [3], see also
in Ref. [13]. Note that a nice derivation of the pressure together
with a clear summary of the various contributions to the pressure,
including the second-order pressure pulsation which is spatially
uniform and has a frequency twice that of the carrier wave, can
be found in Ref. [29]. The most complete results for pressure are
those of Ardhuin and Herbers [4], but results for η2 and φ2 are not
provided. Ardhuin and Herbers compare their results with those of
Herbers and Guza [11,12] for the pressure at the sea bottom (z =

−h). We also checked our expressions against those of Fenton [30]
for traveling waves and those of Pierson [26] for interacting long-
crested waves on deep water. In both cases, we found agreement.

Nowwe look at several simplified cases of increasing complex-
ity. More details can be found in Ref. [31]. The first one is the
case that was originally studied by Longuet–Higgins [3]. It deals
with the superposition of two TWs with opposite wave numbers
of the same magnitude and with unequal amplitudes. The second
case deals with the superposition of two TWs with opposite wave
numbers of different magnitudes and with unequal amplitudes.
The third case deals with the superposition of two TWs with dif-
ferent wavenumber vectors and not directly opposing (incidence
angle ̸= 180◦). All of these cases can result from various situations
encountered in the ocean: coastal reflection, broad storm (single
swell event), wind waves interacting with swell.

For two opposite TWs of the same wavenumber k (and fre-
quency ω) and amplitudes A, B respectively, Eqs. (7)–(8), (13)–(14)
simplify to

η1 = Aei(kx−ωt)
− Bei(kx+ωt)

+ c.c., (16)

η2 = k coth(kh)
(
1 +

3
2sinh2(kh)

)
(A2e2i(kx−ωt)

+ B2e2i(kx+ωt)
+ c.c.)

− k coth(kh)
(
1 + tanh2(kh)

2

)
(ABe2ikx + c.c.), (17)

p1 =
ρg cosh[k(h + z)]

cosh(kh)
(Aei(kx−ωt)

− Bei(kx+ωt)
+ c.c.), (18)

p2 =
ρgk coth(kh)
2cosh2(kh)

(
3 cosh[2k(h + z)]

sinh2(kh)
− 1

)
(A2e2i(kx−ωt)

+ B2e2i(kx+ωt)
+ c.c.)

+ ρgk coth(kh)
(
1 + 3tanh2(kh) −

cosh[2k(h + z)]
cosh2(kh)

)
× (ABe−2iωt

+ c.c.)

−
ρgk coth(kh)
cosh2(kh)

(ABe2ikx + c.c.) +
ρgk coth(kh)
cosh2(kh)

× (1 − cosh[2k(h + z)])(|A|
2
+ |B|2). (19)

In deep water (kh → ∞), the expressions for η2, p1, and p2
reduce to

η2 = k(A2e2i(kx−ωt)
+ B2e2i(kx+ωt)

+ c.c.) − k(ABe2ikx + c.c.), (20)
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p1 = ρgekz(Aei(kx−ωt)
− Bei(kx+ωt)

+ c.c.), (21)

p2 = 2ρω2(2 − e2kz)(ABe−2iωt
+ c.c.)

− 2ρω2e2kz(|A|
2
+ |B|2). (22)

The second-order dynamic pressure p2 is independent of x and its
frequency is twice the frequency of the carrier waves. The second
term, which decreases exponentially with depth, ensures that the
mean water level is zero. The first term, which is felt all the way
to the sea bottom, is proportional to the amplitudes of the carrier
waves and to the square of their frequency. At the sea bottom
(z → −∞) (for example, see Ref. [3] or Ref. [29]), it reads

p2 = 8ρω2AB cos(2ωt),

where we have taken for simplicity A and B to be real. The ampli-
tude of this second-order pressure oscillation increases when the
period of the opposing waves becomes shorter. It is notable that
this second-order pressure oscillation is stronger at the sea bottom
than at the sea surface Eq. (22).

With this example of two opposite TWs of the same wavenum-
ber, we illustrate the subtleties involved with pressure measure-
ments. The dynamic pressure pd is the wave induced pressure,
i.e., the excess pressure relative to the hydrostatic pressure −ρgz
(and the atmospheric pressure, here set equal to zero). At first
order, pd = p1. At the free surface z = η1, pd = ρgη1 since p = 0,
see Eq. (5). Taking A and B to be real, one can rewrite the pressure
p1 Eq. (18) as

p1 =
2ρg cosh[k(h + z)]

cosh(kh)

√
A2 + B2 − 2AB cos(2kx)

× cos(κ − ωt), (23)

with

κ = tan−1
[
(A + B) sin(kx)
(A − B) cos(kx)

]
.

The maximum of the pressure p1 depends on x. Depending on
the values for x, the following inequality holds for the maximum
pressure p1:

2ρg cosh[k(h + z)]
cosh(kh)

|A − B| < max p1

<
2ρg cosh[k(h + z)]

cosh(kh)
|A + B|.

At second order, pd = p1 +p2. Since at the free surface z = η1 +η2,
pd = ρg(η1 +η2), see Eq. (5). Therefore it is not easy to distinguish
between the various components of the pressure in the vicinity of
the free surface. This is why we will only consider the expression
of the dynamic pressure pd in the lower part of the water column,
where pd is dominated by the second-order term p2, when we
investigate the conditions under which a significant second-order
dynamic pressure field is present in the subsurface zone.

We now consider two TWs of different wave numbers k1, k2
(frequencies ω1, ω2) and amplitudes A, B respectively, traveling
in opposite directions. For deep water waves (k1h, k2h, (k1 + k2)
h ≫ 1),

η1 = Aei(k1x−ω1t) − Bei(k2x+ω2t) + c.c., (24)

p1 = ρgek1z(Aei(k1x−ω1t) + c.c.) − ρgek2z(Bei(k2x+ω2t) + c.c.). (25)

Weprovide the value for the dynamic pressure p2 at the sea bottom
(z = −h):

p2 =
4ρω1ω2(ω1 + ω2)2

[(ω1 + ω2)2 − g(k1 − k2) tanh[(k1 − k2)h]] cosh[(k1 − k2)h]
× (ABei[(k1−k2)x−(ω1+ω2)t] + c.c.). (26)
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Fig. 2. Dimensionless second-order dynamic pressure p2/pSW2 vs. K in m−1 , for
k1 = 0.04 m−1 and h = 400 m.

The second-order pressure p2 is periodic in space (k = 2π/(k1−
k2)) and time (T = 2π/(ω1 + ω2)), and proportional to the ampli-
tude of the carrier waves. Let us now investigate the conditions
under which p2 is felt all the way to the sea bottom. We write

k2 = k1 + K .

Then, for a given k1 and a given h, p2 in Eq. (26) can be thought of
as a function of K :

p2(K ) =
4ρω2

1
√
1 + K/k1

(
1 +

√
1 + K/k1

)2
[
(
1 +

√
1 + K/k1

)2
− K tanh(Kh)/k1] cosh(Kh)

×

(
ABei

[
−Kx−

√
gk1

(
1+

√
1+K/k1

)
t
]
+ c.c.

)
. (27)

When K = 0, we are back to the case studied. Let (for ω1 = ω)

pSW2 = 8ρω2AB.

Then, at t = 0 and x = 0,

p2(K ) = pSW2

√
1 + K/k1

(
1 +

√
1 + K/k1

)2
[
(
1 +

√
1 + K/k1

)2
− K tanh(Kh)/k1] cosh(Kh)

.

Assuming that h = 400mand k1 = 0.04m−1 (corresponding to
T1 = 10 s), an illustration for the magnitude of the dimensionless
coefficient p2/pSW2 is provided in Fig. 2 as function of the wave
number difference K . One can clearly observe that the coefficient
decreases rapidly with K . Already at |K | = 0.008 m−1, there is a
90% decrease. Although the coefficient is not symmetric in K , its
behavior is nearly identical for both negative and positive values
of K .

While short period standing waves produce second-order pres-
sures of larger amplitude than long period standing waves, they
aremore sensitive to changes in the characteristics of the opposing
interacting waves.

Analogous results with the 2D case can be obtained for the 3D
case. Results for two TWs of different wave vectors traveling in
opposite direction are presented below at z = −h (p1 → 0). For
deep water waves (|k1|h, |k2|h, |k1 + k2|h ≫ 1),

η1 = Aei(k1·x−ω1t) − Bei(k2·x+ω2t) + c.c., (28)

p1 = ρge|k1|zAei(k1·x−ω1t) − ρge|k2|zBei(k2·x+ω2t) + c.c. (29)
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p2(K , β) =
2ρω2

1
√
1 + K/|k1|

(
1 +

√
1 + K/|k1|

)2(1 + cosβ)

[
(
1 +

√
1 + K/|k1|

)2
− |k1 − k2| tanh(|k1 − k2|h)/|k1|] cosh(|k1 − k2|h)

× (ABei[(k1−k2)·x−(ω1+ω2)t] + c.c.), (31)

where

|k1 − k2| =

√
2|k1|

2
− 2K |k1| − 2|k1|

2 cosβ + 2K |k1| cosβ + K 2.

Box II.

Weprovide the value for the dynamic pressure p2 at the sea bottom
(z = −h):

p2 =
2ρ

[
g2k1 · k2( 1

ω1
+

1
ω2

) + ω1ω2(ω1 + ω2)
]
(ω1 + ω2)

[(ω1 + ω2)2 − g|k1 − k2| tanh(|k1 − k2|h)] cosh(|k1 − k2|h)
× (ABei[(k1−k2)·x−(ω1+ω2)t] + c.c.). (30)

The second-order pressure is periodic in space (k = 2π/|k1 −

k2|) and time (T = 2π/(ω1 + ω2)), and proportional to the carrier
waves’ amplitudes. The expression is independent of the depth
with restrictive conditions on |β| (β is the angle between the
two waves) and |δT |. The amplitude of the second order pressure
diminishes when |β| and |δT | increase.

To investigate the conditions under which p2 is felt all the way
to the sea bottom, we follow the same procedure as before. We
write

|k2| = |k1| + K .

Then, for a given k1 and a given h, p2 in Eq. (30) can be thought of
as a function of K and β in Eq. (31) of Box II.

As in the previous case, for K = 0, we can study the magnitude
of the dimensionless coefficient p2/pSW2 (at t = 0 and x = 0) as a
function of the wave number difference K and the angle difference
β , as shown in Fig. 3. As before, we assume that h = 400 m and
|k1| = 0.04 m−1 (corresponding to T1 = 10 s). The coefficient is
symmetric in β , and nearly symmetric in K . Only positive values of
β smaller than π/8 are shown to better illustrate the fast decay of
the second-order dynamic pressure as the angle between the two
waves increases.

We have investigated the interaction of water waves of nearly
equal frequencies and nearly opposite directions in arbitrarywater
depth. Second-order expressions were given for the free-surface
elevation, velocity potential, and pressure.

For two opposite TWs of the same wave number, the second-
order pressure is independent of the depth, periodic in time with
twice the frequency of the carrier waves, and proportional to their
amplitudes.

For two opposite TWs of different wave numbers, the second-
order pressure is dependent of depth in the general case, periodic
in time and space, and proportional to their amplitudes.

Extending to the 3D case of TWs of different wave vectors trav-
eling in opposite directions,we still observe the samebehavior. The
amplitude of the second-order pressure is very sensitive to β (the
angle between the waves) and the difference in wave numbers.
Small variations in wave numbers cause large variations of the
second order pressure amplitude. The maximum in wave number
difference to obtain second-order pressure variations that can be
detected depends on the value of the period of the carrier wave,
and it diminishes when the period diminishes. This could explain
why microseisms are very localized in space and time.

The present work can also accommodate the case of irregular
swells. However, compressible effects have not been taken into
account. This is left for future work.
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